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1 Introduction

Two of Steve Milne’s most noteworthy works are on the Rogers–Ramanujan identities (see [2])
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With J. Lepowsky he proved (1.1) algebraically (see [6, 7]). The involution principle, with
A. Garsia [3], gave an indirect bijection for MacMahon’s combinatorial interpretation of the
identities.

Stembridge [10] used symmetric function identities via Hall–Littlewood polynomials to prove
and generalize the Rogers–Ramanujan identities. This was continued by Jouhet–Zeng [5] and
S. Ole Warnaar [11]. A vast generalization to the Rogers–Ramanujan identities, corresponding
to affine Lie algebras, was given in [4, 9]. Here the appropriate Hall–Littlewood polynomials are
specializations of the Macdonald–Koornwinder polynomials.

The purpose of this note is explore a naive approach using the Cauchy identity for Schur
functions. What would be required for a explicit bijective proof via the Cauchy identity is
discussed in Section 2. Some related identities and a speculation are given in Sections 3 and 4,
while Section 5 has two remarks.

All symmetric function facts can be found in Macdonald’s book [8].

2 A proposal for a bijection

MacMahon’s combinatorial interpretation of (1.1) uses integer partitions.

Proposition 2.1. The first Rogers–Ramanujan identity is equivalent to the following two sets
of integer partitions being equinumerous for any n:
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(1) integer partitions of n into parts congruent to 1 or 4 modulo 5,

(2) integer partitions of n whose parts differ by at least 2.

There is no known direct bijection between these two finite sets of partitions. There is
a similar statement for the second Rogers–Ramanujan identity, also with an unknown bijection.

In this paper, we use Schur functions, sλ(x1, . . . , xn, . . . ), which are symmetric functions in
variables x1, x2, . . . indexed by integer partitions λ. A Schur function indexed by λ is the generat-
ing function of all column strict tableaux P of shape λ. For example, if λ = (4, 2, 1), one such P is

1 1 3 6
P = 3 3

5

whose weight is x21x
3
3x

1
5x

1
6. In this paper, the weights are always powers of q, so the weight of

a column strict tableaux P is qN , where N is the sum of the entries of P . Suppose the number
of variables is finite, for example R variables. There are only R possible choices for entries in
the first column, so if the indexing partition λ has more than R parts, the Schur function is
zero. We will later use R = 2 case so that λ has at most 2 rows. The Schur function indexed
by the empty partition is 1.

The Cauchy identity for Schur functions sλ(x1, . . . , xn, . . . ) provides a start for a Rogers–
Ramanujan bijection. The Cauchy identity is∑

λ

sλ(x1, . . . , xn, . . . )sλ(y1, . . . , ym, . . . ) =
∏
i,j

(1− xiyj)
−1. (2.1)

Moreover, it is known that the Robinson–Schensted–Knuth correspondence is a direct bijection
for (2.1), see [2, Chapter 11.3].

Choose (x1, . . . , xn, . . . ) =
(
1, q5, q10, q15, . . .

)
, (y1, y2) =

(
q1, q4

)
so that the right side of (2.1)

is the product side of the first Rogers–Ramanujan identity 1
(q;q5)∞(q4;q5)∞

, while the left side is
restricted to partitions with at most two rows∑

λ at most 2 rows

sλ
(
1, q5, q10, q15, . . .

)
sλ
(
q1, q4

)
.

Proposition 2.2. The Robinson–Schensted–Knuth correspondence provides a direct bijection
between

(1) integer partitions of n into parts congruent to 1 or 4 modulo 5,

(2) pairs of column strict tableaux (P,Q) of the same shape with at most two rows, P having
entries congruent to 0 modulo 5, Q having entries 1 or 4, whose sum of entries is n.

Proposition 2.2 offers some advantages and disadvantages for a bijection. On the plus side, it
changes the problem to a problem on tableaux, for which there is a well developed machinery of
bijections. These more refined objects may be easier to sort than integer partitions. Conversely,
the simple answer required, partitions whose parts differ by at least two, may not be apparent
from this detailed view. The λ = ∅ term corresponds to the n = 0 term in the sum side of the
first Rogers–Ramanujan identity, namely 1. Here are the pairs of column strict tableaux (P,Q)
which correspond to the n = 1 term in the sum side of the first Rogers–Ramanujan identity

q1

1− q
=

q1 + q2 + q3 + q4 + q5

1− q5
.

If λ = 1, the possible choices for (P,Q) are (x, 1), (x, 4), where x is a multiple 5. Their generating
function is q1+q4

1−q5
. For λ = 2, we may take ((0, x), (1, 1)), ((0, x), (1, 4)) where x is a multiple 5,
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Table 1. Column strict pairs (P,Q) for n = 1.

