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Abstract. The general problem of the factorization of a basic hypergeometric series is
presented and discussed. The case of the general 2ψ2 series is examined in detail. Connec-
tions are found with the theory of basic hypergeometric series on root systems. Alternative
proofs of several well-known summation and transformation formulae, including Gustafson’s
generalization of Ramanujan’s 1ψ1 summation, are obtained incidentally.
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1 Introduction

Throughout this paper, q is taken to denote a complex number satisfying 0 < |q| < 1. A basic hy-
pergeometric series is any sum

∑N
n=M un for which the ratio un+1/un is a rational function of qn.

Here, M and N may take any integer values subject to the condition that M ≤ N , and one may
also take M = −∞, or N = ∞, or both. It is conventional to write the summand un in terms
of a ratio of products of finite q-Pochhammer symbols, (x)n, defined such as to take the value 1
when n = 0 and extended to all integer subscripts n by the recursion (x)n+1 = (1− xqn)(x)n.
The infinite q-Pochhammer symbol, (x)∞, is the infinite product given by the limit limn→∞(x)n.
The abbreviation (x1, x2, . . . , xm)n is used for the product (x1)n(x2)n · · · (xm)n. The nota-
tion θ(x) = (x, q/x, q)∞ is used for the Jacobian theta function.

The question of whether a given basic hypergeometric series may be written explicitly as an
infinite product has a long history. In the 1840s, both Jacobi [18, equation (15)] and Heine [15,
equation (80)] obtained the summation

∞∑
n=0

(a, b)n
(q, abx)n

xn =
(ax, bx)∞
(x, abx)∞

, (1.1)

valid for |x| < 1, which is a q-analogue of Gauss’s 2F1 summation. The special case b = 0 of this
formula had been found already by Cauchy [10, Section I, equation (15)], and the case a = b = 0
goes back to Euler [11, Section 25]. Other well-known factorizations include the bilateral sum-
mations

∞∑
n=−∞

(a)n
(b)n

xn =

(
b
a

)
∞θ(ax)(

x, b
ax , b,

q
a

)
∞
, (1.2)

This paper is a contribution to the Special Issue on Basic Hypergeometric Series Associated with Root
Systems and Applications in honor of Stephen C. Milne’s 75th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Milne.html
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valid for |b/a| < |x| < 1, and

∞∑
n=−∞

(
a1y, a2y, a3y, a4y

)
n( qy

a1
, qya2 ,

qy
a3
, qya4

)
n

(
1− y2q2n

)( q

a1a2a3a4

)n

=

( q
a1a2

, q
a1a3

, q
a1a4

, q
a2a3

, q
a2a4

, q
a3a4

)
∞θ
(
y2
)( q

a1y
, q
a2y

, q
a3y

, q
a4y

, qya1 ,
qy
a2
, qya3 ,

qy
a4
, q
a1a2a3a4

)
∞
, (1.3)

valid for |a1a2a3a4| > |q|, due respectively to Ramanujan (see [3, Sections 3.2 and 3.3] or [14,
pp. 222–223]) and Bailey [6, equation (4.7)]. There are also a number of series for which it is
generally accepted that, for general values of the parameters involved, no summation formula
exists. An example of such a series is

∞∑
n=0

(a, b)n
(q, c)n

xn, (1.4)

which contains the general 2F1 series as a limiting case. In the case of this particular series,
the non-existence of a summation formula is stated explicitly by Johnson [19, p. 227]. Another
prominent example is the partial theta series,

∞∑
n=0

(−1)nq
n(n−1)

2 xn. (1.5)

Being an entire function of x, this does of course admit a Weierstrass product representation;
several of its factors were recorded by Ramanujan in his notebooks [20, p. 26] (see [2, pp. 285–
286]). Likewise (1.4), continued analytically beyond the disk |x| < 1, represents a meromorphic
function of x on the whole complex plane. Its poles are known to occur at the points x = q−n,
n ≥ 0, and hence we may write (1.4) in the form1 (x)−1

∞
∏∞

n=1(1−x/ξn), where the values of the
zeros ξn depend on the parameters a, b, c and q. There is, however, no general formula known
for the nth zero ξn.

The purpose of this paper is to examine a different sense in which every basic hyperge-
ometric series may be said to admit a factorization—one which involves only finitely many
unknowns. There is no loss of generality in restricting our attention to bilateral series, since,
given any finite or unilateral series, it is always possible to produce a bilateral series reducible
to it by a suitable specialization of variables. We may, for example, obtain (1.5) from the se-
ries

∑∞
n=−∞(−1)nqn(n−1)/2xn(a)n/(b)n by first setting b = q and then setting a = q. Further,

there is no loss of generality in supposing that the number of q-Pochhammer symbols present
in the numerator and denominator are equal, since this can be seen to incorporate the case of
unequal numbers of factors by inserting extra factors of (0)n in the denominator of any such
series.

The notation

rψr(x, y) :=

∞∑
n=−∞

(a1y, a2y, . . . , ary)n
(b1y, b2y, . . . , bry)n

xn (1.6)

1The factorization of the numerator here is an application of Hadamard’s theorem. The absence of exponential
factors is due to the fact that (x)∞

∑∞
n=0(a, b)nx

n/(q, c)n is entire of order 0. This can be deduced from [12,
equation (4.3.2)], but it may also be proved as follows: This function admits a power series expansion

∑∞
n=0 Snx

n

in which the coefficients are the finite sums

Sn =
n∑

m=0

(−1)n−mq
(n−m)(n−m−1)

2 (a, b)m
(q, c)m(q)n−m

=
(−1)nq

n(n−1)
2 an

(c)n

n∑
m=0

(a)m(c/a)n−m
(q)m(q)n−m

(
b

a

)m
.

The first equality here follows easily from the power series expansion of (x)∞, while the second is a special case
of one of Sears’s transformation formulae (see [12, equation (3.2.2)]). From the second expression for Sn, it is
apparent that 1/ log |Sn| = O

(
1/n2

)
, which implies that the order of

∑∞
n=0 Snx

n equals zero.
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will be used for a bilateral basic hypergeometric series, the parameters aj and bj being complex
numbers independent of the variables x and y with the restriction that each aj is non-zero.
Since the variable y can be removed by rescaling the other parameters, there would be no loss
of generality in setting it equal to 1. It has nonetheless been inserted in the definition (1.6)
because it plays a significant role in the methods of this paper: the goal will be to investigate
the factorization of the function rψr with respect to y.

The series in (1.6) converges when x lies within the annulus |b1 · · · br/a1 · · · ar| < |x| < 1. Else-
where, the function rψr is defined by analytic continuation. When the value of b1 · · · br/a1 · · · ar
is such that the annulus of convergence is empty, the series may instead be split into two uni-
lateral series, one convergent for |x| < 1 and the other convergent for |x| > |b1 · · · br/a1 · · · ar|;
separately each of the two series may then be continued beyond its region of convergence.2 An-
alytic continuation of these unilateral series is discussed in [12, Section 4.5]. It is known that
the function rψr is meromorphic on (C\{0})2, which is to say that it is expressible as the ratio
of two functions analytic there. Since it is a straightforward matter to locate the poles of the
function,3 the factorization of its denominator is known completely: we may write

rψr(x, y) =
rψ

∗
r (x, y)(

x, b1b2···br
a1a2···arx ,

q
a1y

, b1y,
q

a2y
, b2y, . . . ,

q
ary

, bry
)
∞
,

where the numerator, rψ
∗
r , is analytic on (C\{0})2. It is, incidentally, also analytic as a function

of the parameters aj and bj . In [8, Section 3.4], the following result on the factorization of rψ
∗
r

with respect to y is obtained; its proof is summarized briefly in Section 3 of this paper. This
result is implicit in the work of Ito and Sanada. With respect to the variable y, they use
essentially the same normalization of the rψr function as is considered here.4 Although they
do not state the factorization explicitly, it can be obtained by combining [17, Lemma 5.5] with
Lemma 3.5 of the present paper, which is a classical result.

