Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 050, 22 pages      arXiv:2410.21878      https://doi.org/10.3842/SIGMA.2025.050

Bäcklund-Darboux Transformations for Super KdV Type Equations

Lingling Xue a, Shasha Wang a and Qing Ping Liu b
a) Department of Applied Mathematics, Ningbo University, Ningbo 315211, P.R. China
b) Department of Mathematics, China University of Mining and Technology, Beijing 100083, P.R. China

Received October 30, 2024, in final form June 26, 2025; Published online July 03, 2025

Abstract
By introducing a Miura transformation, we derive a generalized super modified Korteweg-de Vries (gsmKdV) equation from the generalized super KdV (gsKdV) equation. It is demonstrated that, while the gsKdV equation takes Kupershmidt's super KdV (sKdV) equation and Geng-Wu's sKdV equation as two distinct reductions, there are also two equations, namely Kupershmidt's super modified KdV (smKdV) equation and Hu's smKdV equation, which are associated with the gsmKdV equation. By analyzing the flows within the gsKdV and gsmKdV hierarchies, we specifically derive the first negative flows associated with both hierarchies.We then construct a number of Bäcklund-Darboux transformations (BDTs) for both the gsKdV and gsmKdV equations, elucidating the interrelationship between them. By proper reductions, we are able not only to recover the previously known BDTs for Kupershimdt's sKdV and smKdV equations, but also to obtain the BDTs for the Geng-Wu's sKdV/smKdV and Hu's smKdV equations. As applications, we construct some exact solutions for those equations. Since all flows of the sKdV or smKdV hierarchy share the same spatial parts of spectral problem, thus these Darboux matrices and spatial parts of BTs are applicable to any flow of those hierarchies.

Key words: Darboux transformations; Bäcklund transformations; Miura transformations; super KdV equations.

pdf (508 kb)   tex (32 kb)  

