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Abstract. The main aim of this paper is to construct a complex analytic family of symmet-
ric projective K3 surfaces through a compactifiable deformation family of complete quasi-
projective varieties from CP2 #9CP

2
. Firstly, for an elliptic curve C0 embedded in CP2,

let S ∼= CP2 #9CP
2
be the blow up of CP2 at nine points on the image of C0 and C be

the strict transform of the image. Then if the normal bundle satisfies the Diophantine con-
dition, a tubular neighborhood of the elliptic curve C can be identified through a toroidal
group. Fixing the Diophantine condition, a smooth compactifiable deformation of S\C over
a 9-dimensional complex manifold is constructed. Moreover, with an ample line bundle fixed
on S, complete Kähler metrics can be constructed on the quasi-projective variety S\C. So
complete Kähler metrics are constructed on each quasi-projective variety fiber of the smooth
compactifiable deformation family. Then a complex analytic family of symmetric projective
K3 surfaces over a 10-dimensional complex manifold is constructed through the smooth
compactifiable deformation family of complete quasi-projective varieties and an analogous
deformation family.
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1 Introduction

This paper is motivated by the gluing construction of K3 surfaces through two open complements
of the closures of tubular neighborhoods of elliptic curves embedded in CP2#9CP

2
in [15].

Moreover, a gluing construction of projective K3 surfaces was presented in [16].
For a rational elliptic surface X defined as the blow-up of a projective plane at nine base

points for a pencil of cubics, Hans-Joachim Hein presented some complete Calabi–Yau metrics
on X\D with D being a fiber on X in [13]. However, the blow up of a projective plane at
arbitrary nine points may not be a rational elliptic surface.

Let ⟨1, τ⟩ denote a lattice for τ ∈ Y := {τ | τ ∈ C, Im τ > 0}. Then C0(τ) = C/⟨1, τ⟩ is
an elliptic curve for τ ∈ Y . Let C0 = C/⟨1, τ0⟩ with τ0 ∈ Y . The smooth elliptic curve C0(τ)
can be holomorphically embedded in CP2 for τ ∈ Y . The embedding map is induced by the
Weierstrass ℘-function

℘(z) =
∑

λ∈⟨1,τ⟩\{0}

(
1

(z − λ)2
− 1

λ2

)
+

1

z2

and the Eisenstein series

G2k(⟨1, τ⟩) =
∑

λ∈⟨1,τ⟩\{0}

λ−2k.
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Here, for τ ∈ Y , the holomorphic embedding map fτ : C0(τ) → CP2 is defined by

fτ ([z]) = [℘(z) : ℘′(z) : 1] = [z1 : z2 : z3]

for [z] ∈ C0(τ) with [z] ̸= [0] and fτ ([0]) = [0 : 1 : 0]. Furthermore,

fτ (C0(τ)) =
{
[z1 : z2 : z3]| − 4z31 + 60G4(⟨1, τ⟩)z23z1 + 140G6(⟨1, τ⟩)z33 + z22z3 = 0

}
⊂ CP2

for τ ∈ Y .
So fτ (C0(τ)) is a submanifold of S0 = CP2. Let S(τ) ∼= CP2#9CP

2
be the blow up of S0

at nine points in the set Z := {p1, p2, . . . , p9} on fτ (C0(τ)). Now let C(τ) denote the strict
transform of fτ (C0(τ)) in S(τ). Then S(τ) \ C(τ) is a quasi-projective variety for τ ∈ Y . In
particular, let S = S(τ0) and C = C(τ0). Here, the normal bundle of C(τ) in S(τ) is assumed
to satisfy the Diophantine condition corresponding to a Diophantine number pair proposed
in [16]. Then a complex analytic family of CP2#9CP

2
over a 9-dimensional complex manifold

is constructed exactly. The simple description of this deformation family can be found in [15].
Elizabeth Gasparim and Francisco Rubilar presented new definitions for deformation family

in [9], especially for the deformation family of open manifolds. Taking use of the new definitions,
the main theorem is as follows.

Theorem 1.1. There is a smooth compactifiable deformation of S\C over a 9-dimensional
complex manifold T . In addition, the deformation is differentially trivial along T .

As it was proved in [1], ∀τ1, τ2 ∈Y , if there was an algebraic isomorphism between S(τ1)\C(τ1)
and S(τ2)\C(τ2), then there was an induced birational morphism between S(τ1) and S(τ2)
which made the square-zero elliptic curves C(τ1) and C(τ2) isomorphic to each other. There-
fore, ∀τ1 ̸= τ2 ∈ Y , if C(τ1) is not isomorphic to C(τ2), then S(τ1)\C(τ1) is not algebraically
isomorphic to S(τ2)\C(τ2). So through suitable choice of T , every two different fibers of the
compactifiable deformation of S\C in Theorem 1.1 are not algebraically isomorphic to each
other.

A K3 surface with an involution was constructed as an example in [15, Section 7.1.2] by
Takayuki Koike and Takato Uehara. Then through fixing suitable ample line bundles on S(τ),
a gluing construction of symmetric projective K3 surfaces will be introduced here.

Firstly, there are ample line bundles properly defined on each fiber of the deformation family
of CP2#9CP

2
[19].

Secondly, in [16], there was a simple description for the construction of some complete Kähler
metrics on S(τ)\C(τ) corresponding to an ample line bundle on S(τ). In this paper, through
modifying the method proposed in [16], the analogous complete Kähler metrics corresponding
to the ample line bundles selected are constructed on each fiber of the smooth compactifiable
deformation family of S\C.

Then the smooth compactifiable deformation family is proved to be a deformation family of
complete quasi-projective varieties.

In particular, Yoshio Fujimoto proposed a condition for the nine blowing up points such
that S(τ) was a rational elliptic surface in [8]. Taking use of the same construction method as
Section 3 of this paper, we may construct another compactifiable deformation family and each
fiber is an open Calabi–Yau manifold. The Calabi–Yau metrics on the fibers were constructed
in [13] by Hans-Joachim Hein. However, this situation will not be further discussed in this paper.

Thirdly, a symmetric projective K3 surface can be constructed through gluing the open
completement of closure of the tubular neighborhood of C(τ) in S(τ) and an analogous manifold.

Then a deformation family of symmetric projective K3 surfaces is constructed as follows.

Corollary 1.2. A deformation family of symmetric projective K3 surfaces over a 10-dimensional
complex manifold along with a symmetric Kähler metric on each fiber can be constructed through
a smooth compactifiable deformation of S\C and an analogous deformation family.
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Moreover, the complex analytic family of symmetric projective K3 surfaces has an injective
Kodaira–Spencer map by [15, Theorem 1.1].

The following is to introduce the main contents in the following sections of this paper.

In Section 2, the main goal is to present a gluing construction of symmetric projective K3
surfaces and the toroidal groups corresponding to Diophantine number pairs.

Firstly, the Diophantine condition is introduced for the construction of a tubular neighbor-
hood of an elliptic curve embedded in CP2#9CP

2
.

Secondly, fixing a suitable ample line bundle on S(τ), the open completement of the closure
of the tubular neighborhood of C(τ) in S(τ) and an analogous open manifold can be glued to
a symmetric projective K3 surface through a suitable map.

Finally, the specific defined toroidal groups related to Diophantine number pairs are just
properly defined in a special class of toroidal groups described in [21, Theorem].

In Section 3, the main goal is to prove Theorem 1.1 and construct complete Kähler metrics
on each quasi-projective variety fiber of the deformation family through fixing an ample line
bundle on S(τ).

Moreover, through the process of constructing the complete Kähler metrics on S(τ)\C(τ),
the condition for the gluing construction of symmetric projective K3 surfaces can be confirmed.

In Section 4, the main goal is to prove Corollary 1.2.

2 Symmetric projective K3 surfaces and toroidal groups

2.1 A gluing construction of symmetric projective K3 surfaces

Firstly, it is to give the details for a gluing construction of symmetric projective K3 surfaces.

Julius Ross and David Witt Nyström stated that there was a canonical smooth tubular
neighborhood for a compact complex submanifold of a Kähler manifold which in general would
not be holomorphic in [17].

V.I. Arnold proposed a theorem that in most situations an elliptic curve holomorphically
embedded in a complex surface with self-intersection index 0 should have a small neighborhood
biholomorphically equivalent to a neighborhood of zero section of the normal bundle in [3]. Ueda
also mentioned a corresponding theorem in [20].

Let N ⊂ Z denote the set consisting of positive integers.

Another fact is that any topologically trivial holomorphic line bundle on an elliptic curve
is flat [20]. The following is a smooth version definition for the monodromy of a complex line
bundle over a Riemann surface.

Definition 2.1. Let ∇ be a flat connection on an arbitrary complex line bundle L representing
an isomorphism class of complex line bundles over a Riemann surfaceM . Define g0 = e

√
−1t ∈ S1

for t ∈ [0, 2π] and let γ : S1 →M be a smooth closed curve. In addition, let ψ denote a parallel
section of γ̂∗L with γ̂ = γ ◦ g0. Then f̂(γ) ∈ S1 with ψ2π = f̂(γ)ψ0 is defined to be the
monodromy of L along γ.

The Diophantine condition for a pair of real numbers from [16] is defined as follows.

Definition 2.2 ([16, Definition 2.1]). A pair of numbers (p, q) ∈ R2 is said to satisfy the
Diophantine condition if there exist ϑ > 0 and A > 0 such that

min
µ0,ν0∈Z

∣∣n(p+ q
√
−1
)
−
(
µ0 + ν0

√
−1
)∣∣ ≥ A · n−ϑ

for any n ∈ N.
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With the definitions above, the Diophantine condition for a flat holomorphic line bundle on
an elliptic curve embedded in a complex surface for the construction of a holomorphic tubular
neighborhood of the elliptic curve is defined as follows.