Theorem 1.1. Let r be a positive integer. There are functions A, ρ1, ρ2, . . . , ρr, independent of
the variable y, such that the function rψ

∗
r admits the factorization

rψ
∗
r (x, y) = A(x)θ

(
y

ρ1(x)

)
θ

(
y

ρ2(x)

)
· · · θ

(
y

ρr(x)

)
. (1.7)

Moreover, the functions ρj are related by

ρ1(x)ρ2(x) · · · ρr(x) =
1

a1a2 · · · arx
. (1.8)

It is possible to produce a refinement of Theorem 1.1 which reduces the number of unknowns
by one, expressing the function A in terms of the functions ρj . For general values of r, this
is sketched at the end of the paper. The case r = 2 is treated in detail in Section 4. (See
Theorem 1.2 below.)

It is easy to check that Theorem 1.1 holds for certain special values of x for which the
factorization is elementary. One of them is x = 1; from Abel’s theorem

(
in the form which

2An alternative is to regard one of the parameters aj as variable, and to continue the series beyond its region
of convergence as a function of aj .

3The poles at y = qn/aj and at y = bjq
−n (n ≥ 0 and 1 ≤ j ≤ r) arise from singularities in the terms of the

series in (1.6). The poles at x = q−n and at x = b1b2 · · · brqn/a1a2 · · · ar (n ≥ 0) arise from analytic continuation
of the series, as may be seen from [12, equation (4.5.2)].

4In their terminology, it is the regularized Jackson integral of Jordan–Pochhammer type. (See [17, Sections 2.3
and 5.1].) Their version lacks the factors of (x)∞ and (b1 · · · br/a1 · · · arx)∞, but these are immaterial for the
statement of Theorem 1.1.
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asserts limx→1−(1−x)
∑∞

n=0 unx
n = limn→∞ un whenever the second of these two limits exists

)
,

it follows that

rψ
∗
r (1, y) =

(
b1···br
a1···ar

)
∞

(q)r−1
∞

θ(a1y)θ(a2y) · · · θ(ary). (1.9)

Moreover, for any integer k ≥ 0, the values taken by the functions A and ρj are readily deter-
mined at the points x = q−k and x = qkb1 · · · br/a1 · · · ar.

The functions introduced in Theorem 1.1 are known explicitly when a basic hypergeometric
series is known to be expressible in closed form in terms of q-Pochhammer symbols. For example,
Ramanujan’s 1ψ1 summation (1.2) asserts that

1ψ
∗
1(x, y) =

(
b1
a1

)
∞
θ(a1xy). (1.10)

This may be deduced from the observation that, by (1.8), the function ρ1 is in this case given
by ρ1(x) = 1/a1x. The value of 1ψ

∗
1(x, q/b1) may then be determined from the q-binomial

theorem, leading to the conclusion that A(x) is identically equal to (b1/a1)∞, from which (1.10)
follows. The same proof of (1.2), expressed in slightly different terms, may be found in [16,
Section 1.1]. No such formula as (1.2) is known for the sum of the general 2ψ2 series. In general,
the problem of determining the A and ρj of Theorem 1.1 explicitly is a highly non-trivial problem
to which only a few isolated solutions are known from classical summation formulae such as (1.2)
and (1.3). However, as alluded to above, in the case of the 2ψ2 series the function A is expressible
in terms of the function ρ1. Moreover, an explicit formula can be given for ρ1 involving an elliptic
integral which contains a ratio of 2ψ2 functions in its upper limit. These are the main results
of this paper, stated in the following theorem. A special case, pertaining to the Appell–Lerch
function, has been given previously by the author in [8, Section 3.8].

Theorem 1.2. In the factorization

2ψ
∗
2(x, y) = A(x)θ

(
y

ρ(x)

)
θ
(
a1a2xyρ(x)

)
(1.11)

given by the special case r = 2 of Theorem 1.1 (with ρ written here for ρ1), the functions A
and ρ are related by the formula

A(x)2 =
a1a2xρ(x)

(
x, b1b2

a1a2x
, b1a1 ,

b1
a2
, b2a1 ,

b2
a2

)
∞

((a1 + a2)x− b1 − b2)θ
(ρ(x/q)

ρ(x)

)
×

θ
(ρ(x/q)

ρ(qx)

)
θ(a1a2xρ(x/q)ρ(qx))

θ
( ρ(x)
ρ(qx)

)
θ(a1a2xρ(x)ρ(x/q))θ(a1a2xρ(x)ρ(qx))

. (1.12)

Moreover, the function ρ is given by the formula5

ρ(x) =
1

√
a1a2x

exp

(
1

θ
(√
q
)
θ(−√

q)

×
∫ − 2ψ

∗
2(x,1/

√
a1a2x)

2ψ
∗
2(x,−1/

√
a1a2x)

0

du√
u
(
1− θ(

√
q)2

θ(−√
q)2
u
)(

1− θ(−√
q)2

θ(
√
q)2

u
)
)

(1.13)

5There is an apparent ambiguity in this formula arising from the choice of sign made for
√
a1a2x. That no

such ambiguity arises may be seen from considering the effect of the substitution u 7→ 1/u on the integral. The
function ρ is, however, multivalued since the elliptic integral itself has this property. (See comments regarding
this integral toward the end of Section 4.) The question of which sign is to be taken for A in (1.12) seems less
straightforward, but it may be chosen to agree at x = 1 with that of the value known from (1.9).
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and satisfies the relation

θ
( ρ(qx)
ρ(q3x)

)
θ
(
a1a2xρ(qx)ρ

(
q3x
))

θ
(ρ(q2x)
ρ(q3x)

)
θ
(
a1a2xρ

(
q2x
)
ρ
(
q3x
))

=

(
b1 + b2 − (a1 + a2)qx

)(
b1 + b2 − (a1 + a2)q

2x
)
θ
(ρ(qx)

ρ(x)

)
θ
(
a1a2xρ(x)ρ(qx)

)
(1− qx)

(
b1b2 − a1a2q2x

)
θ
(ρ(q2x)

ρ(x)

)
θ
(
a1a2xρ(x)ρ

(
q2x
)) . (1.14)

It is analytic everywhere except at isolated branch points which arise as the solutions of the four
equations 2ψ

∗
2(x,±1/

√
a1a2x) = 0 and 2ψ

∗
2

(
x,±

√
q/a1a2x

)
= 0.

One of the most interesting aspects of the factorization which is the subject of Theorem 1.1
is that it provides one explanation for the importance of very-well-poised-balanced (VWP-
balanced) series. The factorizations of these series have a special property: Their zeros occur
in pairs in such a way that every factor of θ(y/ρj(x)) is accompanied in the factorization by
a corresponding factor of θ(qρj(x)y). Moreover, either three or four of the factors are known
explicitly depending on whether r is odd or even. These observations are stated precisely in
Theorem 1.3 below.

The notation

rWr(y) :=
∞∑

n=−∞

(a1y, a2y, . . . , ar−2y)n
(qy/a1, qy/a2, . . . , qy/ar−2)n

(
1− y2q2n

)( q
r−4
2

a1a2 · · · ar−2

)n

(1.15)

is used for VWP-balanced series throughout this paper; the series converges for all non-zero
values of y provided that |a1 · · · ar−2| > |q|(r−4)/2. In some ways, it might be more logical
to write r−2Wr−2 for the series in (1.15) so that the subscripts would match the number of q-
Pochhammer symbols on the numerator and denominator of the summand. The notation chosen
here is modelled loosely on that of [12, Section 2.1], where, effectively, the factor of 1− y2q2n is
introduced in the form

(
1− y2

)
(qy,−qy)n/(y,−y)n.

We may write

rWr(y) =
rW

∗
r (y)(

q
r−4
2

a1a2···ar−2
, q
a1y

, qya1 ,
q

a2y
, qya2 , . . . ,

q
ar−2y

, qy
ar−2

)
∞

, (1.16)

where the numerator, rW
∗
r (y), is a function of y analytic throughout C\{0}. The following result,

a refinement of Theorem 1.1 for the functions rW
∗
r , is obtained in Section 3. Its derivation is

essentially a matter of combining [17, Lemma 4.5] with [21, Proposition 3.4].

