|
SIGMA 21 (2025), 049, 6 pages
https://doi.org/10.3842/SIGMA.2025.049
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
The Rogers-Ramanujan Identities and Cauchy's Identity
Dennis Stanton
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
Received February 26, 2025, in final form June 26, 2025; Published online July 01, 2025
Abstract
The Rogers-Ramanujan identities are investigated using the Cauchy identity for Schur functions.
Key words: integer partition; Schur function.
pdf (326 kb)
tex (10 kb)
References
- Andrews G.E., On a conjecture of Peter Borwein, J. Symbolic Comput. 20 (1995), 487-501.
- Andrews G.E., The theory of partitions, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1998.
- Garsia A.M., Milne S.C., A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A 31 (1981), 289-339.
- Griffin M.J., Ono K., Warnaar S.O., A framework of Rogers-Ramanujan identities and their arithmetic properties, Duke Math. J. 165 (2016), 1475-1527, arXiv:1401.7718.
- Jouhet F., Zeng J., New identities for Hall-Littlewood polynomials and applications, Ramanujan J. 10 (2005), 89-112, arXiv:math.CO/0110165.
- Lepowsky J., Milne S., Lie algebraic approaches to classical partition identities, Adv. Math. 29 (1978), 15-59.
- Lepowsky J., Milne S., Lie algebras and classical partition identities, Proc. Nat. Acad. Sci. USA 75 (1978), 578-579.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxf. Class. Texts Phys. Sci., The Clarendon Press, New York, 2015.
- Rains E., Warnaar S.O., Bounded Littlewood identities, Mem. Amer. Math. Soc. 270 (2021), vii+115 pages, arXiv:1506.02755.
- Stembridge J.R., Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans. Amer. Math. Soc. 319 (1990), 469-498.
- Warnaar S.O., Hall-Littlewood functions and the $A_2$ Rogers-Ramanujan identities, Adv. Math. 200 (2006), 403-434, arXiv:math.CO/0410592.
|
|