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Abstract. In the present paper, using a modification of the method of vector fields Zi of the
bi-Hamiltonian theory of separation of variables (SoV), we construct symmetric non-Stäckel
variable separation for three-dimensional extension of the Clebsch model, which is equiva-
lent (in the bi-Hamiltonian sense) to the system of interacting Manakov (Schottky–Frahm)
and Euler tops. For the obtained symmetric SoV (contrary to the previously constructed
asymmetric one), all curves of separation are the same and have genus five. It occurred
that the difference between the symmetric and asymmetric cases is encoded in the different
form of the vector fields Z used to construct separating polynomial. We explicitly construct
coordinates and momenta of separation and Abel-type equations in the considered examples
of symmetric SoV for the extended Clebsch and Manakov models.
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1 Introduction

1.1 Generalities

Completely integrable Hamiltonian systems have been the objects of constant interest in theo-
retical and mathematical physics for more than one hundred years. Nevertheless, many prob-
lems in this theory still remain unsolved. One of the most important problems to be solved
in general is the problem of variable separation. The separated variables qi, pj are a set of
(quasi)canonical coordinates such that the following system of equations (equations of separa-
tion) is satisfied [15]:

Φi(qi, pi, I1, . . . , In, C1, . . . , Cm) = 0, i ∈ {1, . . . , n}.

Here Φi are certain functions, Ik are Poisson-commuting integrals of motion, Ci are Casimir
functions and n is half of the dimension of the phase space. The separated coordinates provide
a possibility to solve explicitly the Hamilton equations of motion upon resolving the Abel–
Jacobi inversion problem. Separated variables are also important when solving quantum inte-
grable models [15]. That is why separation of variables (SoV) is a central issue in the theory of
classical and quantum integrable systems.

The most simple and investigated is the so-called Stäckel-type SoV, when all the equations
of separation are linear in the integrals and Casimir functions. In the present paper, we are
interested in non-Stäckel SoV that naturally arises for the integrable systems associated with
the Lie algebras so(2n).

There exist three main approaches to the variable separation: a classical one going back to
the papers of Stäckel [22, 23], Levi-Civita [13] and Agostinelli [1] and developed later in the
papers of Benenti and his school [2, 3, 4] and two modern ones. They are: the “magic recipe” of
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Sklyanin [15] and the bi-Hamiltonian approach of Magri, Falqui and Pedroni [8, 9, 10]. In the
present paper, we develop the bi-Hamiltonian approach to SoV theory in its formulation based
on the theory of the vector fields Zi [8, 9, 10]. The theory of the vector fields Zi permits to
encode the information on separated coordinates qi for the integrable bi-Hamiltonian systems
into a set of differential conditions on the vector fields Zi that are satisfied by them with respect
to two compatible Poisson brackets { , }1 and { , }2 [8, 9, 10].

The bi-Hamiltonian approach to SoV (despite the mathematical beauty and good generality)
has a weak point: in order to find the vector fields Zi, one should resolve a complicated system
of nonlinear PDEs. In some cases, this difficulty can be overcome. Indeed, in a series of
our papers [14, 16, 18, 19] we have proposed to impose a certain simplifying condition onto
one of the vector fields Zi, which transforms part of the PDEs from [8, 9, 10] into algebraic
equations.

Another problem is in the fact that the PDEs from [8, 9, 10] “algebrized” in [14, 16, 18, 19]
imply that the variable separation are of Stäckel type, i.e., that all equations of separation are
linear in the integrals of motion and Casimir functions. For non-Stäckel SoV (when some of
the equations of separation are nonlinear in some of the integrals), the corresponding equal-
ities from [8, 9, 10] do not hold true. Here the natural question arises: how to proceed
with the method of the vector fields Zi in this case? What differential equation to “alge-
brize”?

In our previous paper [20], we have answered the above question for a special subcase
of general non-Stäckel SoV. For this purpose we have assumed certain special form of the
equations of separation and shown that under this condition there exists an invariance vec-
tor field Z (combination of the vector fields Zi, i ∈ {1, . . . ,m}) that satisfies a differential
condition replacing the equations on Zi obtained in [8, 9, 10] from the Stäckel-type assump-
tion on the equations of separation. In order to be able to solve this condition we assume
(similar to what was done in the Stäckel case [14, 16, 18, 19]) that the vector field Z is a
special one: it annihilates all its components in the initial system of coordinates. We call
such vector fields “algebraic”. As a result, we obtain a system of quadratic algebraic equa-
tions which is possible to solve explicitly. Moreover, it occurred that the obtained system of
quadratic algebraic equations may have different solutions leading to non-equivalent separa-
tions of variables for the same integrable bi-Hamiltonian system. In the present paper, we
illustrate this interesting phenomenon by the example of the extended Clebsch and Manakov
models.