Theorem 1.3. The functions 3W
∗
3 and 4W

∗
4 are identically zero. If r ≥ 5 is odd, then rW

∗
r

takes the form

rW
∗
r (y) = Aθ(y)θ(−y)θ(−y√q)θ

(
y

ρ1

)
θ(qρ1y)θ

(
y

ρ2

)
× θ(qρ2y) · · · θ

(
y

ρ r−5
2

)
θ(qρ r−5

2
y). (1.17)

If r ≥ 6 is even, then rW
∗
r takes the form

rW
∗
r (y) = Aθ

(
y2
)
θ

(
y

ρ1

)
θ(qρ1y)θ

(
y

ρ2

)
θ(qρ2y) · · · θ

(
y

ρ r−6
2

)
θ(qρ r−6

2
y). (1.18)

In both cases, the value of A as well as the coefficients ρj are independent of the variable y
(although they will depend in general on the parameters aj).
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Remark 1.4.

(i) The first part of Theorem 1.3—the part which asserts that 3W
∗
3 = 4W

∗
4 = 0—is actually

a special case of Bailey’s 6ψ6 summation (1.3), which may be written in the form

6W
∗
6 (y) =

(
q

a1a2
,
q

a1a3
,
q

a1a4
,
q

a2a3
,
q

a2a4
,
q

a3a4

)
∞
θ
(
y2
)
.

Since the rWr series defined in (1.15) reduces when ar−2 =
√
q to the series r−1Wr−1, the

function r−1W
∗
r−1 may in general be recovered from the function rW

∗
r using the relation

rW
∗
r (y)

∣∣∣
ar−2=

√
q
=
θ(y

√
q)

(q)∞
r−1W

∗
r−1(y).

Hence, using the elementary relation

θ
(
y2
)
=

1

(q)3∞
θ(y)θ(−y)θ(y√q)θ(−y√q), (1.19)

it follows that

5W
∗
5 (y) =

(q)∞6W
∗
6 (y)

∣∣∣
a4=

√
q

θ(y
√
q)

=

(√q
a1
,
√
q

a2
,
√
q

a3
, q
a1a2

, q
a1a3

, q
a2a3

)
∞

(q)2∞
θ(y)θ(−y)θ(−y√q),

and consequently

4W
∗
4 (y) =

(q)∞5W
∗
5 (y)

∣∣∣
a3=

√
q

θ(y
√
q)

= 0, and 3W
∗
3 (y) =

(q)∞4W
∗
4 (y)

∣∣∣
a2=

√
q

θ(y
√
q)

= 0.

In the proof of Theorem 1.3 given in Section 3, the fact that 3W
∗
3 and 4W

∗
4 are identically

zero is established by a different argument which does not make use of (1.3).

(ii) The special case r = 8 of Theorem 1.3 asserts that

8W
∗
8 (y) = Aθ

(
y2
)
θ

(
y

ρ

)
θ(qρy) (1.20)

for some A and ρ which are independent of y. A relation exists between these two un-
knowns, each of which may be regarded as a function of the parameter a1. This relation,
analogous to the result of Theorem 1.2, will be developed in a later paper. From Gosper’s
bilateral Jackson formula (as it is termed by Gasper and Rahman [12, Exercise 5.12]), it
is apparent that the relation between the A and ρ of (1.20) is simplified significantly when
a1a2a3a4a5a6 = q. Supposing this to be the case, A is given in terms of ρ by the formula

A =

( q
a1a3

, q
a1a4

, q
a1a5

, q
a1a6

, q
a3a4

, q
a3a5

, q
a3a6

, q
a4a5

, q
a4a6

, q
a5a6

)
∞θ(a2ξ)θ

(
a2
ξ

)
(q, a1a2, a2a3, a2a4, a2a5, a2a6)∞θ(qρξ)θ

( ξ
ρ

) ,

where

ξ =
1

a1
exp

(
θ(a1a2)θ

(
a1
a2

)
θ
(
a21
)
(q)3∞

×
∫ a2θ(a1a3)θ(a1a4)θ(a1a5)θ(a1a6)

a1θ(a2a3)θ(a2a4)θ(a2a5)θ(a2a6)

0

1√(
1− a1θ(a2)2

a2θ(a1)2
u
)(

1− a1θ(−a2)2

a2θ(−a1)2
u
)

× du(
1− θ(a2

√
q)2

θ(a1
√
q)2
u
)(

1− θ(−a2
√
q)2

θ(−a1
√
q)2
u
)).
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2 Applications

Aside from an obvious desire to generalize the classical summation formulae, there is another
reason why investigating the general problem of factorization of basic hypergeometric series is
particularly worthwhile: It provides some insight into, and in many cases simpler proofs of,
a number of well-known identities. The following example is taken from the author’s thesis [8,
Section 3.6]. By Theorem 1.1, we know that the numerator, 2ψ

∗
2, of the general 2ψ2 series must

take the form (1.11) for some unknown functions A and ρ. The relation between these two func-
tions provided by Theorem 1.2 need not concern us here. Since the function θ satisfies the ele-
mentary identity θ(x) = θ(q/x), it follows at once from (1.11) that 2ψ

∗
2(x, y) = 2ψ

∗
2(x, q/a1a2xy).

This is the second of a pair of 2ψ2 transformations found by Bailey [7, equations (2.3) and (2.4)].
His other 2ψ2 transformation does not follow from (1.11) alone; rather, it follows from a sym-
metry of the functions A and ρ which is not at all obvious: regarded as (multi-valued) functions
of the variables a1, a2, b1, b2, x, the functions A and ρ in (1.11) are both invariant under the
substitution (a2, b2, x) 7→ (a1a2x/b2, a1x, b2/a1).

In the previous section, it was observed that Ramanujan’s 1ψ1 summation (1.2) follows imme-
diately from Theorem 1.1 and the q-binomial theorem. In much the same way, Bailey’s 6ψ6 sum-
mation (1.3) may be obtained from Theorem 1.3 and the 6ϕ5 summation (for which see [12, equa-
tion (2.7.1)]). Consider that the special case r = 6 of Theorem 1.3 asserts that 6W

∗
6 (y) = Aθ

(
y2
)

for some A which is independent of y. The value of A may then be determined by setting y = a1,
since the value of 6W

∗
6 (a1) is readily obtained from the 6ϕ5 summation formula.

A further application of the ideas of this paper is to the derivation of Slater’s general trans-
formation formulae for bilateral basic hypergeometric series [22], which may be written in the
form

rψ
∗
r (x, y) =

1

θ(a1z1 · · · arzrx)

r∑
j=1

rψ
∗
r (x, zj)θ

(
a1z1 · · · arzrxy

zj

) r∏
k=1
k ̸=j

θ
( y
zk

)
θ
( zj
zk

) (2.1)

and, for even r ≥ 6,

rW
∗
r (y)

θ
(
y2
) =

r−6
2∑

j=0

rW
∗
r (zj)

θ(z2j )

r−6
2∏

k=0
k ̸=j

θ
( y
zk

)
θ(qzky)

θ
( zj
zk

)
θ(qzjzk)

, (2.2)

while for odd r ≥ 5,

θ(y
√
q)rW

∗
r (y)

θ
(
y2
) =

r−5
2∑

j=0

θ(zj
√
q)rW

∗
r (zj)

θ
(
z2j
) r−5

2∏
k=0
k ̸=j

θ
( y
zk

)
θ(qzky)

θ
( zj
zk

)
θ(qzjzk)

. (2.3)

As explained in Remarks 3.7 and 3.14, these follow directly from lemmas in the following sec-
tion, which imply that, as functions of y, both rψ

∗
r (x, y) and rW

∗
r (y) belong to spaces of finite

dimension. Essentially the same derivation of these identities is given by Ito and Sanada [17,
Section 3.1].