λ (P,Q) generating function

1 ((x), (1) or (4))
(
q1 + q4

)
/
(
1− q5

)
2 ((0, x), (1, 1) or (1, 4))

(
q2 + q5

)
/
(
1− q5

)
3 ((0, 0, x), (1, 1, 1)) q3/

(
1− q5

)
whose generating function is q2+q5

1−q5
. For the remaining term, we take λ = 3, ((0, 0, x), (1, 1, 1)),

where x is a multiple 5. whose generating function is q3

1−q5
.

The n = 2 term on the sum side is

q4

(1− q)
(
1− q2

)
=

q4 + q5 + 2q6 + 2q7 + 3q8 + 2q9 + 3q10 + 2q11 + 3q12 + 2q13 + 2q14 + q15 + q16(
1− q5

)(
1− q10

) .

We list, in Table 2, 25 classes of pairs (P,Q) which correspond to these 25 numerator terms.
Each class has a generating function of qA/

(
1 − q5

)(
1 − q10

)
, for an A between 4 and 16. The

denominator factors occur because the generating function for partitions with at most 2 parts,
each part a multiple of 5, is 1/

(
1− q5

)(
1− q10

)
.

Table 2. Column strict pairs (P,Q) for n = 2.

λ (P,Q) A

2 ((y, x), (1, 1) or (1, 4)) y ≥ 5 12, 15

2 ((y, x), (4, 4)) 8

3 ((0, y, x), (1, 1, 4)) or (1, 4, 4) or (4, 4, 4) 6, 9, 12

4 ((0, 0, y, x), (1, 1, 1, 1) or (1, 1, 1, 4) or (1, 1, 4, 4) or (1, 4, 4, 4) 4, 7, 10, 13, 16

or (4, 4, 4, 4))

5 ((0, 0, 0, y, x), (1, 1, 1, 1, 1) or (1, 1, 1, 1, 4) or (1, 1, 1, 4, 4) or (1, 1, 4, 4, 4)) 5, 8, 11, 14

6 ((0, 0, 0, 0, y, x), (1, 1, 1, 1, 1, 1) or (1, 1, 1, 1, 1, 4) or (1, 1, 1, 1, 4, 4)) 6, 9, 12

7 ((0, 0, 0, 0, 0, y, x), (1, 1, 1, 1, 1, 1, 1) or (1, 1, 1, 1, 1, 1, 4) 7, 10, 13

or (1, 1, 1, 1, 1, 4, 4))

8 ((0, 0, 0, 0, 0, 0, y, x), (1, 1, 1, 1, 1, 1, 1, 1) or (1, 1, 1, 1, 1, 1, 1, 4) 8, 11, 14

or (1, 1, 1, 1, 1, 1, 4, 4))

(1, 1) (transpose(y, x), x > y, transpose(1, 4)) 10

In general, we want to obtain the n-th term in the Rogers–Ramanujan sum
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Problem 2.3. Can one choose pairs of column strict tableaux (P,Q) of the same shape such that

(1) the entries of P are multiples of 5,

(2) the entries of Q are 1 and 4,

(3) and whose generating function is

Fn(q) = qn
2

 n∏
j=1

4∑
p=0

qjp

 /
(
q5; q5

)
n
?
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Solving Problem 2.3 gives a Rogers–Ramanujan bijection when combined with Proposi-
tion 2.2. The pair of column strict tableaux (P,Q) correspond to an integer partition µ whose
parts are 1 or 4 modulo 5. But they also correspond to an integer partition λ whose parts differ
by two. For example, the n = 2 term has the generating function

q4
(
1 + q + q2 + q3 + q4

1− q5

)(
1 + q2 + q4 + q6 + q8

1− q10

)
. (2.2)

This means, after subtracting 1 from the second part of λ and 3 from the first part of λ, the
resulting columns have length 1 or 2. The 5 terms in the numerator factors of (2.2) are the
mod 5 values of the multiplicities of 1 and 2. It will take substantially more insight to resolve
Problem 2.3 for an arbitrary n.

3 Formulas

For clarity, here are the explicit generating functions of the Schur functions as products. These
follow from the principle specialization of Schur functions, the hook-content formula.

Proposition 3.1. Let λ = (a+ b, a). Then

sλ
(
1, q5, q10, q15, . . .

)
=

q5a(
q5; q5

)
a

(
q5; q5

)
b

(
q5(b+2); q5

)
a

, sλ
(
q1, q4

)
= q5a+b

b∑
k=0

q3k.

There is a weighted version using two new parameters x and y.

Theorem 3.2. Choosing y1 = xq1, y2 = yq4, we have

1(
xq; q5

)
∞
(
yq4; q5

)
∞

=
∑
a,b≥0

q5a(
q5; q5

)
a

(
q5; q5

)
b

(
q5(b+2); q5

)
a

xayaq5a+b
b∑

k=0

xb−kykq3k.