Definition 2.3 ([16, Definition 2.2]). For τ ∈ Y , let α̃ and β̃ be smooth loops on the elliptic
curve C0(τ) = C/⟨1, τ⟩ corresponding to the line segments [0, 1] and [0, τ ], respectively. For
any topologically trivial line bundle L ∈ Pic0(C0(τ)), let ep̃·2π

√
−1 and eq̃·2π

√
−1 denote the

monodromies of L along the loops α̃ and β̃ respectively with (p̃, q̃) ∈ R2. Then L is said to
satisfy the Diophantion condition if (p̃, q̃) satisfies the Diophantine condition.

According to [15, Theorem 1.6], if L̃ = NC(τ)/S(τ) ∈ Pic0(C(τ)) satisfies the Diophantine
condition in Definition 2.3, − log d

(
IC(τ), L̃

n
)
= O(log n) as n → ∞ with d being an invariant

distance on Pic0(C(τ)) and IC(τ) being the holomorphically trivial line bundle on C(τ). So
from [20, Theorem 3] which is a generalized result originating from [3] by V.I. Arnold, the
following theorem is true.

Theorem 2.4 ([16]). If the normal bundle NC(τ)/S(τ) ∈ Pic0(C(τ)) satisfies the Diophantine
condition, then C(τ) admits a holomorphic tubular neighborhood in S(τ) ∼= CP2#9CP

2
biholo-

morphic to a neighborhood of the zero section in NC(τ)/S(τ).

Now assume that NC(τ)/S(τ) satisfies the Diophantine condition. Let α and β be smooth loops
on C(τ) corresponding to the line segments [0, 1] and [0, τ ] on C0(τ). Let e

p·2π
√
−1 and eq·2π

√
−1

be the monodromies of NC(τ)/S(τ) along the loops α and β respectively with (p, q) ∈ R2. So (p, q)
should satisfy the Diophantine condition. Taking use of Theorem 2.4, the following statement
is true.

There is a tubular neighborhood W of C(τ) biholomorphic to a neighborhood of the zero
section in NC(τ)/S(τ) which can be expressed as W ∼=

{
(z, w) ∈ C2 | |w| < r

}
/∼ for a real

number r > 1, where ∼ is the equivalence relation generated by

(z, w) ∼
(
z + 1, exp

(
p · 2π

√
−1
)
· w
)
∼
(
z + τ, exp

(
q · 2π

√
−1
)
· w
)

for τ ∈ Y .
Then for s ∈ ∆\{0} with ∆ := {s ∈ C | |s| < 1}, let

Ms := S(τ)\
{
[(z, w)] ∈W | |w| ≤

√
|s|/r

}
and

Vs :=
{
[(z, w)] ∈W |

√
|s|/r < |w| <

√
|s|r
}
.

The following is to describe some ample line bundles on S(τ).
Let Ei be the exceptional divisor corresponding to the point pi ∈ Z := {p1, p2, . . . , p9}

for i ∈ {1, 2, . . . , 9}, respectively. Moreover, let π : S(τ) → CP2 be the blow up of CP2 at nine
points in Z := {p1, p2, . . . , p9} ⊂ fτ (C0(τ)) and H = (π)∗OCP2(1) be the pull back bundle of
the hyperplane line bundle. Then the Nakai–Moishezon criterion [12, Appendix A] can be used
to prove the following simplified theorem.

Lemma 2.5 ([19, Theorem 3]). Let π : S(τ) → CP2 be the blowing up of CP2 at nine points
defined above. For the line bundles of the form L = d ·H−k ·

∑9
i=1Ei with k ≥ 2 and d ≥ 3k+1

being integers, if 9 ≤ d2

k2
− 1, then the line bundles are ample.

Now let C±
0 (τ) ⊂ S±

0 = CP2 be two copies of fτ (C0(τ)). Then the map

ℓCP2([a1 : a2 : a3]) = [a1 : −a2 : a3] for [a1 : a2 : a3] ∈ CP2
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is a holomorphic involution on CP2 and induces a holomorphic involution on fτ (C0(τ)) as well
as C±

0 (τ) (i.e., (ℓCP2)−1 = ℓCP2). So there is a biholomorphic map ℓS+
0
induced by ℓCP2 from S+

0

to S−
0 . Since C±

0 (τ) are two copies of fτ (C0(τ)), there exists an identity map gτ from C+
0 (τ)

to C−
0 (τ). Let Z± =

{
p±1 , p

±
2 , . . . , p

±
9

}
with p−i = ℓS+

0

(
p+i
)
for i ∈ {1, 2, . . . , 9} be the sets col-

lecting the nine blow up points on C±
0 (τ), respectively. Moreover, let p+0 and p−0 = ℓS+

0

(
p+0
)

be inflection points of C±
0 (τ), respectively. Here, the set Z+ ⊂ C+

0 (τ) is just a copy of the
set Z ⊂ fτ (C0(τ)).

In addition, let S±(τ) ∼= CP2#9CP
2
be the blow-ups of S±

0 at nine points in the sets
Z± :=

{
p±1 , p

±
2 , . . . , p

±
9

}
on C±

0 (τ) and C±(τ) be the strict transforms of C±
0 (τ), respectively.

Furthermore, let ℓS+(τ) : S
+(τ) → S−(τ) be the biholomorphic map defined on S+(τ) induced

by the biholomorphic map ℓS+
0
: S+

0 → S−
0 .

Then the biholomorphic map g̃τ : C
+(τ) → C−(τ) induced by gτ will map the normal bun-

dle NC+(τ)/S+(τ) ∈ Pic0
(
C+(τ)

)
to the dual of the normal bundle NC−(τ)/S−(τ) ∈ Pic0(C−(τ))

through (g̃τ )
∗NC−(τ)/S−(τ)

∼= (NC+(τ)/S+(τ))
−1. This can be derived through computing the

monodromies of NC±(τ)/S±(τ).
Taking use of Lemma 2.5, let E±

i be the exceptional divisors corresponding to the points
p±i ∈ Z± =

{
p±1 , p

±
2 , . . . , p

±
9

}
for i ∈ {1, 2, . . . , 9}, respectively. Moreover, let H± be the pull

back bundles of the hyperplane line bundles on S±
0 respectively with H+ being a copy of H

and (ℓS+(τ))
∗H− = H+. So there are ample line bundles L± on S±(τ) such that

(
L+.C+(τ)

)
=

(L−.C−(τ)) with (ℓS+(τ))
∗L− = L+ as follows.

Theorem 2.6. There exist ample line bundles L± on S±(τ) such that
(
L+.C+(τ)

)
=(L−.C−(τ))

with (ℓS+(τ))
∗L− = L+.

Proof. Since K−1
S+(τ)

=
[
C+(τ)

]
= 3H+ −

∑9
i=1E

+
i and K−1

S−(τ)
= [C−(τ)] = 3H− −

∑9
i=1E

−
i ,(

L+.C+(τ)
)
= 3d+ − 9k+ and (L−.C−(τ)) = 3d− − 9k−. Therefore, for L+ = d+ · H+ − k+ ·∑9

i=1E
+
i and L− = d− ·H− − k− ·

∑9
i=1E

−
i with k± ≥ 2, d+ ≥ 3k+ + 1 and d− ≥ 3k− + 1

being integers,
(
L+.C+(τ)

)
= (L−.C−(τ)) if and only if d+ − 3k+ = d− − 3k−.

Then for d+ = d− and k+ = k− satisfying 10 ≤ (d+)2

(k+)2
≤ (d−)2

(k−)2
with k+ = k− ≥ 2 and

d+ = d− ≥ 3k+ + 1 = 3k− + 1 being integers,

L+ = d+ ·H+ − k+ ·
9∑

i=1

E+
i and L− = d− ·H− − k− ·

9∑
i=1

E−
i

are ample line bundles on S+(τ) and S−(τ) respectively such that
(
L+.C+(τ)

)
= (L−.C−(τ)).

In addition, (ℓS+(τ))
∗L− = L+. So Theorem 2.6 is proved. ■

In fact, for an arbitrary ample line bundle L+ on S+(τ) and a line bundle L− on S−(τ)
defined through (ℓS+(τ))

∗L− = L+, it is not so hard to prove that
(
L+.C+(τ)

)
= (L−.C−(τ)).

So the construction in this paper can be generalized.
Now let α± and β± be smooth loops on C±(τ) corresponding to the line segments [0, 1] and

[0, τ ] on C0(τ), respectively. So e±p·2π
√
−1 and e±q·2π

√
−1 are the monodromies of NC±(τ)/S±(τ)

along the loops α± and β±, respectively with (p, q) ∈ R2 being a Diophantine number pair.
Taking use of Theorem 2.4, the following statement is true.

There are tubular neighborhoods W± of C±(τ) biholomorphic to neighborhoods of the zero
section in NC±(τ)/S±(τ) such that W+ is just a copy of W and W− = ℓS+(τ)

(
W+

)
for τ ∈ Y .

Then for arbitrary ample line bundles L± → S±(τ) satisfying
(
L+.C+(τ)

)
= (L−.C−(τ))

with (ℓS+(τ))
∗L− = L+, let

p± = 3f−1
τ

(
p±0
)
H± −

9∑
i=1

f−1
τ

(
p±i
)
E±

i
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and b0 =
(
L+.C+(τ)

)
= (L−.C−(τ)).Then there exists a unique ξ = 1

b0

(
(p−.L−)−

(
p+.L+

))
∈ C

up to modulo ⟨1, τ⟩ such that gξ = ℓξ ◦ g̃τ with ℓξ being a translation induced from C ∋ z →
z + ξ ∈ C gives the following gluing construction [16, Proposition 5.1]. In our case, ξ = 0 and
therefore gξ coincides with g̃τ .

For s ∈ ∆\{0} with ∆ := {s ∈ C | |s| < 1}, let M+
s ⊂ S+(τ) be a copy of Ms, M

−
s =

ℓS+(τ)

(
M+

s

)
⊂ S−(τ), V +

s ⊂ S+(τ) be a copy of Vs and V −
s = ℓS+(τ)

(
V +
s

)
⊂ S−(τ) with

fs : V
+
s → V −

s defined by

fs
([(

z+, w+
)])

=
[(
gξ
(
z+
)
, s/w+

)]
for

[(
z+, w+

)]
∈ V +

s .

The following is the definition for the symmetric K3 surfaces here.

