Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 018, 11 pages      arXiv:2403.06782      https://doi.org/10.3842/SIGMA.2025.018

Mass from an Extrinsic Point of View

Alexandre de Sousa a and Frederico Girão b
a) Escola de Ensino Fundamental e Médio Santa Luzia, Fortaleza, 60110-300, Brazil
b) Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, 60455-760, Brazil

Received October 22, 2024, in final form March 03, 2025; Published online March 18, 2025

Abstract
We express the $q$-th Gauss-Bonnet-Chern mass of an immersed submanifold of Euclidean space as a linear combination of two terms: the total $(2q)$-th mean curvature and the integral, over the entire manifold, of the inner product between the $(2q+1)$-th mean curvature vector and the position vector of the immersion. As a consequence, we obtain, for each $q$, a geometric inequality that holds whenever the positive mass theorem (for the $q$-th Gauss-Bonnet-Chern mass) holds.

Key words: Gauss-Bonnet-Chern mass; asymptotically Euclidean submanifolds; positive mass theorem; Hsiung-Minkowski identities.

pdf (367 kb)   tex (19 kb)  

References

  1. Alías L.J., de Lira J.H.S., Malacarne J.M., Constant higher-order mean curvature hypersurfaces in Riemannian spaces, J. Inst. Math. Jussieu 5 (2006), 527-562, arXiv:math.DG/0311352.
  2. Arnowitt R., Deser S., Misner C.W., Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122 (1961), 997-1006.
  3. Ashtekar A., Hansen R.O., A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity, J. Math. Phys. 19 (1978), 1542-1566.
  4. Bartnik R., The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), 661-693.
  5. Chruściel P., Boundary conditions at spatial infinity from a Hamiltonian point of view, in Topological Properties and Global Structure of Space-time (Erice, 1985), NATO Adv. Sci. Inst. Ser. B: Phys., Vol. 138, Plenum, New York, 1986, 49-59, arXiv:1312.0254.
  6. Chruściel P., A remark on the positive-energy theorem, Classical Quantum Gravity 3 (1986), L115-L121.
  7. Chruściel P., Corrigendum: ''A remark on the positive-energy theorem'', Classical Quantum Gravity 4 (1987), 1049.
  8. de Lima L.L., Girão F., The ADM mass of asymptotically flat hypersurfaces, Trans. Amer. Math. Soc. 367 (2015), 6247-6266, arXiv:1108.5474.
  9. de Lima L.L., Girão F., Montalbán A., The mass in terms of Einstein and Newton, Classical Quantum Gravity 36 (2019), 075017, 11 pages, arXiv:1811.06924.
  10. de Sousa A., Um breve estudo sobre a massa de Gauss-Bonnet-Chern dos gráficos euclidianos, Ph.D. Thesis, Universidade Federeal do Ceará, 2016, available at http://www.repositorio.ufc.br/handle/riufc/71518.
  11. de Sousa A., Girão F., The Gauss-Bonnet-Chern mass of higher-codimension graphs, Pacific J. Math. 298 (2019), 201-216, arXiv:1509.00456.
  12. Ge Y., Wang G., Wu J., A new mass for asymptotically flat manifolds, Adv. Math. 266 (2014), 84-119, arXiv:1211.3645.
  13. Ge Y., Wang G., Wu J., The Gauss-Bonnet-Chern mass of conformally flat manifolds, Int. Math. Res. Not. 2014 (2014), 4855-4878, arXiv:1212.3213.
  14. Grosjean J.-F., Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds, Pacific J. Math. 206 (2002), 93-112.
  15. Herzlich M., Computing asymptotic invariants with the Ricci tensor on asymptotically flat and asymptotically hyperbolic manifolds, Ann. Henri Poincaré 17 (2016), 3605-3617, arXiv:1503.00508.
  16. Hsiung C.-C., Some integral formulas for closed hypersurfaces in Riemannian space, Pacific J. Math. 6 (1956), 291-299.
  17. Huang L.-H., On the center of mass in general relativity, in Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., Vol. 51, American Mathematical Society, Providence, RI, 2012, 575-591, arXiv:1101.0456.
  18. Huang L.-H., Wu D., Hypersurfaces with nonnegative scalar curvature, J. Differential Geom. 95 (2013), 249-278, arXiv:1102.5749.
  19. Kwong K.-K., An extension of Hsiung-Minkowski formulas and some applications, J. Geom. Anal. 26 (2016), 1-23, arXiv:1307.3025.
  20. Lam M.-K.G., The graph cases of the Riemannian positive mass and Penrose inequalities in all dimensions, arXiv:1010.4256.
  21. Lam M.-K.G., The graph cases of the Riemannian positive mass and Penrose inequalities in all dimensions, Ph.D. Thesis, Duke University, 2011, available at https://hdl.handle.net/10161/3857.
  22. Li H., Wei Y., Xiong C., The Gauss-Bonnet-Chern mass for graphic manifolds, Ann. Global Anal. Geom. 45 (2014), 251-266, arXiv:1304.6561.
  23. Lohkamp J., The higher dimensional positive mass theorem I, arXiv:math.DG/0608795.
  24. Lohkamp J., Skin structures on minimal hypersurfaces, arXiv:1512.08249.
  25. Lohkamp J., Hyperbolic geometry and potential theory on minimal hypersurfaces, arXiv:1512.08251.
  26. Lohkamp J., Skin structures in scalar curvature geometry, arXiv:1512.08252.
  27. Lovelock D., Divergence-free tensorial concomitants, Aequationes Math. 4 (1970), 127-138.
  28. Lovelock D., The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971), 498-501.
  29. Miao P., Tam L.-F., Evaluation of the ADM mass and center of mass via the Ricci tensor, Proc. Amer. Math. Soc. 144 (2016), 753-761, arXiv:1408.3893.
  30. Michel B., Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (2011), 052504, 14 pages, arXiv:1012.3775.
  31. Mirandola H., Vitório F., The positive mass theorem and Penrose inequality for graphical manifolds, Comm. Anal. Geom. 23 (2015), 273-292, arXiv:1304.3504.
  32. Nash J., The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63.
  33. Parker T., Taubes C.H., On Witten's proof of the positive energy theorem, Comm. Math. Phys. 84 (1982), 223-238.
  34. Schoen R., Yau S.-T., Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity, Proc. Nat. Acad. Sci. USA 76 (1979), 1024-1025.
  35. Schoen R., Yau S.-T., On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), 45-76.
  36. Schoen R., Yau S.-T., The energy and the linear momentum of space-times in general relativity, Comm. Math. Phys. 79 (1981), 47-51.
  37. Schoen R., Yau S.-T., Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), 47-71.
  38. Schoen R., Yau S.-T., Positive scalar curvature and minimal hypersurface singularities, in Surveys in Differential Geometry 2019. Differential Geometry, Calabi-Yau Theory, and General Relativity. Part 2, Surv. Differ. Geom., Vol. 24, International Press, Boston, MA, 2022, 441-480, arXiv:1704.05490.
  39. Wang G., Wu J., Chern's magic form and the Gauss-Bonnet-Chern mass, Math. Z. 287 (2017), 843-854, arXiv:1510.03036.
  40. Witten E., A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), 381-402.

Previous article  Next article  Contents of Volume 21 (2025)