3 Theta functions

This section contains several lemmas which are needed in Section 4. With the possible exception
of Lemmas 3.17 and 3.18, all of the results are classical. Lemma 3.5, for example, may be found
in the book of Briot and Bouquet [9, p. 239], albeit in a rather different notation. A more
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modern statement of it appears in [21, Lemma 3.2]; functions belonging to the space Θn(c)
defined below are there called An−1 theta functions. A special case of Lemma 3.16 was given by
Appell [5, p. 140].

Definition 3.1. Let n be any integer and let c be any non-zero complex number. Let Θn(c)
denote the space of analytic functions f : C\{0} → C which satisfy identically the relation

f(qx) =
(−1)nf(x)

cxn
. (3.1)

Lemma 3.2 (classical). Let n be an integer and let c be any non-zero complex number. If n is
negative, then Θn(c) = {0}. If n is positive, then dimΘn(c) = n. If n = 0, then there are two
possibilities:

Θ0(c) =

{{
f | f(x) = Ax−k for some A ∈ C

}
if c = qk for some integer k,

0 otherwise.

Remark 3.3. In particular, Lemma 3.2 asserts that Θ0(1) consists only of constant functions,
i.e., that any solution of f(qx) = f(x) which is analytic on C\{0} must be constant. This special
case is well known and widely used in proofs of q-series identities.

Lemma 3.4. Let n be any integer, let c be any non-zero complex number, and let f ∈ Θn(c).
If ρ is a non-zero complex number such that f(ρ) = 0, then f(x) = θ(x/ρ)g(x) for some g ∈
Θn−1(cρ).

Proof. From the relation (3.1), it follows that f(ρ) = 0 implies f
(
ρqk
)
= 0 for every integer k.

Consequently the function g defined by g(x) = f(x)/θ(x/ρ) is analytic throughout C\{0}. Since

g(qx) =
(−1)nf(x)/cxn

(−ρ/x)θ(x/ρ)
=

(−1)n−1g(x)

cρxn−1
,

it follows that g ∈ Θn−1(cρ). ■

Lemma 3.5 (classical). Let n be a positive integer and let c be any non-zero complex num-
ber. Then f ∈ Θn(c) if and only if f(x) = Aθ(α1x)θ(α2x) · · · θ(αnx) for some A ∈ C and
some α1, α2, . . . , αn ∈ C\{0} such that α1α2 · · ·αn = c.

Proof of Theorem 1.1. By Lemma 3.5, it suffices to verify that, regarded as a function of
the variable y, rψ

∗
r (x, y) belongs to the space Θr(a1a2 · · · arx). Since this function is analytic

on C\{0}, it suffices to check that it satisfies the relation

rψ
∗
r (x, qy) =

(−1)rrψ
∗
r (x, y)

a1a2 · · · arxyr
.

This is easily verified by changing n 7→ n+ 1 in the series in (1.6). ■

Remark 3.6. If f ∈ Θ2(c), then f satisfies identically the relation f(x) = f(q/cx). The
reason for this is that, by Lemma 3.5, any such function f may be written in the form f(x) =
Aθ(αx)θ(cx/α).

Remark 3.7. Let n be a positive integer, and c any non-zero complex number. Given any
z1, z2, . . . , zn ∈ C\{0}, for 1 ≤ j ≤ n let

ϑj(x) =
θ
(
cz1···znx

zj

)
θ(cz1 · · · zn)

n∏
k=1
k ̸=j

θ
(

x
zk

)
θ
( zj
zk

) .
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Provided that the numbers zj are such that the denominators of these functions are not zero, the
relation ϑj(zk) = δj,k holds for all pairs of integers j, k in the interval [1, n]. These n functions
are therefore linearly independent of one another and so form a basis for Θn(c). Consequently,
any given f ∈ Θn(c) may be expanded in the form

f(x) =
n∑

j=1

f(zj)ϑj(x). (3.2)

This expansion is equivalent to a special case of a formula given by Appell [5, equations (8)
and (8′)]. As is commented upon in [8, p. 88] and in [17, Section 5.1], Slater’s identity (2.1) is
an instance of (3.2).

The results stated in Lemmas 3.9, 3.11, and 3.12 relate to a particular subspace of Θ2n(c
n),

introduced in Definition 3.8 below. These results may be found in [17, Lemma 4.3] and [21,
Lemma 3.2].6 In the terminology used there, the functions within the subspace are said to
be Dn+1 theta functions, and functions satisfying the conditions of Lemma 3.12 are said to
be Cn−1 theta functions. In [17] and [21], essentially the characterization given in Lemma 3.11
is taken as the definition of the subspace in question.

Definition 3.8. Let n be a positive integer and let c be any non-zero complex number.
Let Ω2n(c) denote the subset of Θ2n(c

n) consisting of functions f which take the form

f(x) =

n∏
j=1

fj(x)

with each fj ∈ Θ2(c). It is convenient also to define Ω0(c) to be the space of constant functions
(i.e., Θ0(1)), and further to define Ω2n(c) = {0} for every n < 0.

Lemma 3.9. Let n be a non-negative integer and c any non-zero complex number. Then the
set Ω2n(c) is in fact a subspace of Θ2n(c

n), and its dimension equals n+ 1.

Remark 3.10.

(i) Although Ω2n(c) = Θ2n(c
n) for every n ≤ 1, the inclusion Ω2n(c) ⊂ Θ2n(c

n) is strict for
every n ≥ 2 by Lemmas 3.2 and 3.9.

(ii) For n ≥ 1, it is apparent that f ∈ Ω2n(c) if and only if there is some c′ ̸= 0 such that
f(x) = g(x)g(q/cx) for some g ∈ Θn(c

′). Another characterization of the space Ω2n(c) is
given in the following lemma.

Lemma 3.11. Let n be any integer, let c be a non-zero complex number, and let f ∈ Θ2n(c
n).

Then f ∈ Ω2n(c) if and only if the relation

f(x) = f(q/cx) (3.3)

holds identically.

Lemma 3.12. Let n be any integer, let c be a non-zero complex number, and let f ∈ Θ2n(c
n).

Then f satisfies identically the relation

f(x) = −f(q/cx) (3.4)

if and only if f(x) = xθ
(
cx2
)
g(x) for some g ∈ Ω2n−4(c).

6The original version of this paper, written before the author became aware of [17] and [21], included proofs of
these results from scratch. These have been removed from the present version as the proofs in those other papers
are shorter and more direct.
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Remark 3.13. The special case n = 1 of Lemma 3.12 asserts that any function f ∈ Θ2(c)
satisfying the relation (3.4) must be identically zero. This is apparent from the fact that (3.3)
holds for every f ∈ Θ2(c).

Proof of Theorem 1.3. The function rW
∗
r defined by (1.16) satisfies the two relations

rW
∗
r (qy) =

(−1)rrW
∗
r (y)

q
r−4
2 yr−2

, rW
∗
r (1/y) = − rW

∗
r (y)

y2
.

These are easily obtained by changing n 7→ n + 1 and n 7→ −n in the series in (1.15). For
the remainder of this proof, let us put f(y) = rW

∗
r (y)/y. Then the first equation shows that f

belongs to the space Θr−2

(
q(r−2)/2

)
, while the second, which we may rewrite as f(y) = −f(1/y),

allows us to infer that f belongs in fact to a subspace thereof which we may determine.
Consider first the case in which r is even. Then, by Lemma 3.12, it must be that f(y) =

yθ
(
qy2
)
g(y) for some g ∈ Ωr−6(q). If r = 4, then this space contains only the function

which is identically zero, so it follows that 4W
∗
4 (y) = 0 for all y. If, on the other hand,

r ≥ 6, then, per Definition 3.8, we may write g(y) =
∏(r−6)/2

j=1 gj(y), where each of the func-
tions gj belongs to the space Θ2(q) and therefore, by Lemma 3.5, admits a factorization of the
form gj(y) = Ajθ(y/ρj)θ(qρjy). Hence

rW
∗
r (y)

y
= yθ

(
qy2
) r−6

2∏
j=1

Ajθ

(
y

ρj

)
θ(qρjy).