Definition 2.7. For a K3 surface K, if there exists an ample line bundle LK together with
a non-trivial holomorphic involution fK defined on K such that f∗KLK = LK, then K is said to
be symmetric with respect to LK.

So the gluing construction of symmetric K3 surfaces is as follows.

Theorem 2.8. There exists a sufficiently small ε0 > 0 such that for any s ∈ ∆ \ {0} and
0 < |s| < ε0, identifying V

+
s and V −

s through the biholomorphic map fs defined above, the two
open complements M±

s of the closures of the tubular neighborhoods W± of C±(τ) are glued to
be a symmetric projective K3 surface Xs.

Proof. Let ℓS+(τ)\C+(τ) be defined as ℓS+(τ)\C+(τ) = ℓS+(τ)|S+(τ)\C+(τ) for τ ∈ Y . Since
ℓS+(τ) : S

+(τ) → S−(τ) is a biholomorphic map with ℓS+(τ)|C+(τ) : C
+(τ) → C−(τ) being bi-

holomorphic, taking use of [15, Proposition 2.1], there are global holomorphic non-vanishing
2-forms η±s defined on S±(τ) \ C±(τ) with ℓ∗S+(τ)\C+(τ)(η

−
s ) = η+s such that the restrictions

of η±s on two open complements M±
s of the closures of the tubular neighborhoods of C±(τ) can

be glued through fs to be a global holomorphic non-vanishing 2-form σs on Xs. In addition,

σs|V +
s

= a · dz
+ ∧ dw+

w+

for a ∈ C \ {0} . So σs can be assumed to be normalized in this paper. That is to say, a = 1.
Then Xs is a K3 surface.

Lemma 2.9 ([16, Theorem 1.2]). Let Ls be the holomorphic line bundle on Xs derived from L±

through the gluing construction above. Then ∃ sufficiently small ε0 > 0 such that Ls is ample
for any s ∈ ∆ \ {0} and 0 < |s| < ε0.

Taking use of Lemma 2.9, for any s ∈ ∆ \ {0} and 0 < |s| < ε0, Ls is an ample line bundle
on Xs. So Xs is projective for s ∈ ∆ \ {0} and 0 < |s| < ε0.

Let FXs : Xs → Xs be defined by

FXs(x) =

{
ℓM+

s
(x), x ∈M+

s ,

ℓ−1

M+
s
(x), x ∈M−

s

with ℓM+
s
being the restriction of ℓS+(τ) onM

+
s . Then FXs is a non-trivial holomorphic involution

on the K3 surface Xs. In addition, since (ℓS+(τ))
∗L− = L+ , F ∗

Xs
Ls = Ls for s ∈ ∆ \ {0}

and 0 < |s| < ε0. So Xs is a symmetric projective K3 surface for s ∈ ∆ \ {0} and 0 < |s| < ε0.
Then Theorem 2.8 is proved. ■

Here, the existence of ε0 will also be confirmed in Section 3 during the process of the con-
struction of complete Kähler metrics on the quasi-projective varieties S(τ) \ C(τ) for τ ∈ Y .
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2.2 Toroidal groups and tubular neighborhoods

The following is to introduce the corresponding toroidal groups U0 = C2/Λ0 with Λ0 =
〈(

0
1

)
,(

1
p

)
,
( τ
q

)〉
provided in [16] for the Diophantine pair (p, q) and show that U0 = C2/Λ0 is a quasi-

abelian variety.

Definition 2.10 ([2, Definition 1.1.1]). Let Λ be a lattice which is a discrete subgroup of Cn

for n ∈ N. Then Cn/Λ is called a toroidal group if there does not exist any non-constant
holomorphic function on Cn/Λ.

The toroidal group is a topological group. Moreover, it is an abelian complex Lie group [2].

Lemma 2.11 ([2, Theorem 1.1.4]). For C2/Λ with Λ a discrete subgroup of C2, C2/Λ is
a toroidal group if and only if there does not exist any σ ∈ C2\{0} such that the scalar prod-
uct ⟨σ, λ⟩ ∈ Z is integral for all λ ∈ Λ.

Taking use of Lemma 2.11, the following lemma can be derived. Here, let Q denote the set
consisting of rational numbers.

Lemma 2.12. For any real number pair (p, q) satisfying the Diophantine condition and complex
number τ ∈ Y , U0 = C2/Λ0 with Λ0 =

〈(
0
1

)
,
(
1
p

)
,
( τ
q

)〉
is a toroidal group.

Proof. For σ =
(
σ1
σ2

)
∈ C2\{0},〈

σ,

(
0
1

)〉
=

〈(
σ1
σ2

)
,

(
0
1

)〉
= σ2,

〈
σ,

(
1
p

)〉
=

〈(
σ1
σ2

)
,

(
1
p

)〉
= σ1 + pσ2

and
〈
σ
( τ
q

)〉
=
〈(

σ1
σ2

)
,
( τ
q

)〉
= σ1τ + qσ2.

If q ∈ Q, since (p, q) ∈ R2 satisfies the Diophantine condition, p /∈ Q. Under the condition
that σ2 ∈ Z and σ1τ + qσ2 ∈ Z, then σ1 = 0 or σ1 ∈ C \ R. So σ1 + pσ2 /∈ Z.

If q /∈ Q, under the condition that σ2 ∈ Z and σ1τ+qσ2 ∈ Z, then σ1 ∈ C\R. So σ1+pσ2 /∈ Z.
Therefore, there does not exist any σ ∈ C2\{0} such that the scalar product ⟨σ, λ⟩ ∈ Z is

integral for all λ ∈ Λ0.
Taking use of Lemma 2.11, U0 = C2/Λ0 with Λ0 =

〈(
0
1

)
,
(
1
p

)
,
( τ
q

)〉
is a toroidal group for

any (p, q) ∈ R2 satisfying the Diophantine condition. So Lemma 2.12 is proved. ■

Theorem 2.13 ([16, Proposition 2.4]). For (p, q) ∈ R2 satisfying the Diophantine condition
and τ ∈ Y , every topologically trivial line bundle on the toroidal group defined as U0 = C2/Λ0

with Λ0 =
〈(

0
1

)
,
(
1
p

)
,
( τ
q

)〉
is homogeneous.

Proof. Taking use of the result from [21], there are nine equivalent conditions for the special
class of toroidal groups with homogeneous topologically trivial line bundles [21, Theorem]. The
following lemma is to show the rewritten condition 9.

Lemma 2.14 ([21]). For (p, q) ∈ R2 satisfying the Diophantine condition and τ ∈ Y , let
D0 =

(
p q

)
. Then every topologically trivial line bundle on the toroidal group defined as

U0 = C2/Λ0 with Λ0 =
〈(

0
1

)
,
(
1
p

)
,
( τ
q

)〉
is homogeneous if and only if there exist c > 0 and

a ≥ 0 such that ∥σt ·D0 + δt∥ ≥ ce−a|σ| for all σ ∈ Z \ {0} and δ ∈ Z2.

Since (p, q) ∈ R2 satisfying the Diophantine condition and τ ∈ Y , there exist ϑ > 0 and A > 0
such that

min
µ0,ν0∈Z

∣∣n(p+ q
√
−1
)
−
(
µ0 + ν0

√
−1
)∣∣ ≥ A · n−ϑ

for any n ∈ N.
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That is to say,

∥σt ·D0 + δt∥ = ∥σ(p q) + δt∥ ≥ A · e−ϑ|σ|

for all σ ∈ Z\{0} and δ ∈ Z2. Therefore, the nine equivalent conditions for the special class of
toroidal groups [21, Theorem] are all satisfied here. That is to say, every topologically trivial line
bundle on the toroidal group defined as U0 = C2/Λ0 with Λ0 =

〈(
0
1

)
,
(
1
p

)
,
( τ
q

)〉
is homogeneous.

So Theorem 2.13 is proved. ■

With the above result, from [21], the complex vector space H1(U0,O) is finite-dimensional.
The following is to show that U0 = C2/Λ0 defined above are quasi-abelian varieties.

Let

RΛ0 :=

{
x1 ·

(
0
1

)
+ x2 ·

(
1
p

)
+ x3 ·

(
τ
q

)
| x1 ∈ R, x2 ∈ R, x3 ∈ R

}
be the R-span of Λ0. Let

MCΛ0 := RΛ0 ∩
√
−1RΛ0 =

{(
x
0

)
| x ∈ C

}
be the maximal C-linear subspace of RΛ0 .

Definition 2.15 ([2, Definition 3.1.6]). An ample Riemann form H0 for the discrete sub-
group Λ ⊂ Cn of complex rank n is a Hermitian form H0 on Cn such that

(1) ImH0|Λ×Λ is Z-valued,
(2) H0 is positive definite on the maximal C-linear subspace MCΛ of RΛ.

Here, RΛ is the R-span of Λ. MCΛ is the maximal C-linear subspace of RΛ.

Definition 2.16 ([2, Definition 3.1.6]). A quasi-abelian variety is a toroidal group Cn/Λ with
an ample Riemann form for the lattice Λ.

Then the following is true.

Theorem 2.17. For (p, q) ∈ R2 satisfying the Diophantine condition and τ ∈ Y , U0 = C2
(z,η)/Λ0

with Λ0 =
〈(

0
1

)
,
(
1
p

)
,
( τ
q

)〉
is a quasi-abelian variety.

Proof. Let

G =

(
1

Im τ 0
0 0

)
,

then G defines a hermitian form on C2. ImG|Λ0×Λ0 is Z-valued and G is positive definite on the
maximal C-linear subspace MCΛ0 of RΛ0 . So

G =

(
1

Im τ 0
0 0

)
is an ample Riemann form for the lattice Λ0. Therefore, according to Definition 2.16, U0 = C2/Λ0

is a quasi-abelian variety. Then Theorem 2.17 is proved. ■

Since MCΛ0 := RΛ0 ∩
√
−1RΛ0 =

{(
x
0

)
| x ∈ C

}
is the maximal C-linear subspace of RΛ0

and MCΛ0 has the complex dimension 1, the toroidal group U0 = C2/Λ0 is of type 1 [2, Defi-
nition 1.2.1].

