|
SIGMA 21 (2025), 022, 13 pages arXiv:2410.21210
https://doi.org/10.3842/SIGMA.2025.022
Mode Stability of Hermitian Instantons
Lars Andersson a, Bernardo Araneda b and Mattias Dahl c
a) Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, P.R. China
b) School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, EH9 3FD, UK
c) Institutionen för Matematik, Kungliga Tekniska Högskolan, 100 44 Stockholm, Sweden
Received December 13, 2024, in final form March 24, 2025; Published online April 01, 2025
Abstract
In this note, we prove the Riemannian analog of black hole mode stability for Hermitian, non-self-dual gravitational instantons which are either asymptotically locally flat (ALF) and Ricci-flat, or compact and Einstein with positive cosmological constant. We show that the Teukolsky equation on any such manifold is a positive definite operator. We also discuss the compatibility of the results with the existence of negative modes associated to variational instabilities.
Key words: gravitational instantons; stability; spinor methods.
pdf (386 kb)
tex (23 kb)
References
- Aksteiner S., Andersson L., Gravitational instantons and special geometry, J. Differential Geom. 128 (2024), 928-958, arXiv:2112.11863.
- Aksteiner S., Andersson L., Bäckdahl T., Khavkine I., Whiting B., Compatibility complex for black hole spacetimes, Comm. Math. Phys. 384 (2021), 1585-1614, arXiv:1910.08756.
- Aksteiner S., Andersson L., Dahl M., Nilsson G., Simon W., Gravitational instantons with $S^1$ symmetry, arXiv:2306.14567.
- Andersson L., Häfner D., Whiting B.F., Mode analysis for the linearized Einstein equations on the Kerr metric: the large $\mathfrak{a}$ case, J. Eur. Math. Soc., to appear, arXiv:2207.12952.
- Andersson L., Ma S., Paganini C., Whiting B.F., Mode stability on the real axis, J. Math. Phys. 58 (2017), 072501, 19 pages, arXiv:1607.02759.
- Araneda B., Hidden symmetries of generalised gravitational instantons, Ann. Henri Poincaré, to appear, arXiv:2309.05617.
- Araneda B., Conformal invariance, complex structures and the Teukolsky connection, Classical Quantum Gravity 35 (2018), 175001, 23 pages, arXiv:1805.11600.
- Araneda B., Conformal geometry and half-integrable spacetimes, Adv. Theor. Math. Phys. 27 (2023), 1591-1663, arXiv:2110.06167.
- Arms J.M., Marsden J.E., Moncrief V., The structure of the space of solutions of Einstein's equations. II. Several Killing fields and the Einstein-Yang-Mills equations, Ann. Physics 144 (1982), 81-106.
- Bäckdahl T., Valiente Kroon J.A., A formalism for the calculus of variations with spinors, J. Math. Phys. 57 (2016), 022502, 18 pages, arXiv:1505.03770.
- Besse A.L., Einstein manifolds, Classics Math., Springer, Berlin, 2008.
- Biquard O., Gauduchon P., On toric Hermitian ALF gravitational instantons, Comm. Math. Phys. 399 (2023), 389-422, arXiv:2112.12711.
- Biquard O., Gauduchon P., LeBrun C., Gravitational instantons, Weyl curvature, and conformally Kähler geometry, Int. Math. Res. Not. 2024 (2024), 13295-13311, arXiv:2310.14387.
- Biquard O., Ozuch T., Instability of conformally Kähler, Einstein metrics, arXiv:2310.10109.
- Chen G., Chen X., Gravitational instantons with faster than quadratic curvature decay I, Acta Math. 227 (2021), 263-307, arXiv:1505.01790.
- Chen G., Chen X., Gravitational instantons with faster than quadratic curvature decay II, J. Reine Angew. Math. 756 (2019), 259-284, arXiv:1508.07908.
- Chen G., Chen X., Gravitational instantons with faster than quadratic curvature decay III, Math. Ann. 380 (2021), 687-717, arXiv:1603.08465.