This is exactly the form of the factorization specified in (1.18), the constant A there being equal
to −

∏(r−6)/2
j=1 Aj in the notation used here.

Consider next the case in which r is odd, and put F (y)=θ(y
√
q)f(y). Then F ∈Θr−1

(
q(r−1)/2

)
and, since θ(y

√
q) is invariant under y 7→ 1/y, this function F satisfies F (y) = −F (1/y). Another

application of Lemma 3.12 allows us to conclude that F (y) = yθ
(
qy2
)
g(y) for some g ∈ Ωr−5(q).

Hence 3W
∗
3 is identically zero and, for odd r ≥ 5,

θ(y
√
q)rW

∗
r (y)

y
= yθ

(
qy2
) r−5

2∏
j=1

Ajθ

(
y

ρj

)
θ(qρjy).

In view of the identity (1.19), this is exactly the form of the factorization specified in (1.17). ■

Remark 3.14. Let n be a positive integer and let c be a non-zero complex number. Given
any n+ 1 non-zero complex numbers z0, z1, . . . , zn, for 0 ≤ j ≤ n let

ωj(x) =
n∏

k=0
k ̸=j

θ(x/zk)θ(czkx)

θ(zj/zk)θ(czjzk)
.

Then, provided that the zj are such that the denominators are non-zero, ωj ∈ Ω2n(c) for each j.
Moreover, these functions ωj are linearly independent since ωj(zk) = δj,k for all integers j, k in
the interval [0, n]. By Lemma 3.9, these functions form a basis for Ω2n(c). Hence any f ∈ Ω2n(c)
may be expressed in the form

f(x) =
n∑

j=0

f(zj)ωj(x). (3.5)

In the proof of Theorem 1.3, it has been shown that, when r is even, the function rW
∗
r (y)/θ

(
y2
)

belongs to the space Ωr−6(q), and that, when r is odd, the function θ(y
√
q)rW

∗
r (y)/θ

(
y2
)
belongs
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to the space Ωr−5(q). In either case, this allows the function rW
∗
r to be expanded with respect

to the basis functions ωj just described; doing so yields Slater’s identities (2.2) and (2.3).
The expansion (3.5) may be used to obtain a formula valid for all f ∈ Θn(c

′), where c′ may
denote any non-zero complex number. Given such a function f , it is straightforward to see that
the function f(x)f(q/cx) belongs to the space Ω2n(c), and so

f(x)f
( q
cx

)
=

n∑
j=0

f(zj)f

(
q

czj

)
ωj(x),

with the basis functions ωj as above. In particular, this implies the identity

rψ
∗
r (x, y)rψ

∗
r

(
x,

q

cy

)
=

r∑
j=0

rψ
∗
r (x, zj)rψ

∗
r

(
x,

q

czj

) r∏
k=0
k ̸=j

θ(y/zk)θ(czky)

θ(zj/zk)θ(czjzk)
,

valid for every positive integer r.

Definition 3.15. For each positive integer n, let ∆n : (C\{0})n → C denote the product

∆n(x1, x2, . . . , xn) =
∏

1≤j<k≤n

xkθ

(
xj
xk

)
,

with the convention that the function ∆1 (defined by an empty product) is identically equal
to 1.

The following result can be found in [21, Proposition 3.4]. Its proof is straightforward:
since ∆n is anti-symmetric, the ratio of the two sides of (3.6) is a symmetric function of x1, x2,
. . . , xn; moreover, it follows easily from Lemmas 3.4 and 3.5 that this ratio is independent of x1.

Lemma 3.16. Let n be a positive integer, c any non-zero complex number, and let f1, f2, . . . , fn
∈ Θn(c). Then there is some constant A ∈ C such that the identity

det
1≤i,j≤n

(fi(xj)) = A∆n(x1, x2, . . . , xn)θ(cx1x2 · · ·xn) (3.6)

holds for all x1, x2, . . . , xn ∈ C\{0}.

Lemma 3.17. Let n be any integer and let c be any non-zero complex number. Let φ1 and φ2

be any two entire functions with the following properties:

(i) φ1(0) = φ2(0) = 1;

(ii) if α, β ∈ C satisfy φ1(α) = φ2(β) = 0, then αβ ̸= qm for any integer m.

Then an analytic function f : C\{0} → C satisfies identically the relation

f(qx) =
(−1)nφ2(1/x)

cxnφ1(x)
f(x) (3.7)

if and only if

f(x) = g(x)
∞∏

m=1

φ1

(
xqm−1

)
φ2(q

m/x) (3.8)

for some g ∈ Θn(c).
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Proof. First, observe that the product in (3.8) defines a function analytic throughout C\{0}.
To verify this, put

Φ(x) =
∞∏

m=1

φ1

(
xqm−1

)
φ2(q

m/x) (3.9)

and let r1 and r2 be any two positive numbers such that r2 < r1. The two functions (φ1(x)−1)/x
and (φ2(x) − 1)/x are entire. They are therefore bounded on any given disk about the origin.
It is therefore possible to choose a positive constant C such that |φ1(x)− 1| ≤ C|x| for |x| ≤ r1
and |φ2(x) − 1| ≤ C|x| for |x| ≤ |q|/r2. Hence, if x is such that r2 ≤ |x| ≤ r1, then, for any
positive integer m,

∣∣φ1

(
xqm−1

)
− 1
∣∣ ≤ Cr1|q|m−1 and |φ2(q

m/x) − 1| ≤ C|q|m/r2. It follows
from this that the series

∑∞
m=1

∣∣φ1

(
xqm−1

)
− 1
∣∣ and ∑∞

m=1 |φ2(q
m/x) − 1| converge uniformly

on the annulus r2 ≤ |x| ≤ r1. The product in (3.9) is therefore uniformly convergent on the
same region, so the function Φ is analytic there. Since r1 and r2 are arbitrary (except for the
condition r2 < r1), it follows that Φ is analytic on C\{0}.

Now suppose that (3.8) holds for some g ∈ Θn(c). By the foregoing, the function f is analytic
throughout C\{0}. Since Φ(qx) = φ2(1/x)Φ(x)/φ1(x) and g(qx) = (−1)ng(x)/cxn, it is plain
that f must satisfy the relation (3.7).

Suppose next, conversely, that the relation (3.7) holds. It is convenient to introduce here
the notation M(α, ϕ) for the multiplicity of a given complex number α as a zero of a given
function ϕ, with the understanding that M(α, ϕ) = 0 if ϕ(α) ̸= 0. Suppose that α is a zero of
the function φ1. Since φ1(0) = 1 and φ1 is continuous at the origin, the value of M(αqm, φ1)
must be zero for all sufficiently large integer values of m. Let k be the greatest integer such
that M

(
αqk, φ1

)
> 0. Then plainly, on account of condition (ii),

M
(
αqj ,Φ

)
=

k∑
m=j

M(αqm, φ1)

for every integer j, with the understanding that this sum is to be interpreted as zero when-
ever j > k. Also, for any integer m, the relation (3.7) implies that

M
(
αqm+1, f

)
+M(αqm, φ1) =M(αqm, f) +M(q−m/α, φ2).

By condition (ii), the value of M(q−m/α, φ2) is zero. Consequently, for any integer j such
that j ≤ k,

M
(
αqj , f

)
=M

(
αqk+1, f

)
+

k∑
m=j

(
M(αqm, f)−M

(
αqm+1, f

))
≥

k∑
m=j

M(αqm, φ1)

=M
(
αqj ,Φ

)
.

Hence the ratio f/Φ is analytic at x = αqj for every integer j. Now suppose that β is a zero
of the function φ2. As before, it is possible to choose a non-negative integer ℓ maximal such
that M

(
βqℓ, φ2

)
> 0. Condition (ii) implies that, for every integer j,

M
(
qj/β,Φ

)
=

ℓ∑
m=1−j

M(βqm, φ2).