Theorem 3.2 independently follows from the finite identity

M∑
a=0

[
N
a

]
q

(
qa − qN−a

)
=

(q; q)N
(q; q)M (q; q)N−M−1

for 0 ≤ M ≤ N − 1.

Finally, a simple subclass of (P,Q) has a product formula. A proof of a more general result is
given in Theorem 4.1.

Proposition 3.3. We have

∑
λ at most 1 row

sλ
(
1, q5, q10, q15, . . .

)
sλ
(
q1, q4

)
=

1

1− q3

(
1(

q1; q5
)
∞

− q3(
q4; q5

)
∞

)
. (3.1)

4 Rogers–Ramanujan mod 2k + 3

The same steps as in Section 2 can be done for higher moduli 2k + 3, the integer partitions
whose parts avoid ±i and 0 mod 2k + 3, 1 ≤ i ≤ 2k + 2. Set

(x1, . . . , xn, . . . ) =
(
1, q2k+3, q2(2k+3), q3(2k+3), . . .

)
,

(y1, . . . , y2k) =
(
q1, . . . , q2k+2

)
with qi and q2k+3−i deleted, (4.1)
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so that ∑
λ at most 2k rows

sλ(x1, . . . , xn, . . . )sλ(y1, . . . , y2k) =
∞∏
j=1

j ̸≡±i,0 mod 2k+3

(
1− qj

)−1
.

The product side of the Rogers–Ramanujan identities (1.1) are the k = 1 and i = 2, 1 special
cases.

There is always a version of the subclass formula (3.1) as a sum of infinite products using (4.1).

Theorem 4.1. Let k ≥ 1, 1 ≤ i ≤ 2k+2 and (y1, . . . , y2k) =
(
q1, . . . , q2k+2

)
, with qi and q2k+3−i

deleted. Then∑
λ at most 1 row

sλ
(
1, q2k+3, q2(2k+3), q3(2k+3), . . .

)
sλ(y1, . . . , y2k) =

2k+2∑
p=1

p̸=i,2k+3−i

Ap(
qp; q2k+3

)
∞
,

where

Ap =

2k+2∏
j=1

j ̸=p,i,2k+3−i

1

1− q−p+j
.

Proof. If λ = N has a single part we have

sλ
(
1, q2k+3, q2(2k+3), q3(2k+3), . . .

)
=

1(
q2k+3; q2k+3

)
N

,

sλ(y1, . . . , y2k) = the coefficient of tN in
2k+2∏
j=1

j ̸=i,2k+3−i

(
1− tqj

)−1
.

By partial fractions on t we see that the Ap satisfy

2k+2∏
j=1

j ̸=i,2k+3−i

(
1− tqj

)−1
=

2k+2∑
p=1

p ̸=i,2k+3−i

Ap(1− tqp)−1,

so that

sλ(y1, . . . , y2k) =

2k+2∑
p=1

p̸=i,2k+3−i

Apq
pN .

We then use
∞∑

N=0

qpN(
q2k+3; q2k+3

)
N

=
1(

qp; q2k+3
)
∞
.

to complete the proof. ■

Note that Theorem 4.1 for k = 1 and i = 2 is (3.1).

Speculation 4.2. The 1 row and at most 2k rows cases are sums of products in the Rogers–
Ramanujan infinite product. Perhaps this works for any number of rows R ≤ 2k. Is∑

λ at most R rows

sλ(x1, . . . , xn, . . . )sλ(y1, . . . , y2k)

a sum of a product of R infinite products, each of the form, 1/
(
qj ; q2k+3

)
∞, j ̸≡ ±i, 0 mod

2k + 3, with coefficients which are rational functions in q?

Note that Speculation 4.2 holds for R = 1 and R = 2k.
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5 Other symmetric function Cauchy identities

Michael Schlosser has pointed out that the dual Cauchy identity

∑
λ

sλ(x1, . . . , xn)sλ′(y1, . . . , ym) =

n∏
i=1

m∏
j=1

(1 + xiyj)

can be similarly used with m = 2 and (x1, x2, . . . , xn) =
(
1, q3, . . . , q3(n−1)

)
, (y1, y2) =

(
−q,−q2

)
to obtain the Borwein product

(
q1; q3

)
n

(
q2, q3

)
n
. Again column strict tableaux could be used to

approach that problem, see [1].
There are other Cauchy identities. If x and y are arbitrary sets of variables, the Macdonald

polynomials satisfy∑
λ

Pλ(x; q, t)Qλ(y; q, t) =
∏
i,j

(txiyj ; q)∞
(xiyj ; q)∞

. (5.1)

Special cases of (5.1), restricted by rows, have been extensively used by Rains and S. Ole
Warnaar [9].
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