The extended Clebsch and Manakov model is an integrable bi-Hamiltonian system on a nine-
dimensional space coinciding with a three-dimensional extension of e∗(3) (with respect to the
first Poisson brackets { , }1) or on a three-dimensional extension of so∗(4) (with respect to
the Poisson brackets { , }2). It possesses six Poisson-commuting integrals of motion I1 = H,
I2 = K, I3 = L, C1, C2, C3, where C1, C2, C3 are Casimir functions of the bracket { , }1.

The described above modification of the method of vector fields Zi leads to a system of six
quadratic equations on nine components of the vector field Z. In the paper [20], we have found
one (highly non-trivial) solution of these quadratic equations. We have shown that it leads
to “asymmetric” non-Stäckel SoV characterised by two different separation curves C and K of
different genus. The last fact makes the solution of the Abel–Jacobi inversion problem to be
very complicated [11].

In this paper, we find another (also highly nontrivial) type of solution of the quadratic
equations for the components of the vector field Z and show that it leads to three pairs of
(quasi)canonical separated variables pi, qi, i ∈ {1, 2, 3}, that satisfy the same curve of separa-
tion K of genus five

(qi + j1)(qi + j2)(qi + j3)p
4
i +

(
q3iC3 + q2iC2 + qiH +K

)
p2i +

1

4
(qiC1 + L)2 = 0, (1.1)
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It leads, in turn, to the Abel-type equations (quadratures) written in the differential form as
follows:

3∑
i=1

2qip
3
i dqi

4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2
= dt1, (1.2a)

3∑
i=1

2p3i dqi
4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2

= dt2, (1.2b)

3∑
i=1

(qiC1 + L)pidqi
4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2

= dt3, (1.2c)

where t1, t2, t3 are the parameters along the time flows of the integrals H, K and L corre-
spondingly. The fact that the differentials in (1.2) are defined on the same curve, i.e., that
the obtained SoV is “symmetric”, makes the task of solution of the corresponding Abel–Jacobi
inversion problem more plausible.

The new “algebraic” vector field Z written in terms of the initial dynamical variables, gener-
ated by it separating polynomial, the explicit formula for the momenta of separation, non-Stäckel
equations of separation (1.1), as well as symmetric Abel-type equations (1.2) are the main results
of the present article.

The structure of the present paper is the following. In Section 2, we present the general theory
of SoV and the method of the vector fields Zi in Stäckel and non-Stäckel cases. In Section 3,
we describe three-dimensional extension of the Clebsch and Manakov models, in Section 4,
we find the corresponding algebraic vector field Z. In Section 5, we construct symmetric SoV
for the considered extensions of the Clebsch and Manakov models. In Section 6, we conclude
and describe open problems.

2 Separation of variables

2.1 Generalities

Let us recall the definitions of Liouville integrability and separation of variables in the general
theory of Hamiltonian systems. An integrable Hamiltonian system with n degrees of freedom
is determined on a 2n-dimensional symplectic manifold M, embedded as a symplectic leaf in
a Poisson manifold (P, { , }1) as a level surface of m Casimir functions Ci, by n independent
nontrivial integrals Ij commuting with respect to the Poisson bracket {Ii, Ij}1 = 0, i, j ∈
{1, . . . , n}. To find separated variables means to find (at least locally) a set of coordinates qi, pj ,
i, j ∈ {1, . . . , n} such that there exist n relations

Φi(qi, pi, I1, . . . , In, C1, . . . , Cm) = 0, i ∈ {1, . . . , n}, (2.1)

and the coordinates qi, pj , i, j ∈ {1, . . . , n} are (quasi)canonical

{pi, qj}1 = fi(qi, pi)δij , {qi, qj}1 = 0, {pi, pj}1 = 0, ∀i, j ∈ {1, . . . , n}

for some functions fi, i ∈ {1, . . . , n}, on C2.
It is possible to show [17] that the coordinates of separation qi satisfy the following equations:

n∑
i=1

∂IkΦi(qi, pi, I1, . . . , In, C1, . . . , Cm)

