Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 021, 22 pages      arXiv:2410.15408      https://doi.org/10.3842/SIGMA.2025.021
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
Contribution to the Special Issue on Recent Advances in Vertex Operator Algebras in honor of James Lepowsky

Bailey Pairs and an Identity of Chern-Li-Stanton-Xue-Yee

Shashank Kanade a and Jeremy Lovejoy b
a) Department of Mathematics, University of Denver, 2390 South York Street, Denver, Colorado 80210, USA
b) CNRS, Université Paris Cité, Bâtiment Sophie Germain, Case Courier 7014, 8 Place Aurélie Nemours, 75205 Paris Cedex 13, France

Received October 28, 2024, in final form March 19, 2025; Published online March 29, 2025

Abstract
We show how Bailey pairs can be used to give a simple proof of an identity of Chern, Li, Stanton, Xue, and Yee. The same method yields a number of related identities as well as false theta companions.

Key words: Bailey pairs, $q$-series identities, false theta functions.

pdf (453 kb)   tex (22 kb)  

References

  1. Agarwal A.K., Andrews G.E., Bressoud D.M., The Bailey lattice, J. Indian Math. Soc. (N.S.) 51 (1987), 57-73.
  2. Andrews G.E., On the $q$-analog of Kummer's theorem and applications, Duke Math. J. 40 (1973), 525-528.
  3. Andrews G.E., Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), 267-283.
  4. Andrews G.E., The theory of partitions, Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 1994.
  5. Andrews G.E., Parity in partition identities, Ramanujan J. 23 (2010), 45-90.
  6. Andrews G.E., Dyson's ''favorite'' identity and Chebyshev polynomials of the third and fourth kind, Ann. Comb. 23 (2019), 443-464.
  7. Bressoud D., Ismail M.E.H., Stanton D., Change of base in Bailey pairs, Ramanujan J. 4 (2000), 435-453, arXiv:math.CO/9909053.
  8. Chern S., Li Z., Stanton D., Xue T., Yee A.J., The Ariki-Koike algebras and Rogers-Ramanujan type partitions, J. Algebraic Combin. 60 (2024), 491-540, arXiv:2209.07713.
  9. Cooper S., The quintuple product identity, Int. J. Number Theory 2 (2006), 115-161.
  10. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
  11. Hikami K., $q$-series and $L$-functions related to half-derivatives of the Andrews-Gordon identity, Ramanujan J. 11 (2006), 175-197, arXiv:math.NT/0303250.
  12. Kanade S., Milas A., Russell M.C., On certain identities involving Nahm-type sums with double poles, Adv. in Appl. Math. 143 (2023), 102452, 34 pages, arXiv:2109.01909.
  13. Kanade S., Russell M.C., On $q$-series for principal characters of standard $A^{(2)}_2$-modules, Adv. Math. 400 (2022), 108282, 24 pages, arXiv:2010.01008.
  14. Kim S., Yee A.J., The Rogers-Ramanujan-Gordon identities, the generalized Göllnitz-Gordon identities, and parity questions, J. Combin. Theory Ser. A 120 (2013), 1038-1056.
  15. Lovejoy J., A Bailey lattice, Proc. Amer. Math. Soc. 132 (2004), 1507-1516.
  16. Lovejoy J., Bailey pairs and strange identities, J. Korean Math. Soc. 59 (2022), 1015-1045, arXiv:2203.14391.
  17. Lovejoy J., Sarma R., Bailey pairs, radial limits of $q$-hypergeomtric false theta functions, and a conjecture of Hikami, Kyushu J. Math. to appear, arXiv:2402.11529.
  18. McLaughlin J., Sills A.V., Ramanujan-Slater type identities related to the moduli 18 and 24, J. Math. Anal. Appl. 344 (2008), 765-777.
  19. Rogers L.J., On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. 16 (1917), 315-336.
  20. Slater L.J., A new proof of Rogers's transformations of infinite series, Proc. London Math. Soc. 53 (1951), 460-475.
  21. Slater L.J., Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 54 (1952), 147-167.
  22. Stembridge J.R., Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans. Amer. Math. Soc. 319 (1990), 469-498.
  23. Warnaar S.O., Partial theta functions. I. Beyond the lost notebook, Proc. London Math. Soc. 87 (2003), 363-395.

Previous article  Next article  Contents of Volume 21 (2025)