As before, it should be understood here that the sum equals zero whenever it is empty, i.e.,
when j < 1− ℓ. For any integer m, the relation (3.7) yields

M
(
q1−m/β, f

)
+M(q−m/β, φ1) =M(βqm, φ2) +M(q−m/β, f),
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and again M(q−m/β, φ1) = 0 on account of condition (ii), so for any j such that j ≤ 1− ℓ,

M
(
qj/β, f

)
=M

(
q−ℓ/β, f

)
+

ℓ∑
m=1−j

(
M
(
q1−m/β, f

)
−M(q−m/β, f)

)
≥

ℓ∑
m=1−j

M(βqm, φ2) =M
(
qj/β,Φ

)
.

Hence f/Φ is analytic at x = qj/β for every integer j. Hence f/Φ is in fact analytic throughout
the region C\{0}. Setting g = f/Φ, this function g satisfies the relation

g(qx) =
f(qx)

Φ(qx)
=

(−1)nφ2(1/x)f(x)/(cx
nφ1(x))

φ2(1/x)Φ(x)/φ1(x)
=

(−1)ng(x)

cxn
,

so g ∈ Θn(c) as required. ■

The following elementary lemma has been given in a slightly different but equivalent form
by Abu Risha et al. in [1, Theorem 3.3]. There the q-Wronskian is defined in such a way that
its elements are q-derivatives, so as to make it a q-analogue of the Wronskian for an ordinary
differential equation. The q-Wronskian as it is defined below is readily seen to be related to the
one given there by row and column operations.

Lemma 3.18. Let n be a positive integer. If the functions f1, f2, . . . , fn are such that

n∑
m=0

cm(x)fj(xq
m) = 0

for j = 1, 2, . . . , n, then their q-Wronskian, W(x) = det1≤i,j≤n

(
fi
(
xqj−1

))
, satisfies the relation

W(qx) =
(−1)nc0(x)

cn(x)
W(x).

4 The general 2ψ2 series

Proof of Theorem 1.2. The identity

∞∑
n=−∞

(a1, a2)n
(b1, b2)n

(
1− b1q

n−1
)(
1− b2q

n−1
)
xn

=

∞∑
n=−∞

(a1, a2)n
(b1, b2)n

(1− a1q
n)(1− a2q

n)xn+1, (4.1)

easily verified by changing n 7→ n+ 1 on the left-hand side, gives us the well-known three-term
q-difference equation satisfied by the 2ψ2 function with respect to its variable x, namely

(1− x) 2ψ2(x, y) + y

(
(a1 + a2)x− b1 + b2

q

)
2ψ2(qx, y)

+ y2
(
b1b2
q2

− a1a2x

)
2ψ2

(
q2x, y

)
= 0.

Equivalently, in terms of the function’s numerator, 2ψ
∗
2, this may be written as(

1− b1b2
a1a2qx

)
2ψ

∗
2(x, y) + y

(
(a1 + a2)x− b1 + b2

q

)
2ψ

∗
2(qx, y)

− a1a2xy
2(1− qx)2ψ

∗
2

(
q2x, y

)
= 0. (4.2)
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In this equation, taking y equal to ρ(x), ρ(qx), and ρ
(
q2x
)
yields the relations

A(qx)

A
(
q2x
) = −

ρ(qx)(1− qx)θ
( ρ(x)
ρ(q2x)

)
θ
(
a1a2xρ(x)ρ(q

2x)
)

ρ
(
q2x
)2
((a1 + a2)qx− b1 − b2)θ

( ρ(x)
ρ(qx)

)
θ(a1a2xρ(x)ρ(qx))

, (4.3)

A
(
q2x
)

A(x)
=
ρ
(
q2x
)2
(a1a2qx− b1b2)θ

(ρ(qx)
ρ(x)

)
θ(a1a2xρ(x)ρ(qx))

(1− qx)θ
( ρ(qx)
ρ(q2x)

)
θ
(
a1a2xρ(qx)ρ

(
q2x
)) , (4.4)

A(x)

A(qx)
=

((a1 + a2)qx− b1 − b2)θ
(ρ(q2x)

ρ(qx)

)
θ
(
a1a2xρ(qx)ρ

(
q2x
))

ρ(qx)(a1a2qx− b1b2)θ
(ρ(q2x)

ρ(x)

)
θ
(
a1a2xρ(x)ρ

(
q2x
)) . (4.5)

There are really only two distinct relations here, since (4.5) may be obtained by multiplying
together (4.3) and (4.4). These equations may at once be used to determine a functional equation
satisfied by the function ρ: Changing x 7→ qx in (4.5) yields an expression for A(qx)/A

(
q2x
)

in terms of ρ, which may then be compared with the expression for this ratio given already
by (4.3). The result of this is the formula (1.14).

The question of how to express A in terms of ρ is rather more involved. The approach which
seems most natural is to rewrite (4.4) in the form which asserts that

A(x)A(qx)θ
( ρ(x)
ρ(qx)

)
θ(a1a2xρ(x)ρ(qx))

xρ(x)ρ(qx)
(
qx, b1b2

a1a2x

)
∞

(4.6)

is invariant under x 7→ qx. If this expression is assumed to be analytic as a function of x
throughout C\{0}, then we may conclude that it must be constant, and from the fact that

2ψ
∗
2(1, y) =

(
b1b2
a1a2

)
∞

(q)∞
θ(a1y)θ(b1y),

its value must be

A(1)A(q)θ
(ρ(1)
ρ(q)

)
θ(a1a2ρ(1)ρ(q))

ρ(1)ρ(q)
(
q, b1b2

a1a2

)
∞

= − a1a2
(q)2∞

2ψ
∗
2(q, 1/a1) = −a1a2

(
b1
a1
,
b1
a2
,
b2
a1
,
b2
a2

)
∞
, (4.7)

the q-Gauss identity (1.1) having been used in the final equality here. The resulting equation
expresses A(x)A(qx) in terms of ρ. Multiplying it by (4.5) then yields the desired formula (1.12)
for A in terms of ρ. There is, of course, a problem with this argument: It is not at all obvious
that (4.6) should be analytic throughout C\{0}. As has been alluded to previously, the func-
tions A and ρ are multivalued; the function ρ has branch points as described at the end of the
present proof. There is also the question of whether (4.6) might have poles arising from the zeros
of the q-Pochhammer symbols on its denominator. It turns out, however, that (4.6) is indeed
identically equal to the right-hand side of (4.7), but this will now be established by a different
argument which makes no assumptions regarding the analytic properties of (4.6). Instead, the
following argument is based on an analysis of a q-Wronskian determinant.

An equivalent formulation of (4.2), obtained by multiplying both sides by θ(x/y), is the
statement that θ(x/y)2ψ

∗
2(x, y) is a solution of the q-difference equation(

1− b1b2
a1a2qx

)
f(x)− x

(
(a1 + a2)x− b1 + b2

q

)
f(qx)− a1a2qx

3(1− qx)f
(
q2x
)
= 0

for any value of y. This solution is analytic for all non-zero values of x and y. By Lemma 3.18, the
q-Wronskian determinant formed from the two solutions f1(x) = θ(x/y)2ψ

∗
2(x, y) and f2(x) =
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θ(x/z)2ψ
∗
2(x, z), namely

W(x, y, z) = θ

(
qx

y

)
2ψ

∗
2(qx, y) · θ

(x
z

)
2ψ

∗
2(x, z)− θ

(
x

y

)
2ψ

∗
2(x, y) · θ

(qx
z

)
2ψ

∗
2(qx, z)

=
1

x
θ

(
x

y

)
θ
(x
z

)
(z2ψ

∗
2(x, y)2ψ

∗
2(qx, z)− y2ψ

∗
2(qx, y)2ψ

∗
2(x, z)), (4.8)

satisfies the relation

W(qx, y, z) = −
1− b1b2

a1a2qx

a1a2qx3(1− qx)
W(x, y, z).

