|
SIGMA 21 (2025), 019, 7 pages arXiv:2501.05746
https://doi.org/10.3842/SIGMA.2025.019
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
A Minimum Property for Cuboidal Lattice Sums
Shaun Cooper a and Peter Schwerdtfeger b
a) School of Mathematical and Computational Sciences, Massey University Albany, Private Bag 102904, North Shore Mail Centre, Auckland 0745, New Zealand
b) Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag 102904, North Shore Mail Centre, Auckland 0745, New Zealand
Received January 13, 2025, in final form March 16, 2025; Published online March 24, 2025
Abstract
We analyse a family of lattices considered by Conway and Sloane and show that the corresponding Epstein zeta function attains a local minimum for the body-centred cubic lattice.
Key words: body-centred cubic; face-centred cubic; Epstein zeta function; lattice sum.
pdf (351 kb)
tex (13 kb)
References
- Bétermin L., Optimality of the triangular lattice for Lennard-Jones type lattice energies: a computer-assisted method, J. Phys. A 56 (2023), 145204, 19 pages, arXiv:2104.09795.
- Borwein J.M., Glasser M.L., McPhedran R.C., Wan J.G., Zucker I.J., Lattice sums then and now, Encyclopedia Math. Appl., Vol. 150, Cambridge University Press, Cambridge, 2013.
- Burrows A., Cooper S., Schwerdtfeger P., Instability of the body-centered cubic lattice within the sticky hard sphere and Lennard-Jones model obtained from exact lattice summations, Phys. Rev. E 104 (2021), 035306, 10 pages, arXiv:2107.11380.
- Cohn H., Kumar A., Miller S.D., Radchenko D., Viazovska M., Universal optimality of the $E_8$ and Leech lattices and interpolation formulas, Ann. of Math. 196 (2022), 983-1082, arXiv:1902.05438.
- Conway J.H., Sloane N.J.A., On lattices equivalent to their duals, J. Number Theory 48 (1994), 373-382.
- Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, 3rd ed., Grundlehren Math. Wiss., Vol. 290, Springer, New York, 1999.
- Edelsbrunner H., Kerber M., Covering and packing with spheres by diagonal distortion in $\mathbb{R}^n$, in Rainbow of Computer Science, Lecture Notes in Comput. Sci., Vol. 6570, Springer, Heidelberg, 2011, 20-35.
- Ennola V., On a problem about the Epstein zeta-function, Proc. Cambridge Philos. Soc. 60 (1964), 855-875.
- Faulhuber M., Steinerberger S., An extremal property of the hexagonal lattice, J. Stat. Phys. 177 (2019), 285-298, arXiv:1903.06856.
- Fields K.L., The fragile lattice packings of spheres in three-dimensional space, Acta Cryst. Sect. A 36 (1980), 194-197.
- Fields K.L., Locally minimal Epstein zeta functions, Mathematika 27 (1980), 17-24.
- Hales T.C., A proof of the Kepler conjecture, Ann. of Math. 162 (2005), 1065-1185.
- Montgomery H.L., Minimal theta functions, Glasgow Math. J. 30 (1988), 75-85.
- Patterson A., Crystal lattice models based on the close packing of spheres, Rev. Sci. Instrum. 12 (1941), 206-211.
- Rankin R.A., A minimum problem for the Epstein zeta-function, Proc. Glasgow Math. Assoc. 1 (1953), 149-158.
- Sarnak P., Strömbergsson A., Minima of Epstein's zeta function and heights of flat tori, Invent. Math. 165 (2006), 115-151.
|
|