- Chen X., Li Y., On the geometry of asymptotically flat manifolds, Geom. Topol. 25 (2021), 2469-2572, arXiv:1908.07248.
- Chen Y., Teo E., A new AF gravitational instanton, Phys. Lett. B 703 (2011), 359-362, arXiv:1107.0763.
- Choquet-Bruhat Y., Deser S., On the stability of flat space, Ann. Physics 81 (1973), 165-178.
- Dai X., Wei G., Hitchin-Thorpe inequality for noncompact Einstein 4-manifolds, Adv. Math. 214 (2007), 551-570, arXiv:math.DG/0612105.
- Derdziński A., Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405-433.
- Fischer A.E., Marsden J.E., Linearization stability of the Einstein equations, Bull. Amer. Math. Soc. 79 (1973), 997-1003.
- Fischer A.E., Marsden J.E., Linearization stability of nonlinear partial differential equations, in Differential Geometry, Proc. Sympos. Pure Math., Vol. 27, Part 2, American Mathematical Society, Providence, RI, 1975, 219-263.
- Fischer A.E., Marsden J.E., Moncrief V., The structure of the space of solutions of Einstein's equations. I. One Killing field, Ann. Inst. H. Poincaré Sect. A (N.S.) 33 (1980), 147-194.
- Flaherty E.J., Hermitian and Kählerian geometry in relativity, Lecture Notes in Phys., Vol. 46, Springer, Berlin, 1976.
- Goldblatt E., A Newman-Penrose formalism for gravitational instantons, Gen. Relativity Gravitation 26 (1994), 979-997.
- Gross D.J., Perry M.J., Yaffe L.G., Instability of flat space at finite temperature, Phys. Rev. D 25 (1982), 330-355.
- Huggett S.A., Tod K.P., An introduction to twistor theory, 2nd ed., London Math. Soc. Stud. Texts, Vol. 4, Cambridge University Press, Cambridge, 1994.
- Kronheimer P.B., A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989), 685-697.
- Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1990.
- LeBrun C., On Einstein, Hermitian 4-manifolds, J. Differential Geom. 90 (2012), 277-302, arXiv:1010.0238.
- Li M., Classification results for conformally Kähler gravitational instantons, arXiv:2310.13197.
- Minerbe V., Rigidity for multi-Taub-NUT metrics, J. Reine Angew. Math. 656 (2011), 47-58, arXiv:0910.5792.
- Moncrief V., Spacetime symmetries and linearization stability of the Einstein equations. I, J. Math. Phys. 16 (1975), 493-498.
- Moncrief V., Space-time symmetries and linearization stability of the Einstein equations. II, J. Math. Phys. 17 (1976), 1893-1902.
- Nilsson G., Mode stability for gravitational instantons of type D, Classical Quantum Gravity 41 (2024), 085004, 16 pages, arXiv:2309.03972.
- Page D., A compact rotating gravitational instanton, Phys. Lett. B 79 (1978), 235-238.
- Page D., Taub-NUT instanton with an horizon, Phys. Lett. B 78 (1978), 249-251.
- Penrose R., Rindler W., Spinors and space-time. Vol. 1. Two-spinor calculus and relativistic fields, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1984.
- Penrose R., Rindler W., Spinors and space-time. Vol. 2. Spinor and twistor methods in space-time geometry, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1986.
- Sun S., Zhang R., Collapsing geometry of hyperkähler 4-manifolds and applications, Acta Math. 232 (2024), 325-424, arXiv:2108.12991.
- Teukolsky S.A., Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185 (1973), 635-648.
- Wald R.M., General relativity, University of Chicago Press, Chicago, IL, 1984.
- Whiting B.F., Mode stability of the Kerr black hole, J. Math. Phys. 30 (1989), 1301-1305.
- Witten E., Instability of the Kaluza-Klein vacuum, Nuclear Phys. B 195 (1982), 481-492.
- Woodhouse N.M.J., Real methods in twistor theory, Classical Quantum Gravity 2 (1985), 257-291.
|
|