References

  1. Adamopoulou P., Papamikos G., Entwining Yang-Baxter maps over Grassmann algebras, Phys. D 472 (2025), 134469, 9 pages, arXiv:2311.18673.
  2. Adans Y.F., Aguirre A.R., Gomes J.F., Lobo G.V., Zimerman A.H., SKdV, SmKdV flows and their supersymmetric gauge-Miura transformations, Open Commun. Nonlinear Math. Phys. (2024), 65-86, arXiv:2403.16285.
  3. Adans Y.F., França G., Gomes J.F., Lobo G.V., Zimerman A.H., Negative flows of generalized KdV and mKdV hierarchies and their gauge-Miura transformations, J. High Energy Phys. 2023 (2023), no. 8, 160, 40 pages, arXiv:2304.01749.
  4. Aguirre A.R., Retore A.L., Gomes J.F., Spano N.I., Zimerman A.H., Defects in the supersymmetric mKdV hierarchy via Bäcklund transformations, J. High Energy Phys. 2018 (2018), no. 1, 018, 38 pages, arXiv:1709.05568.
  5. Babalic C.N., Carstea A.S., Bilinear approach to Kuperschmidt super-KdV type equations, J. Phys. A 51 (2018), 225204, 9 pages, arXiv:1712.06854.
  6. Berezin F.A., Introduction to superanalysis, Math. Phys. Appl. Math., Vol. 9, D. Reidel Publishing Co., Dordrecht, 1987.
  7. Chaichian M., Kulish P.P., On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations, Phys. Lett. B 78 (1978), 413-416.
  8. Gao B., Tian K., Liu Q.P., Some super systems with local bi-Hamiltonian operators, Phys. Lett. A 383 (2019), 400-405.
  9. Gao B., Tian K., Liu Q.P., A super Degasperis-Procesi equation and related integrable systems, Proc. R. Soc. A 477 (2021), 20200780, 17 pages.
  10. Ge Y., Zuo D., A new class of Euler equation on the dual of the $N=1$ extended Neveu-Schwarz algebra, J. Math. Phys. 59 (2018), 113505, 8 pages.
  11. Geng X., Wu L., A new super-extension of the KdV hierarchy, Appl. Math. Lett. 23 (2010), 716-721.
  12. Geng X., Xue B., Wu L., A super Camassa-Holm equation with $N$-peakon solutions, Stud. Appl. Math. 130 (2013), 1-16, arXiv:9590.2012.
  13. Girardello L., Sciuto S., Inverse scattering-like problem for supersymmetric models, Phys. Lett. B 77 (1978), 267-269.
  14. Gomes J.F., Retore A.L., Zimerman A.H., Construction of type-II Bäcklund transformation for the mKdV hierarchy, J. Phys. A 48 (2015), 405203, 19 pages, arXiv:1505.01024.
  15. Grahovski G.G., Konstantinou-Rizos S., Mikhailov A.V., Grassmann extensions of Yang-Baxter maps, J. Phys. A 49 (2016), 145202, 17 pages, arXiv:1510.06913.
  16. Grahovski G.G., Mikhailov A.V., Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras, Phys. Lett. A 377 (2013), 3254-3259, arXiv:1303.1853.
  17. Gürses M., Ovguz Ö., A super AKNS scheme, Phys. Lett. A 108 (1985), 437-440.
  18. Gürses M., Ovguz Ö., A super soliton connection, Lett. Math. Phys. 11 (1986), 235-246.
  19. Holod P.I., Pakuliak S.Z., On the superextension of the Kadomtsev-Petviashvili equation and finite-gap solutions of Korteweg-de Vries superequations, in Problems of Modern Quantum Field Theory, Res. Rep. Phys., Springer, Berlin, 1989, 107-116.
  20. Hrubý J., On the supersymmetric sine-Gordon model and a two-dimensional bag, Nuclear Phys. B 131 (1977), 275-284.
  21. Hu X.-B., An approach to generate superextensions of integrable systems, J. Phys. A 30 (1997), 619-632.
  22. Inami T., Kanno H., Lie superalgebraic approach to super Toda lattice and generalized super KdV equations, Comm. Math. Phys. 136 (1991), 519-542.
  23. Kersten P.H.M., Symmetries for the super modified KdV equation, J. Math. Phys. 29 (1988), 2187-2189.
  24. Kersten P.H.M., Gragert P.K.H., Symmetries for the super-KdV equation, J. Phys. A 21 (1988), L579-L584.
  25. Konstantinou-Rizos S., On the $3D$ consistency of a Grassmann extended lattice Boussinesq system, Nuclear Phys. B 951 (2020), 114878, 24 pages, arXiv:1908.00565.
  26. Konstantinou-Rizos S., Kouloukas T.E., A noncommutative discrete potential KdV lift, J. Math. Phys. 59 (2018), 063506, 13 pages, arXiv:1611.08923.
  27. Kulish P.P., Quantum ${\rm osp}$-invariant nonlinear Schrödinger equation, Lett. Math. Phys. 10 (1985), 87-93.
  28. Kupershmidt B.A., A super Korteweg-de Vries equation: an integrable system, Phys. Lett. A 102 (1984), 213-215.
  29. Kupershmidt B.A., A review of superintegrable systems, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Lectures in Appl. Math., Vol. 23, American Mathematical Society, Providence, RI, 1986, 83-121.
  30. Lou S.Y., Ren-integrable and ren-symmetric integrable systems, Commun. Theor. Phys. (Beijing) 76 (2024), 035006, 8 pages, arXiv:2305.12388.
  31. Manin Yu.I., Gauge field theory and complex geometry, 2nd ed., Grundlehren Math. Wiss., Vol. 289, Springer, Berlin, 1997.
  32. Manin Yu.I., Radul A.O., A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy, Comm. Math. Phys. 98 (1985), 65-77.
  33. Mao H., Lv S.Q., On type-II Bäcklund transformation for the MKdV hierarchy, Z. Naturforsch. A 72 (2017), 291-293.
  34. Mathieu P., Supersymmetric extension of the Korteweg-de Vries equation, J. Math. Phys. 29 (1988), 2499-2506.
  35. Roelofs G.H.M., Kersten P.H.M., Supersymmetric extensions of the nonlinear Schrödinger equation: symmetries and coverings, J. Math. Phys. 33 (1992), 2185-2206.
  36. Tian K., Liu Q.P., A supersymmetric Sawada-Kotera equation, Phys. Lett. A 373 (2009), 1807-1810, arXiv:0802.4011.
  37. Tian K., Wang J.P., Symbolic representation and classification of $N=1$ supersymmetric evolutionary equations, Stud. Appl. Math. 138 (2017), 467-498, arXiv:1607.03947.
  38. Xue L.-L., Liu Q.P., Bäcklund-Darboux transformations and discretizations of super KdV equation, SIGMA 10 (2014), 045, 10 pages, arXiv:1312.6976.
  39. Zhang L., Zuo D., Integrable hierarchies related to the Kuper-CH spectral problem, J. Math. Phys. 52 (2011), 073503, 11 pages.
  40. Zhou H., Tian K., Li N., Four super integrable equations: nonlocal symmetries and applications, J. Phys. A 55 (2022), 225207, 24 pages.
  41. Zhou H., Tian K., Xiao Y., A super mKdV equation: bi-Hamiltonian structures and Darboux transformations, Pramana-J. Phys. 98 (2024), 52, 7 pages.
  42. Zhou R., A Darboux transformation of the ${\rm sl}(2|1)$ super KdV hierarchy and a super lattice potential KdV equation, Phys. Lett. A 378 (2014), 1816-1819.
  43. Zuo D., Euler equations related to the generalized Neveu-Schwarz algebra, SIGMA 9 (2013), 045, 12 pages, arXiv:1306.3628.

Previous article  Next article  Contents of Volume 21 (2025)