For G =
( 1

Im τ
0

0 0

)
, ImG has rank 2 on RΛ0 . Moreover, since the toroidal group U0 = C2/Λ0 is

of type 1, the ample Riemann form G =
( 1

Im τ
0

0 0

)
for Λ0 is said to be of kind 2−2×1

2 = 0 (see [2,
Definition 3.1.12]).

The following theorem will give a fibration of the toroidal group U0 = C2/Λ0.
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Theorem 2.18 ([2, Theorem 3.1.16]). For a toroidal group Cn/Λ of type q with Λ being a lattice,
Cn/Λ is a quasi-abelian variety with an ample Riemann form of kind k if and only if Cn/Λ has
a maximal closed Stein subgroup K ∼= Ck × C∗m with 2k + m = n − q and (Cn/Λ)/K is an
abelian variety of dimension q + k.

Taking use of Theorem 2.18, the toroidal group U0 = C2/Λ0 has a maximal closed Stein
subgroup K ∼= C∗ and U0/K is an abelian variety of dimension 1.

Furthermore, from [16], through the map fU0 : U0 = C2
(z,η)/Λ0 → V0,∞ defined by sending

[(z, η)] ∈ U0 = C2
(z,η)/Λ0 to

[(
z, e2π

√
−1η
)]

∈ V0,∞,

U0 = C2
(z,η)/Λ0

∼= V0,∞ with V0,∞ defined by Vb1,b2 :=
{
(z, w) ∈ C2 | b1 < |w| < b2

}
/∼

for 0 ≤ b1 < b2 ≤ ∞, where ∼ is the equivalence relation generated by

(z, w) ∼
(
z + 1, exp

(
p · 2π

√
−1
)
· w) ∼

(
z + τ, exp

(
q · 2π

√
−1
)
· w
)

with τ ∈ Y .
From the definitions above, V0,r ∪C(τ) =W . Let πW : W → C(τ) be the natural projection

defined as πW ([(z, w)]) = [z] for [(z, w)] ∈ W . The next step is to give a theorem for the line
bundles on the tubular neighborhoods defined above.

Theorem 2.19 ([16, Proposition 3.3]). For any L ∈ Pic(W ), L is the pull back line bun-
dle (πW )∗(L|C(τ)) of the restricted line bundle L|C(τ) on C(τ). Here, the assumption is as
above.

This theorem is proved in [16] through the toroidal group defined above.

3 A deformation family of complete non-compact
Kähler manifolds

3.1 A deformation family of quasi-projective varieties from CP2 #9CP
2

The following is to prove Theorem 1.1. First of all, the definition for a complex analytic family
of compact complex manifolds is as follows.

Definition 3.1 ([14, Definition 2.8]). For a collection of compact complex manifolds {Mt | t∈B}
with B being a domain of Cm and m ∈ N, {Mt | t ∈ B} is called a complex analytic family of
compact complex manifolds if there is a complex manifold M and a holomorphic map π from M
onto B satisfying the following conditions:

(1) The rank of the Jacobian matrix of π is equal to m at every point of M.

(2) For each t ∈ B, π−1(t) =Mt is a compact complex submanifold of M.

Let (M, B, π) denote the complex analytic family defined above. Here, a complex analytic
family of CP2#9CP

2
over a 9-dimensional complex manifold will be presented before construct-

ing a deformation family of quasi-projective varieties.
However, a complex analytic family of elliptic curves over a 1-dimensional complex manifold

should be presented at first. Here, for τ0 ∈ Y , let U ⊂ Y be a sufficiently small disc neighborhood
of τ0 in Y and πCP2 ×U : CP2×U → U be the natural projection map. Let C0(τ) be an elliptic
curve embedded in π−1

CP2 ×U
(τ) = CP2×{τ} as fτ (C0(τ))× {τ} for τ ∈ U and

S̃ =
{
(x, τ) ∈ CP2×U | x ∈ fτ (C0(τ))

}
.

Here, C0(τ0) = C0. Then the following lemma is true.
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Lemma 3.2.
(
S̃, U, πCP2 ×U |S̃

)
is a complex analytic family of elliptic curves over the 1-dimen-

sional complex manifold U and
(
CP2×U,U, πCP2 ×U

)
is a complex analytic family of CP2 over

the 1-dimensional complex manifold U .

The complete proof of Lemma 3.2 is in Appendix A.
Now let U ⊂ Y be a sufficiently small disc neighborhood of τ0 and Uν be sufficiently small

disc neighborhoods of qν in the universal cover C of C/⟨1, τ⟩ = C0(τ) for ν ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
Here, C0(τ0) = C0. Let fτ̃ ,ν : Uν→ Uν/⟨1, τ̃⟩ be the natural projection for ν ∈ {1, 2, 3, 4, 5, 6, 7, 8}
and τ̃ ∈ U .

Let (p, q) still be a Diophantine number pair. For t̂ = (τ̃ , p̂1, . . . , p̂8) ∈ T = U ×U1×· · ·×U8,
let f9

(
t̂
)
∈ C0(τ̃) be the point fixed by the equation

9p0 −
8∑

j=1

fτ̃ ,j(p̂j)− f9
(
t̂
)
= q − p · τ̃ mod ⟨1, τ̃⟩

with p0 being an inflection point [16]. In addition, let π : CP2×T → T be the natural projection
and let S0 = S̃ × U1 × · · · × U8. Then

(
CP2×T, T, π

)
is a complex analytic family of CP2.

Through blowing up nine points {fτ̃ (p1), fτ̃ (p2), . . . , fτ̃ (p9)} × {(τ̃ , p̂1, . . . , p̂8)} on

π|−1
S0

(
t̂
)
= πCP2 ×U |

−1

S̃
(τ̃)×]{(p̂1, . . . , p̂8)]}

with {
p1 = fτ̃ ,1(p̂1), . . . , p8 = fτ̃ ,8(p̂8), p9 = f9

(
t̂
)}

⊂ C/⟨1, τ̃⟩

for each t̂ = (τ̃ , p̂1, . . . , p̂8) ∈ T , a 11-dimensional complex manifold F can be derived from
CP2×T . Moreover, let π̃ be defined as a map from F to T such that (π̃)−1

(
t̂
)
is the blow

up of π−1
(
t̂
)
at the nine points in {fτ̃ (p1), . . . , fτ̃ (p9)} × {(τ̃ , p̂1, . . . , p̂8)} with

{p1 = fτ̃ ,1(p̂1), . . . , p8 = fτ̃ ,8(p̂8), p9 = f9
(
t̂
)
} ⊂ C/⟨1, τ̃⟩

for each t̂ = (τ̃ , p̂1, . . . , p̂8) ∈ T . Now the normal bundle of the strict transform of the elliptic
curve fτ̃ (C0(τ̃))×{(τ̃ , p̂1, . . . , p̂8)} in (π̃)−1

(
t̂
)
satisfies the Diophantine condition corresponding

to (p, q) for t̂ = (τ̃ , p̂1, . . . , p̂8) ∈ T [16]. Let S ⊂ F be the strict transform of S0 ⊂ CP2×T .
Then the following lemma is true.

Lemma 3.3 ([15]). Through blowing up nine points on every fiber of
(
CP2×T, T, π

)
such that

the normal bundle of the strict transform of the elliptic curve mentioned above embedded in each
fiber satisfies the Diophantine condition corresponding to the Diophantine number pair (p, q),
the complex analytic families (F , T, π̃) and (S, T, π̃|S) can be constructed.

The complete proof of Lemma 3.3 is in Appendix A. Here, (F , T, π̃) is a complex analytic
family of CP2#9CP

2
over the 9-dimensional complex manifold T and (S, T, π̃|S) is a complex

analytic family of elliptic curves over the 9-dimensional complex manifold T .
Secondly, the following is to give a deformation family of quasi-projective varieties.
Here, the fibers of deformation families defined in Definition 3.1 should be compact. Since

there will be a deformation family of open complex manifolds to be confirmed, the definitions
of deformation in [9] will be used. Then the corresponding definition for the category of smooth
manifolds is as follows.

Definition 3.4 (the category of smooth manifolds). The objects for the category of smooth
manifolds are the smooth manifolds. For any objects M and N , the morphisms from M to N
are the maps in the set C∞(M,N).
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So the definition of deformation family from [9] is as follows.

Definition 3.5 ([9, Definition 2.3]). A deformation family of a complex manifold X1 is a holo-
morphic surjective submersion X → D1, where D1 is a complex disc centred at 0, satisfying

(1) π−1(0) = X1,

(2) X is locally trivial in the C∞ category.

For any t ∈ D1, the fiber π−1(t) is called a deformation of X1.

The discussion about Definition 3.5 can be found in [4]. Here, there is a simple corresponding
lemma.

Lemma 3.6. For a complex analytic family (M1, B1, ϖ) with B1 being a complex disc centred
at 0, (M1, B1, ϖ) is also a deformation family of the complex manifold ϖ−1(0) satisfying the
conditions in Definition 3.5.

Proof. From the Definition 3.1, since the rank of the Jacobian matrix of ϖ is equal to 1 at
every point of M1, ϖ is a holomorphic surjective submersion M1 → B1. Moreover, ϖ−1(0) is
a compact complex submanifold of M1. In addition, the following lemma is from [14].

Lemma 3.7 ([14, Theorem 2.5]). ∀x ∈ B1, ∃ a polydisc Ux ⊂ B1 centered at x with a diffeo-
morphism Ψx : ϖ

−1(x)× Ux → ϖ−1(Ux) such that ϖ ◦Ψx : ϖ
−1(x)× Ux → Ux is a projection.

Taking use of Lemma 3.7, ϖ is C∞ locally trivial on B1. That is to say, M1 is locally
trivial in the C∞ category. Therefore, (M1, B1, ϖ) is a deformation family of the complex
manifold ϖ−1(0) satisfying the conditions in Definition 3.5. So for a complex analytic fam-
ily (M1, B1, ϖ) with B1 being a complex disc centred at 0, (M1, B1, ϖ) is also a deforma-
tion family of the complex manifold ϖ−1(0) satisfying the conditions in Definition 3.5. Then
Lemma 3.6 is proved. ■

In addition, the following is to introduce the definition of the smooth compacitifiable defor-
mation family. The complex model space is defined as follows.