∂piΦi(qi, pi, I1, . . . , In, C1, . . . , Cm)

1

fi(qi, pi)

∂qi
∂tj

= δkj , ∀k, j ∈ {1, . . . , n}, (2.2)

where tj is the “time” corresponding to the integral Ij , i.e., a parameter along its Hamiltonian
flow.
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From the equations (2.2), one easily deduces the Abel-type equations written in the differen-
tial form

n∑
i=1

∂IkΦi(qi, pi, I1, . . . , In, C1, . . . , Cm)

∂piΦi(qi, pi, I1, . . . , In, C1, . . . , Cm)

dqi
fi(qi, pi)

= dtk, k ∈ {1, . . . , n}, (2.3)

where the momenta pi satisfy the equations of separation (2.1).
The equations (2.3) for the separated coordinates q1, . . . , qn provide a way to the explicit

integration of the equations of motion. So the key problem in the integration process is con-
struction of the coordinates q1, . . . , qn. One of possible methods to do this is the method of the
vector fields Zi.

2.2 The method of the vector fields Zi

The method of the vector field Zi in the theory of separation of variables was proposed in
the paper [8] and developed in the papers [9, 10]. We will expose the method in the version
convenient for us.

2.2.1 The vector fields Zi

Let us assume that we have found a set of separated coordinates {q1, . . . , qn, p1, . . . , pn} on the
generic symplectic leaf in the Poisson manifold P. The (local) coordinates qi, pj are canonical
with respect to the brackets { , }1 and satisfy some equations of separation (2.1).

We consider vector fields Zk defined in the set of coordinates {q1, . . . , qn, p1, . . . , pn, C1, . . . ,
Cm} on the Poisson manifold P as follows:

Zk(qi) = 0, Zk(pj) = 0, i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m}, (2.4a)

Zk(Cl) = δkl, k, l ∈ {1, . . . ,m}. (2.4b)

Observe that from the definition of the vector fields Zk it immediately follows that Zk(Zl(Cl))
= 0, i, k, l ∈ {1, . . . ,m}.

In order to proceed with the theory of the vector fields Zi, we will assume that the separated
variables qi, pj , i, j ∈ {1, . . . , n} are the bi-Hamiltonian ones, i.e., on P there exists another
Poisson structure { , }2 such that

{pi, qj}2 = −qiδij , {qi, qj}2 = 0, {pi, pj}2 = 0, ∀i, j ∈ {1, . . . , n}.

Now we can formulate the following theorem [20].

Theorem 2.1.

(i) The vector fields Zi are symmetries of the Poisson structure { , }1, i.e.,

LieZi{ , }1 = 0, i ∈ {1, . . . ,m}, (2.5)

(ii) The vector fields Zi satisfy the following conditions with respect to the Poisson struc-
ture { , }2:

LieZi{ , }2 =
m∑
j=1

Zj ∧ [Xj , Zi], i ∈ {1, . . . ,m}, (2.6)

where Xj is Hamiltonian vector field of Cj with respect to the second Poisson structure
{ , }2.
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(iii) If the functions Φi(qi, pi, I1, . . . , In, C1, . . . , Cm) are linear in Ij, Cr, j ∈ {1, . . . , n}, r ∈
{1, . . . ,m}, then

Zk(Zl(Ii)) = 0, i ∈ {1, . . . , n}, k, l ∈ {1, . . . ,m}. (2.7)

Remark 2.2. The equalities (2.5), (2.6), (2.7) have been introduced from different considera-
tions in [8]. It was proven later in [9] that together with the normalization conditions (2.4b)
they are sufficient for the variable separation. This is a basis of the bi-Hamiltonian method in
SoV theory [8, 9, 10].

Remark 2.3. Note that the condition (2.7) implies that the variable separation is of Stäckel
type, i.e., all equations of separation are linear in the integrals of motion.

2.2.2 The separating polynomial

Using the above-defined vector fields Zi, one can define the separating polynomial, whose
roots are the coordinates of separation. For this purpose, it is necessary to define the so-
called Poisson pencil, i.e., the linear combination of the brackets { , }1 and { , }2, { , }u =
u{ , }1 + { , }2. We will hereafter assume the Gelfand–Zakharevich settings [12], i.e., we will
assume that the Casimir functions of { , }u are polynomial in u. Let us denote these Casimir
functions by Ck(u), k ∈ {1, . . . ,m}. Observe that the functions Ck(u) are generating functions
of the integrals and Casimirs of { , }1 and { , }2, set of integrals I1, . . . , In is decomposed into
subsets {Il1 , Il2 , . . . , Ilnl

}, l ∈ {1, . . . ,m}, in a certain specific way for each bi-Hamiltonian pair
of bracket and enter into the functions Cl(u) as follows:

Cl(u) = unlCl + unl−1Il1 + unl−2Il2 + · · ·+ Ilnl
, l ∈ {1, . . . ,m}, (2.8)

so that n1 + n2 + · · ·+ nm = n and Ilnl
is a Casimir of { , }2.