Since, regarded as a function of x, W is analytic on C\{0}, it follows from Lemma 3.17 that

W(x, y, z) = g(x, y, z)

(
qx,

b1b2
a1a2x

)
∞

for some function g which, as a function of x, belongs to the space Θ3(a1a2q). Since W(x, y, z)
has zeros at x = y and at x = z, it follows from Lemmas 3.4 and 3.5 that

g(x, y, z) = h1(y, z)θ

(
x

y

)
θ
(x
z

)
θ(a1a2qxyz) (4.9)

for some function h1 which is independent of x.
Regarded as functions of y, both 2ψ

∗
2(x, y) and y2ψ

∗
2(qx, y) belong to the space Θ2(a1a2x).

By Lemma 3.16, it follows that∣∣∣∣ 2ψ
∗
2(x, y) 2ψ

∗
2(x, z)

y2ψ
∗
2(qx, y) z2ψ

∗
2(qx, z)

∣∣∣∣ = h2(x)∆2(y, z)θ(a1a2xyz)

for some function h2 which is independent of y and z. Consequently

W(x, y, z) =
zh2(x)

x
θ

(
x

y

)
θ
(x
z

)
θ
(y
z

)
θ(a1a2xyz).

From comparing this with (4.9), it follows that

W(x, y, z) =
Cz

x

(
qx,

b1b2
a1a2x

)
∞
θ
(y
z

)
θ

(
x

y

)
θ
(x
z

)
θ(a1a2xyz) (4.10)

for some constant C to be determined. In order to find the value of C, let us take y = q/b1
and z = q/b2. Then we have from the defining formula (4.8)

W
(
x,

q

b1
,
q

b2

)
=
q

x
θ

(
b1x

q

)
θ

(
b2x

q

)(
1

b2
2ψ

∗
2

(
x,

q

b1

)
2ψ

∗
2

(
qx,

q

b2

)
− 1

b1
2ψ

∗
2

(
qx,

q

b1

)
2ψ

∗
2

(
x,

q

b2

))
=

qb1
x(b1 − b2)

(
x, qx,

b1b2
a1a2x

,
b1b2
a1a2qx

,
b1
a1
,
b1
a2
,
b2
a1
,
b2
a2
, q

)
∞

× θ

(
b2
b1

)
θ

(
b1x

q

)
θ

(
b2x

q

)
×
(

1

b2
2ψ2

(
x,

q

b1

)
2ψ2

(
qx,

q

b2

)
− 1

b1
2ψ2

(
qx,

q

b1

)
2ψ2

(
x,

q

b2

))
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and from the factorization (4.10)

W
(
x,

q

b1
,
q

b2

)
=
Cq

b2x

(
qx,

b1b2
a1a2x

)
∞
θ

(
b2
b1

)
θ

(
b1x

q

)
θ

(
b2x

q

)
θ

(
a1a2q

2x

b1b2

)
.

From equating these two expressions for W(x, q/b1, q/b2), it follows that the constant C is
given by

C =
b1b2

(
x, b1a1 ,

b1
a2
, b2a1 ,

b2
a2

)
∞

(b1 − b2)
(a1a2q2x

b1b2

)
∞

×
(

1

b2
2ψ2

(
x,

q

b1

)
2ψ2

(
qx,

q

b2

)
− 1

b1
2ψ2

(
qx,

q

b1

)
2ψ2

(
x,

q

b2

))
.

In this formula the value of x is arbitrary. The simplest choice is to take x = 0 (the right-hand
side being analytic there); this yields the value

C =

(
b1
a1
,
b1
a2
,
b2
a1
,
b2
a2

)
∞
.

Hence

W(x, y, z) =
z

x

(
b1
a1
,
b1
a2
,
b2
a1
,
b2
a2
, qx,

b1b2
a1a2x

)
∞
θ
(y
z

)
θ

(
x

y

)
θ
(x
z

)
θ(a1a2xyz)

and so

z2ψ
∗
2(x, y)2ψ

∗
2(qx, z)− y2ψ

∗
2(qx, y)2ψ

∗
2(x, z)

= z

(
b1
a1
,
b1
a2
,
b2
a1
,
b2
a2
, qx,

b1b2
a1a2x

)
∞
θ
(y
z

)
θ(a1a2xyz). (4.11)

In terms of the functions A and ρ, the left-hand side of this equation is

A(x)A(qx)

(
zθ

(
y

ρ(x)

)
θ(a1a2xyρ(x))θ

(
z

ρ(qx)

)
θ(a1a2qxzρ(qx))

− yθ

(
y

ρ(qx)

)
θ(a1a2qxyρ(qx))θ

(
z

ρ(x)

)
θ(a1a2xzρ(x))

)
.

Weierstrass’s three-term identity (for which see [12, Exercise 2.16 (i)]) may be used to equate
this to

− zA(x)A(qx)

a1a2xρ(x)ρ(qx)
θ

(
ρ(x)

ρ(qx)

)
θ(a1a2xρ(x)ρ(qx))θ

(y
z

)
θ(a1a2xyz).

The identity (4.11) may therefore be expressed in the equivalent form

A(x)A(qx) = −
a1a2xρ(x)ρ(qx)

(
b1
a1
, b1a2 ,

b2
a1
, b2a2 , qx,

b1b2
a1a2x

)
∞

θ
( ρ(x)
ρ(qx)

)
θ(a1a2xρ(x)ρ(qx))

, (4.12)

which is the equality between (4.6) and the right-hand side of (4.7) claimed earlier. Alternatively,
this equation may be obtained from (4.11) directly, without the use of Weierstrass’s three-term
identity, by setting z = ρ(x). Multiplying together (4.5) and (4.12) yields

A(x)2 = −
a1a2xρ(x)((a1 + a2)qx− b1 − b2)

(
qx, b1b2

a1a2x
, b1a1 ,

b1
a2
, b2a1 ,

b2
a2

)
∞θ
(ρ(q2x)

ρ(qx)

)
(a1a2qx− b1b2)θ

( ρ(x)
ρ(qx)

)
θ
(ρ(q2x)

ρ(x)

)
θ
(
a1a2xρ(x)ρ(qx))θ

(
a1a2xρ(x)ρ

(
q2x
))

× θ
(
a1a2xρ(qx)ρ

(
q2x
))
.

An application of the relation (1.14), with x 7→ x/q, shows that this is equivalent to (1.12).
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To obtain the formula for ρ given in (1.13), take y = ±1/
√
a1a2x in (1.11) and divide the

resulting equations to obtain

2ψ
∗
2(x, 1/

√
a1a2x)

2ψ
∗
2(x,−1/

√
a1a2x)

= −
θ
(
ρ(x)

√
a1a2x

)2
θ
(
−ρ(x)√a1a2x

)2 .
From here, (1.13) follows at once from one of Jacobi’s inversion formulae, for which see [23,
p. 480], viz.7

y =
θ(x)2

θ(−x)2
if and only if

x = exp

(
1

θ(
√
q)θ(−√

q)

∫ y

0

du√
u
(
1− θ(

√
q)2

θ(−√
q)2
u
)(

1− θ(−√
q)2

θ(
√
q)2

u
)
)
.

(The integral should be understood here in its multi-valued sense, so that the complete set of
solutions of y = θ(x)2/θ(−x)2 for x in terms of y is obtained by taking the complete set of
branches of the integral. If x = x0 is one solution, then the complete set of solutions is given
by x = qnx0 and x = qn/x0.)