Definition 3.8 ([4, Definition 13]). ∀f1, . . . , fk ∈ O(D) withD ⊂ Cn being a domain and n ∈ N,
then ID = ODf1 + ODf2 + · · · + ODfk is an ideal sheaf. Let X2 := N(f1, . . . , fk) and OX2 =
(OD/ID)|X2 . So the C-ringed space (X2,OX2) is called a complex model space.

The complex space is defined as follows.

Definition 3.9 ([4, Definition 14]). For a C-ringed space
(
X̂,OX̂

)
, if X̂ is a Hausdorff space

and ∀x ∈ X̂, ∃ an open neighborhood Ux such that the open C-ringed subspace (Ux,OUx) is
isomorphic to a complex model space, then

(
X̂,OX̂

)
is called a complex space.

So the following is the definition of the smooth compactifiable deformation family.

Definition 3.10 ([4, Definition 16]). For a complex space X, X is compactifiable if there is
an open embedding ρ : X → X̃ such that ρ(X) = X̃\D2 with X̃ being a compact complex
space and D2 being a closed analytic subset of X̃. Then a compactifiable deformation of X is
a sixtuple (X , D2, Y1, f, o, j) such that

(1) X and Y1 are complex spaces,

(2) D2 is a closed analytic subset of X and o is a point in Y1,

(3) f is a proper holomorphic map from X to Y1 such that f |X\D2
is flat,

(4) j is an open embedding from X to f−1(o) with j(X) = f−1(o)\D2.
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Furthermore, the differentially local triviality can be defined as follows.

Definition 3.11 ([4, Definition 21]). For a holomorphic submersion g : X → Ŷ with X and Ŷ
being complex manifolds, g is differentially locally trivial over Ŷ if ∀y ∈ Ŷ , ∃ an open neighbor-
hood Uy such that g|g−1(Uy) is differentially isomorphic to the projection g−1(y)× Uy → Uy.

Then for the compactifiable deformation of X defined above, if f |X\D2
: X\D2 → Y1 with

X\D2 and Y1 being complex manifolds is differentially locally trivial over Y1, then (X , D2, Y1, f,
o, j) is said to be differentially trivial along Y1.

Definition 3.12. For a compactifiable complex space X defined above, assuming that X is
smooth, if f |X\D2

is a smooth morphism of complex spaces and each fiber of f is a complex
manifold, then (X , D2, Y1, f, o, j) is a smooth compactifiable deformation.

Taking use of the notations above, let t0 = (τ0, q1, q2, . . . , q8) ∈ T , then

{p1 = fτ0,1(q1), . . . , p8 = fτ0,8(q8), p9 = f9(t0)} ⊂ C0(τ0) = C0.

Let S ∼= CP2#9CP
2
be the blow up of S0 = CP2 at the nine points in the set

{fτ0(p1), . . . , fτ0(p9)} ⊂ fτ0(C0)

and C be the strict transform of fτ0(C0). Here, the normal bundle NC/S should satisfy the
Diophantine condition corresponding to the Diophantine pair (p, q).

A smooth compactifiable deformation of the quasi-projective variety S\C ⊂ S ∼= CP2#9CP
2

differentially trivial along T is as follows.

Theorem 3.13. Let o = (τ0, q1, . . . , q8). Define j : S\C → π̃−1(o) by j(x) = (x, τ0, q1, q2, . . . , q8)
for x ∈ S\C. Then (F ,S, T, π̃, o, j) is a compactifiable deformation of S\C.

Proof. Firstly, it is to prove that S\C is compactifiable. S\C is a quasi-projective variety.
(π̃)−1(o) ∼= S is a compact complex manifold. So (π̃)−1(o) is a complex space. Moreover,
(π̃)−1(o)∩S ∼= C/⟨1, τ0⟩ is a closed analytic submanifold of (π̃)−1(o). Since (π̃)−1(o)\j(S\C) =
(π̃)−1(o)∩S is closed, j(S\C) is an open submanifold of (π̃)−1(o). Then j is an open embedding
with j(S\C) = (π̃)−1(o)\S. So ((π̃)−1(o), π̃−1(o) ∩ S, j) is a compactification of S\C. That is
to say, S\C is compactifiable.

Secondly, it is to prove that S is a closed analytic subset of F and π̃ is a proper holomorphic
map from F to T such that π̃|F\S is flat.

Since F and T are complex manifolds, F and T are complex spaces. From above, S is
a codimension 1 complex submanifold of F . In addition, since the blow up points are all on S0,
it is easy to get an open neighborhood for every point in F\S. Therefore, F\S should be an
open subset of F . Then S is a closed subset of F . So S is a closed analytic subset of F .

Furthermore, since (F , T, π̃) is the complex analytic family of CP2#9CP
2
, π̃ is a proper

holomorphic map from F to T . So π̃|F\S is also proper.
Since π̃|F\S is a proper submersion from the complex manifold F\S to T , π̃|F\S is flat.
Finally, it is to prove that (F ,S, T, π̃, o, j) is a compactifiable deformation of S\C.
From above, j : S\C → (π̃)−1(o) is an open embedding with j(S\C) = (π̃)−1(o)\S. There-

fore, with all the proofs above, (F ,S, T, π̃, o, j) is a compactifiable deformation of S\C. So
Theorem 3.13 is proved. ■

In addition, the following statement is true.

Proposition 3.14. (F ,S, T, π̃, o, j) is a smooth compactifiable deformation differentially trivial
along T .
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Proof. Since π̃|F\S is a proper submersion from the complex manifold F\S to the complex
manifold T and (π̃)−1

(
t̂
) ∼= CP2#9CP

2
is a compact complex manifold for t̂ ∈ T , (F ,S, T, π̃, o, j)

is a smooth compactifiable deformation.
Moreover, the following lemma from Ehresmann indicates that (F ,S, T, π̃, o, j) is differentially

trivial along T .

Lemma 3.15 ([22, Theorem 9.3]). For any proper holomorphic submersion g : M → N with M
and N being complex manifolds, g is a locally trivial fibration.

Taking use of Lemma 3.15, since π̃|F\S is a proper submersion from the complex manifold F\S
to the complex manifold T , π̃|F\S is a locally trivial fibration. So (F ,S, T, π̃, o, j) is differentially
trivial along T .

In conclusion, (F ,S, T, π̃, o, j) is a smooth compactifiable deformation differentially trivial
along T . So Proposition 3.14 is proved. ■

Therefore, (F ,S, T, π̃, o, j) is a compactifiable deformation of the quasi-projective variety S\C
over a 9-dimensional complex manifold T with o = (τ0, q1, q2, . . . , q8) and j : S\C → (π̃−1(o))
defined by j(x) = (x, τ0, q1, q2, . . . , q8) for x ∈ S\C. Combining the results of Theorem 3.13 and
Proposition 3.14, the proof of Theorem 1.1 is completed.

3.2 Complete Kähler metrics on each fiber of the deformation family
of quasi-projective varieties

The following is to construct the complete Kähler metrics on each fiber of the deformation
family of quasi-projective varieties. A key point for the construction here is to take use of Macro
Brunella’s statement in [5].

Taking use of the notations from the introduction and Section 2, the complete Kähler metrics
will be constructed on S(τ)\C(τ) for τ ∈ Y .

For any integers k ≥ 2 and d ≥ 3k + 1 satisfying 10 ≤ d2/k2, let L = d · H − k ·
∑9

i=1Ei.
Taking use of Lemma 2.5, L is an ample line bundle on S(τ). Then there exists n ∈ N such
that Ln and Ln⊗ [−C(τ)] are very ample [10]. Now let {g0, g1, . . . , gθ} be a basis for the space of
holomorphic sections on Ln⊗ [−C(τ)] with θ ∈ N. Let ŝ be the defining section of C(τ) and {ζ}
be a frame for L. Then {g0ŝ, g1ŝ, . . . , gθŝ} are all holomorphic sections on Ln with value zero
on C(τ). This is an important point for the construction. Then the hermitian metric hL defined
on L|S(τ)\C(τ) through the C∞ function

hL(x) =
ζ(x) · ζ(x)(

|g0(x) · ŝ(x)|2 + |g1(x) · ŝ(x)|2 + · · ·+ |gθ(x) · ŝ(x)|2
) 1

n

for x ∈ S(τ)\C(τ) is smooth.

Lemma 3.16. The curvature form ΘhL
of hL is positive.

Proof. Since Ln ⊗ [−C(τ)] is very ample, taking use of the Kodaira embedding theorem [10],
the evaluation map

ΦLn⊗[−C(τ)](x) = [g0(x) : g1(x) : · · · : gθ(x)] ∈ CPθ

gives a holomorphic embedding of S(τ) ∼= CP2#9CP
2
into CPθ. In addition, let [ξ0, ξ1, . . . , ξθ]

be the coordinate system of CPθ coinciding with the image of the evaluation map ΦLn⊗[−C(τ)].
The functions

gi([ξ0 : ξ1 : · · · : ξθ]) =
|ξi|2

|ξ0|2 + |ξ1|2 + · · ·+ |ξθ|2
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on
{
[ξ0 : ξ1 : · · · : ξθ] ∈ CPθ | ξi ̸= 0

}
for i ∈ {0, 1, . . . , θ} define a hermitian metric g on the

hyperplane line bundle O(1). Then the curvature form for the hermitian metric g is

Θg =

√
−1

π
∂∂ log

(
|ξ0|2 + |ξ1|2 + · · ·+ |ξθ|2

)
for [ξ0 : ξ1 : · · · : ξθ] ∈ CPθ. Furthermore, the associate (1, 1)-form for the Fubini–Study metric
on CPθ is the positive Kähler form

√
−1

2π
∂∂ log

(
|ξ0|2 + |ξ1|2 + · · ·+ |ξθ|2

)
for [ξ0 : ξ1 : · · · : ξθ] ∈ CPθ. So Θg is a positive form on CPθ.

