Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 049, 6 pages           https://doi.org/10.3842/SIGMA.2025.049
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne

The Rogers-Ramanujan Identities and Cauchy's Identity

Dennis Stanton
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA

Received February 26, 2025, in final form June 26, 2025; Published online July 01, 2025

Abstract
The Rogers-Ramanujan identities are investigated using the Cauchy identity for Schur functions.

Key words: integer partition; Schur function.

pdf (326 kb)   tex (10 kb)  

References

  1. Andrews G.E., On a conjecture of Peter Borwein, J. Symbolic Comput. 20 (1995), 487-501.
  2. Andrews G.E., The theory of partitions, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1998.
  3. Garsia A.M., Milne S.C., A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A 31 (1981), 289-339.
  4. Griffin M.J., Ono K., Warnaar S.O., A framework of Rogers-Ramanujan identities and their arithmetic properties, Duke Math. J. 165 (2016), 1475-1527, arXiv:1401.7718.
  5. Jouhet F., Zeng J., New identities for Hall-Littlewood polynomials and applications, Ramanujan J. 10 (2005), 89-112, arXiv:math.CO/0110165.
  6. Lepowsky J., Milne S., Lie algebraic approaches to classical partition identities, Adv. Math. 29 (1978), 15-59.
  7. Lepowsky J., Milne S., Lie algebras and classical partition identities, Proc. Nat. Acad. Sci. USA 75 (1978), 578-579.
  8. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxf. Class. Texts Phys. Sci., The Clarendon Press, New York, 2015.
  9. Rains E., Warnaar S.O., Bounded Littlewood identities, Mem. Amer. Math. Soc. 270 (2021), vii+115 pages, arXiv:1506.02755.
  10. Stembridge J.R., Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans. Amer. Math. Soc. 319 (1990), 469-498.
  11. Warnaar S.O., Hall-Littlewood functions and the $A_2$ Rogers-Ramanujan identities, Adv. Math. 200 (2006), 403-434, arXiv:math.CO/0410592.

Previous article  Next article  Contents of Volume 21 (2025)