The final part of Theorem 1.2, pertaining to the branch points of the function ρ, remains
to be proved. The right-hand side of (1.13) is, as a function of x, analytic at every point
of C\{0} except those for which the upper limit of integration coincides with a branch point of
the integrand. The integrand has four branch points: 0, ∞, and the two points θ(

√
q)2/θ(−√

q)2

and θ(−√
q)2/θ(

√
q)2. Hence, ρ is analytic except for branch points which occur exactly at the

values of x which satisfy one of the following four equations:

2ψ
∗
2

(
x, 1/

√
a1a2x

)
= 0, 2ψ

∗
2

(
x,−1/

√
a1a2x

)
= 0,

θ(−√
q)22ψ

∗
2

(
x, 1/

√
a1a2x

)
+ θ
(√
q
)2

2ψ
∗
2

(
x,−1/

√
a1a2x

)
= 0, (4.13)

θ
(√
q
)2

2ψ
∗
2

(
x, 1/

√
a1a2x

)
+ θ
(
−√

q
)2

2ψ
∗
2

(
x,−1/

√
a1a2x

)
= 0. (4.14)

The left-hand sides of (4.13) and (4.14) are equal to

θ(−1)22ψ
∗
2

(
x,
√
q/a1a2x

)
and θ(−1)22ψ

∗
2

(
x,−

√
q/a1a2x

)
,

respectively. This may be seen from taking y = ±
√
q/a1a2x, z1 = 1/

√
a1a2x and z2 =−1/

√
a1a2x

in the identity

2ψ
∗
2(x, y) =

z2θ
( y
z2

)
θ(a1a2xyz2)2ψ

∗
2(x, z1)− z1θ

( y
z1

)
θ(a1a2xyz1)2ψ

∗
2(x, z2)

z2θ
(
z1
z2

)
θ(a1a2xz1z2)

,

which is simply an instance of (2.1) since, as a function of y, 2ψ
∗
2(x, y) belongs to the space

Θ2(a1a2x). ■

Remark 4.1. It happens that (4.11) is equivalent to the special case r = 2 of Gustafson’s Ar

generalization of the 1ψ1 summation [13, Theorem 1.17]. The general case of Gustafson’s formula
is also obtainable from an application of Lemmas 3.16 and 3.17. This is described in the next
section.

7In [23], this classical result is stated in terms of the Jacobian elliptic function sn. Its formulation given here
may be obtained using [23, equation (A), p. 492].
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Remark 4.2. From setting z = y
√
q in (4.11), it follows that, as a function of the variable y,

the function

2ψ
∗
2(x, y)2ψ

∗
2(qx, y

√
q) +

θ(
√
q)

2
√
q

(
qx,

b1b2
a1a2x

,
b1
a1
,
b1
a2
,
b2
a1
,
b2
a2

)
∞
θ
(
a1a2xy

2√q
)

belongs to the space Θ2(a1a2x
√
q;
√
q).

(
Here the notation Θn(c; q) is used in place of Θn(c)

to allow for a change of base; thus the space in question here consists of all functions analytic
on C\{0} which satisfy the relation f(y

√
q) = f(y)/

(
a1a2xy

2√q
)
.
)

5 The general rψr series

The purpose of this section is to demonstrate, in outline, how the result of Theorem 1.2 may
be generalized to describe the relationship between the undetermined functions in Theorem 1.1
for any positive integer r. It turns out that the function A in the factorization (1.7) is always
expressible in terms of the functions ρj and the variables (excluding y). The method is based
on that of the previous section.

Let λj denote the coefficients in the expansion

x
r∏

j=1

(1− ajy)−
r∏

j=1

(1− bjy/q) =
r∑

j=0

λj(x)y
j .

Then from the elementary identity

∞∑
n=−∞

(a1y, . . . , ary)n
(b1y, . . . , bry)n

r∏
j=1

(
1− bjyq

n−1
)
xn =

∞∑
n=−∞

(a1y, . . . , ary)n
(b1y, . . . , bry)n

r∏
j=1

(1− ajyq
n)xn+1,

which is the obvious generalization of (4.1), it is apparent that

r∑
j=0

yjλj(x)rψr

(
xqj , y

)
= 0,

or equivalently,

r∑
j=0

yjλj(x)(x)j(
b1···br

a1···arxqj
)
j

rψ
∗
r

(
xqj , y

)
= 0. (5.1)

Hence, for any given non-zero complex numbers y1, y2, . . . , yr, for k = 1, 2, . . . , r, each of the
functions fk(x) = θ(x/yk)rψ

∗
r (x, yk) is a solution of the q-difference equation

r∑
j=0

(−1)jq
j(j−1)

2 xjλj(x)(x)j(
b1···br

a1···arxqj
)
j

f
(
xqj
)
= 0.

By Lemma 3.18, the q-Wronskian

W(x, y1, y2, . . . , yr) = det
1≤i,j≤r

(
θ
(
qj−1x/yi

)
rψ

∗
r

(
qj−1x, yi

))
therefore satisfies the relation

W(qx, y1, y2, . . . , yr)

W(x, y1, y2, . . . , yr)
=

λ0(x)
(

b1···br
a1···arxqr

)
r

q
r(r−1)

2 xrλr(x)(x)r
=

(−1)r+1q−
r(r−1)

2 x−r−1
(

b1···br
a1···arxqr−1

)
r−1

a1 · · · ar(qx)r−1
.
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By Lemmas 3.4 and 3.17, this implies that

W(x, y1, y2, . . . , yr)

θ(x/y1)θ(x/y2) · · · θ(x/yr)θ
(
a1y1 · · · aryrq

r(r−1)
2 x

)∏r−1
j=1

(
xqj , b1···br

a1···arxqj−1

)
∞

is independent of x. Equivalently, the slightly modified determinant

W̃(x, y1, y2, . . . , yr) = det
1≤i,j≤r

(
yj−1
i rψ

∗
r

(
qj−1x, yi

))
has the property that

W̃(x, y1, y2, . . . , yr)

θ(a1y1 · · · aryrx)
∏r−1

j=1

(
xqj , b1···br

a1···arxqj−1

)
∞

is independent of x. On the other hand, Lemma 3.16 implies that

W̃(x, y1, y2, . . . , yr)

∆r(y1, y2, . . . , yr)θ(a1y1 · · · aryrx)

is independent of y1, y2, . . . , yr. Consequently

W̃(x, y1, y2, . . . , yr)

∆r(y1, y2, . . . , yr)θ(a1y1 · · · aryrx)
∏r−1

j=1

(
xqj , b1···br

a1···arxqj−1

)
∞

(5.2)

is independent of x and of y1, y2, . . . , yr. Its value, which is

(q)
− (r−1)(r−2)

2∞

r∏
i,j=1

(
bi
aj

)
∞
, (5.3)

may be found by setting yj = q/bj for each j and then, after cancelling factors which are not
analytic at the origin, setting x = 0. Per Remark 4.1, the assertion that (5.2) and (5.3) are
equal is equivalent to Gustafson’s Ar generalization of (1.2). The relation between these two
formulae may be seen by writing Gustafson’s multi-series as a determinant of single series. (The
summand of Gustafson’s series is expressible as a Vandermonde determinant.) A rather different
determinant of basic hypergeometric series, in which each entry is itself a multi-series, is consid-
ered by Aomoto and Ito [4, Theorem 3.9]; their result generalizes Gustafson’s Cn generalization
of (1.3).

From the equality between (5.2) and (5.3), there follows a relation between the functions A
and ρj appearing in the factorization (1.7). This expresses the product A(x)A(qx) . . . A

(
qr−1x

)
in terms of the ρj . On the other hand, substituting (1.7) into (5.1) and dividing both sides
by A(x) yields the equation

r∑
j=1

yjλj(x)(x)j(
b1···br

a1···arxqj
)
j

A
(
xqj
)

A(x)
θ

(
y

ρ1
(
xqj
)) · · · θ

(
y

ρr
(
xqj
)) = −λ0(x)θ

(
y

ρ1(x)

)
· · · θ

(
y

ρr(x)

)
.

Taking r different values of y in this equation yields a system of simultaneous equations for
the ratios A

(
xqj
)
/A(x) for j = 1, 2, . . . , r. The values of these ratios obtained by solving

the equations may then be combined with the expression already obtained for the product
A(x)A(qx) · · ·A

(
qr−1x

)
to determine A(x) in terms of the ρj . The details of this will appear in

a later paper.
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