Therefore, g is a smooth positive hermitian metric on the hyperplane line bundle O(1) for
the coordinate system [ξ0 : ξ1 : · · · : ξθ] on CPθ. Then the pullback metric ĝ = (ΦLn⊗[−C(τ)])

∗g is
a smooth positive hermitian metric on the pullback bundle (ΦLn⊗[−C(τ)])

∗O(1) = Ln⊗ [−C(τ)].
So the curvature form Θĝ of ĝ is positive.

Moreover, in [5], Macro Brunella stated that under the condition that the normal bun-
dle NC(τ)/S(τ) satisfied the Diophantine condition, K−1

S(τ) = [C(τ)] admitted a smooth hermitian
metric with semi-positive curvature. So log |ŝ| gives the local weights of a (singular) metric gŝ
on K−1

S(τ) with Θgŝ > 0 [11, Definition 8.7]. Therefore, ΘhL
= 1

n(Θĝ|S(τ)\C(τ) + Θgŝ |S(τ)\C(τ)) is
positive. Then Lemma 3.16 is proved. ■

In addition, taking use of Theorem 2.19, let L|C(τ) be the restricted line bundle of L on C(τ).
Furthermore, let L∗ be the pull back bundle of L|C(τ) on V0,∞. Then L∗|V0,r = L|V0,r . Taking use
of the equivalent condition in [21, Theorem] (also see [16]), there exists a corresponding theta
line bundle on U0 = C2/Λ0 holomorphically isomorphic to the pull back line bundle (fU0)

∗(L∗).
Let H1 =

( (L.C(τ))
Im τ

0
0 0

)
. Here, H1(x, y) = xtH1y for x, y ∈ C2. Defining ρ : Λ0 → U(1) through

ρ(λ+ µ) = ρ(λ)ρ(µ)eπ
√
−1·ImH1(λ,µ)

for λ, µ ∈ Λ0, let

αλ(x) = ρ(λ)eπH1(x,λ)+(π/2)·H1(λ,λ)

for λ ∈ Λ0 and x ∈ C2.
The theta line bundle on U0 = C2/Λ0 corresponding to H1 =

( (L.C(τ))
Im τ

0
0 0

)
can be defined as

LH1,ρ =
(
Cζ × C2

)
/Λ0 with λ · (ζ, x) =(αλ(x) · ζ, x+ λ) for λ ∈ Λ0, ζ ∈ Cζ and x ∈ C2.

Lemma 3.17. The theta line bundle LH1,ρ on U0 = C2/Λ0 is holomorphically isomorphic to
the pull back bundle (fU0)

∗(L∗) with H1 =
( (L.C(τ))

Im τ
0

0 0

)
.

Proof. For the pull back bundle L∗
H1,ρ

=
(
f−1
U0

)∗
LH1,ρ on V0,∞, according to [16, Proposi-

tion 3.5], ∃Ĝ ∈ Pic(W ) such that Ĝ|V0,r = L∗
H1,ρ

|V0,r . Then (Ĝ.C(τ)) = (L.C(τ)) (see [16,
Lemma 3.4]).

Moreover, according to [16, Lemma 3.4] and [16, Proposition 3.5], LH1,ρ withH1 =
( (L.C(τ))

Im τ
0

0 0

)
is the unique theta line bundle defined in the formula as above such that Ĝ has the same
intersection number with C(τ) as L. Therefore, the theta line bundle LH1,ρ on U0 = C2

(z,η)/Λ0

is holomorphically isomorphic to the pull back bundle (fU0)
∗(L∗) with H1=

( (L.C(τ))
Im τ

0
0 0

)
. So

Lemma 3.17 is proved. ■

Taking use of Lemma 3.17,

c1(L|C(τ)) =

[
(L.C(τ))

Im τ
·
√
−1dz ∧ dz̄

]
.
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In addition, according to [11, Lemma 7.31] (∂∂-lemma) and [11, Section 8.2], there exists
a smooth hermitian metric hC(τ) on L|C(τ) such that

ΘhC(τ)
=

(L.C(τ))

Im τ

√
−1dz ∧ dz̄.

So (πW )∗hC(τ) is a smooth hermitian metric on L|W such that

Θ(πW )∗hC(τ)
=

(L.C(τ))

Im τ

√
−1dz ∧ dz̄.

For the line bundle L|C(τ), there exist open finite covers {Uα1}α1∈I of C(τ) and local trivial-
izations

Φα1 : π−1
L|C(τ)

(Uα1) → Uα1 × C

mapping π−1
L|C(τ)

(x) isomorphically onto {x} × C for x ∈ Uα1 and α1 ∈ I with I being an index
set. Let

gα1β1(x) =
[
Φα1 ◦ (Φβ1)

−1
]
|{x}×C

for x ∈ Uα1 ∩ Uβ1 with α1, β1 ∈ I.

The line bundle L|W = (πW )∗L|C(τ) and
{
Wα1 = π−1

W (Uα1)
}
α1∈I is an open cover ofW . More-

over, there exist local trivializations

Ψα1 : π−1
L|W (Wα1) →Wα1 × C

mapping π−1
L|W (x) isomorphically onto {x}×C induced by Φα1 for x = [(z, w)] ∈Wα1 and α1 ∈ I.

Let

g̃α1β1(x) =
[
Ψα1 ◦ (Ψβ1)

−1
]∣∣

{x}×C

for x ∈Wα1 ∩Wβ1 with α1, β1 ∈ I.

A singular hermitian metric for a line bundle is defined through local weights [11, Defini-
tion 8.7]. For ε > 0, let φα1

L ∈ Psh(Wα1\Uα1) ∩ C∞(Wα1\Uα1) and φ
α1

C(τ) + log ε ∈ Psh(Wα1) ∩
C∞(Wα1) be the local weights of the metrics hL and ε−1(πW )∗hC(τ) with Psh(Wα1\Uα1) and
Psh(Wα1) being the sets consisting of plurisubharmonic functions on Wα1\Uα1 and Wα1 for
α1 ∈ I, respectively.

Here, it is another important point for the construction modified from [16]. Through the
following theorem, φα1

L and φα1

C(τ) + log ε can be patched to smooth plurisubharmonic functions
on Wα1 for α1 ∈ I.

Let γ = (γ1, γ2, . . . , γp) with γi > 0 for i ∈ {1, . . . , p} and X be a compact complex manifold.

Moreover, let θ̂ be a real non-negative smooth function defined on R supported on [−1, 1] with∫
R
θ̂(x)dx = 1 and

∫
R
xθ̂(x)dx = 0.

In addition, let

Mγ(t1, t2, . . . , tp) =

∫
Rp

max{t1 + h1, . . . , tp + hp}
∏

1≤j≤p

γ−1
j θ̂(hj/γj)dh1dh2 . . . .dhp

for (t1, t2, . . . , tp) ∈ Rp which is called a regularized max function [18].
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Lemma 3.18 ([6, Lemma 5.18]). Mγ(t1, t2, . . . , tp) defined above satisfying the following prop-
erties:

(1) Mγ(t1, t2, . . . , tp) is smooth and convex in Rp;

(2) Mγ(t1+a, t2+a, . . . , tp+a) =Mγ(t1, t2, . . . , tp)+a, for any a ∈ R and (t1, t2, . . . , tp) ∈ Rp.

Let h = hL on S(τ)\W . Moreover, let

M(1,1)

(
φα1
L , φα1

C(τ) + log ε
)
=

∫
R2

max
{
φα1
L + h1, φ

α1

C(τ) + log ε+ h2
} ∏

1≤j≤2

θ̂(hj)dh1dh2

be the local weight of the metric h on Wα1 for α1 ∈ I.
Let r1 and r2 be positive numbers with r1 < r2 < r. Choosing ε small enough,

M(1,1)

(
φα1
L , φα1

C(τ) + log ε
)

=

∫
R2

max
{
φα1
L + h1, φ

α
C(τ) + log ε+ h2

} ∏
1≤j≤2

θ̂(hj)dh1dh2 = φα1
L

onWα1∩{[(z, w)] ∈W | r1 < |w|} for α1 ∈ I. That is to say, h = hL on {[(z, w)] ∈W | r1 < |w|}.
Taking use of property (1) of Lemma 3.18, M(1,1)

(
φα
L, φ

α
C(τ) + log ε

)
is plurisubharmonic

for α ∈ I. Furthermore, from property (2) of Lemma 3.18, h is a smooth hermitian metric
on L. Therefore, h is a smooth hermitian metric on L with Θh ≥ 0 (see [11, Section 8.2] for the
definition of singular hermitian metrics).

Furthermore, there exists ε0 > 0 satisfying
√
ε0r < r1 such that

M(1,1)

(
φα1
L , φα1

C(τ) + log ε
)
= φα1

L

on Wα1 ∩ {[(z, w)] ∈ W | |w| < √
ε0r} for α1 ∈ I. So h = ε−1(πW )∗hC(τ) on {[(z, w)] ∈ W |

|w| < √
ε0r}.

Let θs(t) =
(
log
(
t2/|s|

))2
be a smooth function for t > 0 and s ∈ {s | s ∈ ∆\{0}, |s| < ε0}

with ∆ = {s ∈ C | |s| < 1}.
Let f(x) = 1 for |x| < r − r−r2

2 and f(x) = 0 for r − r−r2
2 ≤ |x|. The standard molli-

fier η ∈ C∞(R) is defined as

η(x) :=

{
a · e1/(|x|2−1) if |x| < 1,

0 if |x| ≥ 1,

with a = 1/
∫ 1
−1 e

1/(|x|2−1)dx > 0 [7].
Moreover, let ηδ(x) :=

1
δη(

x
δ ). Then for δ = r−r2

4 , let

f̃(x) = ηδ ∗ f(x) =
∫ ∞

−∞
ηδ(x− y)f(y)dy.

Then f̃ is a smooth function on R with f̃(x) = 1 for |x| < r2 and f̃(x) = 0 for r < |x|.
Let Ψs : S(τ)\C(τ) → R be the smooth function defined by

Ψs(p) :=

{
θ̃s(|w|), p = [(z, w)] ∈W\C(τ),
θ̃s(r), p /∈W

with θ̃s(x) = f̃(x) · θs(x) for x > 0.
Then the following is to give the modified complete Kähler metrics on S(τ)\C(τ) analogous

to the complete Kähler metrics described in [16].
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Theorem 3.19 ([16]). There exists b > 0 such that the metric h · e−bΨs is a smooth hermitian
metric on L|S(τ)\C(τ) with Θh·e−bΨs > 0. Moreover, the Kähler form Θh·e−bΨs is of the form

ω|Wε0
=

(L.C(τ))

Im τ
·
√
−1dz ∧ dz̄ +

2b

π
·
√
−1dw ∧ dw̄

|w|2

on the set Wε0 = {[(z, w)] ∈ W\C(τ) | |w| < √
ε0r}. In addition, ω|Wε0

is Ricci-flat. Then the
Kähler form Θh·e−bΨs gives a complete Kähler metric on S(τ)\C(τ).

The complete proof of Theorem 3.19 can be found in Appendix A. Therefore, the quasi-
projective variety above tends to be a non-compact complete Kähler manifold.

3.3 A deformation family of non-compact complete Kähler manifolds

The following is to show that the deformation family (F ,S, T, π̃, o, j) can be easily changed to
a deformation family satisfying the conditions in Definition 3.5.

Since the fibers are now proved to be non-compact complete Kähler manifolds, the defor-
mation family above is proved to be a deformation family of non-compact complete Kähler
manifolds over a 9-dimensional complex manifold. Moreover, for T defined above, there exists
a complex disc D3 ⊂ T centred at o = (τ0, q1, q2, q3, q4, q5, q6, q7, q8).

Corollary 3.20. Let f : T → C9 be defined by f(x) = x − o. Then f ◦ π̃|F\S : F → f(D3) is
a deformation family of the non-compact complete Kähler manifold j(S\C) over a 9-dimensional
complex manifold satisfying the conditions in Definition 3.5.

The complete proof of Corollary 3.20 can be found in Appendix A. Then the construction of
the deformation family of the non-compact complete Kähler manifold is completed.

4 A deformation family of symmetric projective K3 surfaces

4.1 Symmetric Kähler metrics on the symmetric projective K3 surfaces

The following is to give symmetric Kähler metrics on the symmetric projective K3 surfaces
constructed in Section 2.

In Section 3, the complete Kähler metric is constructed on S(τ)\C(τ) for τ ∈ Y . That
is to say, the complete Kähler metrics are constructed on fibers of the smooth compactifiable
deformation of S\C.

Taking use of the notations from Section 2, the symmetric projective K3 surface is constructed
in Theorem 2.8 through S+(τ)\C+(τ) and S−(τ)\C−(τ).

Since S+(τ)\C+(τ) is just a copy of S(τ)\C(τ), let ω+ be a copy of ω on S(τ)\C(τ) con-
structed above. Let L+ = d ·H+− k ·

∑9
i=1E

+
i be defined on S+(τ) as a copy of L in Section 3.

Then L− = d ·H− − k ·
∑9

i=1E
−
i is an ample line bundle on S−(τ) and (ℓS+(τ))

∗L− = L+. In
addition, let h+ be defined on L+ as a copy of h · e−bΨs on L. Then there is a hermitian met-
ric h− defined on L− satisfying h+ = (ℓS+(τ)\C+(τ))

∗h− such that ω− = Θh− =
(
ℓ−1
S+(τ)\C+(τ)

)∗
ω+

is a Kähler form on S−(τ)\C−(τ).

Identifying V +
s and V −

s through fs, M
−
s and M+

s can be glued to a K3 surface Xs together
with a line bundle Ls derived from the line bundles L+ and L−. Taking use of the result from Sec-
tion 3, ∃ ε0 > 0 such that ω is well defined on S(τ)\C(τ) with the results of Theorem 3.19 holding
for s ∈ {s | s ∈ ∆\{0}, |s| < ε0}. Then ω+ and ω− can be glued to be a Kähler form ωs on Xs

for s ∈ {s | s ∈ ∆\{0}, |s| < ε0}. That is to say, Ls is ample for s ∈ {s | s ∈ ∆\{0}, |s| < ε0}.
So Xs is projective for s ∈ {s | s ∈ ∆\{0}, |s| < ε0} (also see [16, Theorem 1.2]).
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Definition 4.1. Let K be a K3 surface with an ample line bundle LK and a non-trivial holomor-
phic involution fK satisfying f∗KLK = LK. Then if ω̂ is a Kähler metric on K such that f∗Kω̂ = ω̂,
then ω̂ is said to be a symmetric Kähler form on K corresponding to a symmetric Kähler metric.

With the discussion above, the following lemma is true.

Lemma 4.2. There exists a symmetric Kähler metric on the projective symmetric K3 surface Xs

for s ∈ {s | s ∈ ∆\{0}, |s| < ε0}.

Proof. For s ∈ {s | s ∈ ∆\{0}, |s| < ε0}, since ω+ = (ℓS+(τ)\C+(τ))
∗ω−, ωs = F ∗

Xs
ωs. Then ωs

is the symmetric Kähler form needed for s ∈ {s | s ∈ ∆\{0}, |s| < ε0}. So there exists
a symmetric corresponding Kähler metric on the projective symmetric K3 surface Xs for s ∈
{s | s ∈ ∆\{0}, |s| < ε0}. Then Lemma 4.2 is proved. ■

4.2 A deformation family of symmetric projective K3 surfaces

The following is to give a deformation family of symmetric projective K3 surfaces over a 10-
dimensional complex manifold and complete the proof of Corollary 1.2. With the ample line
bundles provided above, the proofs can be completed directly through the maps derived.

Let ∆̂ = {s | s ∈ ∆\{0}, |s| < ε0}. Then there are manifolds

M+ =
(
S(τ)× ∆̂

)
\
{
([(z, w)], s) ∈W × ∆̂ | |w| ≤

√
|s|/r

}
=
{
(x, s) ∈M+

s × ∆̂
}

and M− =
{
(ℓS+(τ)(x), s) | (x, s) ∈M+

s × ∆̂
}
. In addition, let

V+ =
{
([(z, w)], s) ∈W × ∆̂ |

√
|s|/r < |w| <

√
|s|r
}
=
{
(x, s) ∈ V +

s × ∆̂
}

and V− =
{(
ℓS+(τ)(x), s

)
| (x, s) ∈ V +

s × ∆̂
}
be the submanifolds of M+ and M−, respectively.

Define f : V+ → V− by f([(z, w)], s) = ([(gξ(z), s/w)], s) = (fs([(z, w)]), s) for ([(z, w)], s)
∈ V+. Then through the map f , M+ and M− can be glued to a complex manifold M.
Let πM : M → ∆̂ be the natural projection. Then

(
M, ∆̂, πM

)
is a complex analytic family of

symmetric projective K3 surfaces over the one dimensional complex manifold ∆̂ (also see [16]
for a more general result).

For each fiber of the smooth compactifiable deformation (F ,S, T, π̃, o, j) constructed in The-
orem 1.1, a complex analytic family of symmetric projective K3 surfaces over one dimensional
complex manifold ∆̂ = {s | s ∈ ∆\{0}, |s| < ε0} can be constructed.

In fact, there is an analogous deformation family of quasi-projective varieties constructed
here. Let F− be the result manifold after blowing up CP2×T at the points⋃

(τ̃ ,x⃗)=(τ̃ ,x1,...,x8)∈T

{(ℓCP 2 ◦ fτ̃ ◦ fτ̃ ,1(x1), τ̃ , x⃗), . . . ,

(ℓCP 2 ◦ fτ̃ ◦ fτ̃ ,8(x8), τ̃ , x⃗), (ℓCP 2 ◦ fτ̃ ◦ f9(τ̃ , x⃗), τ̃ , x⃗}.

Let S− be the analogous complex manifold of S and π̃− : F− → T− = T be the map induced
by π̃. Then (F−, T−, π̃−) is a deformation family of CP2#9CP

2
analogous to the complex

analytic family (F , T, π̃). Moreover, π̃−|F−\S− : F−\S− → T− gives a deformation family of
quasi-projective varieties analogous to (F ,S, T, π̃, o, j).

In addition, let
(
F+, T+, π̃+

)
be a copy of the deformation family (F , T, π̃) and S+ be a copy

of S. Then the following theorem is true.

Theorem 4.3. There is a deformation family of symmetric projective K3 surfaces over a 10-
dimensional complex manifold constructed from (F ,S, T, π̃, o, j) and an analogous deformation
family.
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Proof. Here, (F ,S, T, π̃, o, j) is a smooth compactifiable deformation of S\C over a 9-di-
mensional complex manifold. π̃−|F−\S− : F−\S− → T− gives a deformation family of quasi-
projective varieties analogous to (F ,S, T, π̃, o, j) and π̃+|F+\S+ : F+\S+ → T+ gives a defor-
mation family as a copy of (F ,S, T, π̃, o, j).

From the discussion above, choosing two corresponding fibers from F+ and F−, respec-
tively, a deformation family of symmetric projective K3 surfaces over one dimensional com-
plex manifold ∆̂ = {s | s ∈ ∆\{0}, |s| < ε0} can be constructed. Therefore, a defor-
mation family of symmetric projective K3 surfaces over a 10-dimensional complex manifold
can be constructed through the deformation families induced by π̃−|F−\S− : F−\S− → T−

and π̃+|F+\S+ : F+\S+ → T+. So Theorem 4.3 is proved. ■

Therefore, combining the results from Lemma 4.2 and Theorem 4.3, the proof of Corollary 1.2
is completed.

A Appendix

The main goal of this appendix is to give the complete proofs of Lemmas 3.2 and 3.3, Theo-
rem 3.19 and Corollary 3.20.

Firstly, the complete proof of Lemma 3.2 is as follows.

Proof of Lemma 3.2. It is obvious that πCP2 ×U is a holomorphic map. Moreover, the rank
of the Jacobian matrix of πCP2 ×U is equal to 1 at every point of CP2×U . In addition, ∀t ∈ U ,
π−1
CP2 ×U

(t) = CP2×{t} is a compact complex submanifold of CP2×U . So
(
CP2×U,U, πCP2 ×U

)
is a complex analytic family of CP2 over a 1-dimensional complex manifold U .

Now S̃ =
{
(x, τ) ∈ CP2×U |x ∈ fτ (C0(τ))

}
is a complex submanifold of CP2×U and the rank

of the Jacobian matrix of πCP2 ×U |S̃ is equal to 1 at every point of S̃. ∀t ∈ U , πCP2 ×U |
−1

S̃
(t) =

ft(C0(t))×{t} is a compact complex submanifold of S̃. So
(
S̃, U, πCP2 ×U |S̃

)
is a complex analytic

family of elliptic curves over the 1-dimensional complex manifold U .

Therefore,
(
S̃, U, πCP2 ×U |S̃

)
is a complex analytic family of elliptic curves and

(
CP2×U,U,

πCP2 ×U

)
is a complex analytic family of CP2. So Lemma 3.2 is proved. ■

Secondly, the proof of Lemma 3.3 was simply described in [15]. Here, a complete proof of
Lemma 3.3 is as follows.

Proof of Lemma 3.3. For all τ̃ ∈ U , let Nτ̃ be the normal bundle of the strict transform for
the elliptic curve fτ̃ (C0(τ̃))× {τ̃} ∼= C0(τ̃) after blowing up at nine points

{p̃1 = (fτ̃ (p1), τ̃), . . . , p̃9 = (fτ̃ (p9), τ̃)} ⊂ fτ̃ (C0(τ̃))× {τ̃}

with

{p1 = fτ̃ ,1(p̂1), p2 = fτ̃ ,2(p̂2), . . . , p8 = fτ̃ ,8(p̂8), p9} ⊂ C0(τ̃) = C/⟨1, τ̃⟩

and (p̂1, . . . , p̂8) ∈U1×· · ·×U8. In addition, let C(τ̃)×{τ̃} be the strict transform of fτ̃ (C0(τ̃))×
{τ̃}. Here, Nτ̃ is assumed to satisfy the Diophantine condition.

Then Nτ̃ is isomorphic to

OCP2(3)|fτ̃ (C0(τ̃)) ⊗Ofτ̃ (C0(τ̃))(−fτ̃ (p1)− fτ̃ (p2)− · · · − fτ̃ (p9)) ∈ Pic0(fτ̃ (C0(τ̃))).

Furthermore, taking use of notations from Section 2, since Vs is biholomorphic to a topolog-
ically trivial annulus bundle over the strict transform C(τ̃), Vs is homotopic to S1 × S2 × S3
with {S1, S2, S3} being circles and S1 × S2 being C∞ sections for s ∈ ∆ \ {0} and sufficiently
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small [16] (also see Theorem 2.8). Then through integrating the global holomorphic form σs
defined in Section 2 on S1 × S2, the result value is q − p · τ̃ [15]. So there is an equation

9p0 −
8∑

j=1

pj − p9 = q − p · τ̃ mod ⟨1, τ̃⟩

with p0 being an inflection point on C0(τ̃) derived in [16]. Then for t̂ = (τ̃ , p̂1, . . . , p̂8) ∈ T ,
p9 = f9

(
t̂
)
∈ C0(τ̃) = C/⟨1, τ̃⟩.

Therefore, Nτ̃ satisfies the Diophantine condition corresponding to (p, q) if and only if

9p0 −
8∑

j=1

pj − p9 = q − p · τ̃ mod ⟨1, τ̃⟩

with p0 being an inflection point on C0(τ̃).
In addition, taking use of the detailed definition of the map π̃, (F , T, π̃) and (S, T, π̃|S) can

be proved to be complex analytic families directly.
In conclusion, through blowing up nine points on every fiber of

(
CP2×T, T, π

)
such that

the normal bundle of the strict transform of the elliptic curve mentioned in Section 3.1 embed-
ded in each fiber satisfies the Diophantine condition corresponding to the Diophantine num-
ber pair (p, q), the complex analytic families (F , T, π̃) and (S, T, π̃|S) can be constructed. So
Lemma 3.3 is proved. ■

Thirdly, the complete proof of Theorem 3.19 is as follows.

Proof of Theorem 3.19. First of all, it is to prove that there exists b > 0 such that the metric
h · e−bΨs is a smooth hermitian metric on L|S(τ)\C(τ) with Θh·e−bΨs > 0.

On the set S(τ)\W , since Ψs is constant, ∂∂̄Ψs = 0. Then

Θh·e−bΨs = Θh +
√
−1

b

π
∂∂̄Ψs = Θh = ΘhL

> 0.

On the set {[(z, w)] ∈ W\C(τ) | r2 ≤ |w| < r}, from the construction of Ψs above,
since θ̃s(x) is smooth for x > 0, the coefficients of ∂∂̄Ψs are bounded. Moreover, since ΘhL

> 0
on S(τ)\C(τ), the coefficients of Θh have a positive lower bound on {[(z, w)] ∈ W\C(τ) | r2 ≤
|w| < r}. Then ∃ sufficiently small b > 0 such that Θh·e−bΨs = Θh +

√
−1 b

π∂∂̄Ψs > 0.
On the set {[(z, w)] ∈ W\C(τ) | |w| < r2},

√
−1∂∂̄Ψs = 2

√
−1 · dw ∧ dw̄/|w|2 > 0. So

Θh·e−bΨs = Θh +
√
−1 b

π∂∂̄Ψs > 0.
The next step is to prove that Θh·e−bΨs is of the form

ω|Wε0
=

(L.C(τ))

Im τ
·
√
−1dz ∧ dz̄ +

2b

π
·
√
−1dw ∧ dw̄

|w|2

on the set Wε0 = {[(z, w)] ∈W\C(τ) | |w| < √
ε0r}.

On the set Wε0 = {[(z, w)] ∈W\C(τ) | |w| < √
ε0r},

Θh·e−bΨs = Θ(πW )∗hC(τ)
+

2b

π
·
√
−1dw ∧ dw̄

|w|2

=
(L.C(τ))

Im τ
·
√
−1dz ∧ dz̄ +

2b

π
·
√
−1dw ∧ dw̄

|w|2
.

So the curvature form Θh·e−bΨs gives a complete Kähler metric on S(τ)\C(τ).
The last step is to prove that ω|Wε0

is Ricci-flat on the set Wε0 = {[(z, w)] ∈W\C(τ) | |w| <√
ε0r}.
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The coefficient matrix of ω|Wε0
on the set Wε0 = {[(z, w)] ∈W\C(τ) | |w| < √

ε0r} is

(gij)2×2 =

(
2(L.C(τ))

Im τ 0

0 4b
π|w|2

)
.

Then the determinate of the coefficient matrix is

det((gij)2×2) =
8b(L.C(τ))

π Im τ · |w|2
.

So Ric(ω|Wε0
) = 0. Therefore, ω|Wε0

is Ricci-flat.
In conclusion, ∃ b > 0 such that Θh·e−bΨs gives a complete Kähler metric on S(τ)\C(τ). In

addition, Θh·e−bΨs is of the form

ω|Wε0
=

(L.C(τ))

Im τ
·
√
−1dz ∧ dz̄ +

2b

π
·
√
−1dw ∧ dw̄

|w|2

on the set Wε0 = {[(z, w)] ∈W\C(τ) | |w| < √
ε0r}. Furthermore, ω|Wε0

is Ricci-flat. That is to
say, ω|Wε0

corresponds to a Ricci-flat Kähler metric. So Theorem 3.19 is proved. ■

Finally, the complete proof of Corollary 3.20 is as follows.

Proof of Corollary 3.20. Since π̃|F\S is a holomorphic surjective submersion and f is a bi-
holomorphic map from D3 to f(D3), then f ◦ π̃|F\S is also a holomorphic surjective submersion.
(f ◦ π̃|F\S)

−1(0) = j(S\C).
Moreover, since π̃|F\S is locally trivial in the C∞ category and f is a diffeomorphism, then

f ◦ π̃|F\S is also locally trivial in the C∞ category.
In conclusion, f ◦ π̃|F\S : F → f(D3) is a deformation family of the non-compact complete

Kähler manifold j(S\C) over a 9-dimensional complex manifold f(D3) satisfying the conditions
in Definition 3.5. So Corollary 3.20 is proved. ■
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[7] Evans L.C., Partial differential equations, Grad. Stud. Math., Vol. 19, American Mathematical Society,
Providence, RI, 1998.

https://doi.org/10.1093/imrn/rnad190
http://arxiv.org/abs/2303.10764
https://doi.org/10.1007/b80605
https://doi.org/10.1007/BF01076024
https://doi.org/10.1007/s40863-021-00213-8
https://doi.org/10.1007/s40863-021-00213-8
http://arxiv.org/abs/2004.11299
https://doi.org/10.1090/gsm/019


22 F. Xu

[8] Fujimoto Y., On rational elliptic surfaces with multiple fibers, Publ. Res. Inst. Math. Sci. 26 (1990), 1–13.

[9] Gasparim E., Rubilar F., Deformations of noncompact Calabi-Yau manifolds, families and diamonds, in
Geometry at the Frontier—Symmetries and Moduli Spaces of Algebraic Varieties, Contemp. Math., Vol. 766,
American Mathematical Society, Providence, RI, 2021, 117–132, arXiv:1908.09045.

[10] Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics Lib., John Wiley & Sons, New York,
1994.

[11] Guedj V., Zeriahi A., Degenerate complex Monge–Ampère equations, EMS Tracts Math., Vol. 26, European
Mathematical Society (EMS), Zürich, 2017.
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15 pages, arXiv:2108.07168.

[17] Ross J., Nyström D.W., Homogeneous Monge–Ampère equations and canonical tubular neighbourhoods in
Kähler geometry, Int. Math. Res. Not. 2017 (2017), 7069–7108, arXiv:1403.3282.

[18] Sukhov A., Regularized maximum of strictly plurisubharmonic functions on an almost complex manifold,
Internat. J. Math. 24 (2013), 1350097, 6 pages, arXiv:1303.5312.
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