The following theorem holds true [8, 9, 10].

Theorem 2.4. Let the vector fields Zi satisfy the conditions (2.5), (2.6), (2.7) and normalization
conditions (2.4b). Let the roots u = qi, i ∈ {1, . . . , n}, of the equation

S(u) = det(Zi(Cj(u))) = 0, i, j ∈ {1, . . . ,m},

be functionally independent on generic symplectic leaves of { , }1. Then qi, i ∈ {1, . . . , n}, are
the coordinates of separation for the considered bi-Hamiltonian system.

2.3 The algebraic vector field Z: the non-Stäckel case

2.3.1 The algebraic vector field Z

In the case of bi-Hamiltonian SoV, the integrals and Casimir functions enter into the equations of
separation via the Casimirs Ci(u) , i ∈ {1, . . . ,m} (see formula (2.8)) of the Poisson pencil { , }u

Φi(qi, pi, I1, . . . , In, C1, . . . , Cm) = Φi(qi, pi, C1(qi), . . . , Cm(qi)) = 0, i ∈ {1, . . . , n}.

The non-Stäckel SoV means in this context that certain Casimirs of the Poisson pencil, say Ci(qi),
i ∈ {1, . . . , r} enter into Φi(qi, pi, C1(qi), . . . , Cm(qi)) in a nonlinear way. We call these Casimirs
to be “non-Stäckel”.

The following proposition holds true [20].
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Proposition 2.5. Let qi, pi, i ∈ {1, . . . , n}, be separated coordinates. Let the corresponding
equations of separation be nonlinear in the Casimir functions of the Poisson pencil C1(qi), . . . ,
Cr(qi) and linear in all other integrals and Casimir functions. Let Z be an invariance vector
field: Z(qi) = Z(pi) = 0, i ∈ {1, . . . , n}. Let the following conditions also hold true:

Z(C1(u)) = · · · = Z(Cr(u)) = 0. (2.9)

Then

(i) If n1+n2+ · · ·+nr = m− r−1, then the vector field Z is unambiguously defined in terms
of the vector fields Zi by the conditions (2.9) and the normalization condition Z(Cm) = 1.

(ii) If, moreover, Z(Z(Cr+1)) = · · · = Z(Z(Cm)) = 0, then the square of the vector field Z
annihilates all the integrals and Casimir functions

Z(Z(C1(u))) = · · · = Z(Z(Cm(u))) = 0. (2.10)

We need also to formulate the following important conjecture.

Conjecture 2.6. Let the space P coincides with dual space of a Lie algebra g and Poisson
brackets { , }1 coincide with a standard Lie–Poisson brackets on g∗. Then among the invari-
ance vector fields, i.e., vector fields such that Z(qi) = Z(pi) = 0, i ∈ {1, . . . , n}, there exists
a special vector field Z which, acting in the system of the natural Lie-algebraic coordinates (linear
coordinate functions of the space g∗) annihilates its own components.

Hereafter, we will naturally assume that the vector field Z described in Proposition 2.5 and
the vector field Z from the Conjecture 2.6 are the same vector fields. This will transform the
differential equations (2.10) for the components of the vector field Z, to the system of quadratic
algebraic equations for them, i.e., will give a possibility to reduce the problem of the construction
of the vector field Z in terms of the initial variables to the problem of solving system of algebraic
equations for its components in the initial system of coordinates. We will call such the vector
field Z algebraic. Let us now consider a dimensional constraint that is imposed by Proposition 2.5
together with the condition that the vector field Z is algebraic. The following proposition holds
true.

Proposition 2.7. For the algebraic vector fields Z, existence of the generic solution of the
equation (2.10) satisfying also the condition (2.9) implies that the number of Casimir functions m
is equal to the number of the integrals of motion n, i.e., m = n.

Proof. The number of components of the vector field Z in the initial coordinate system is
equal to 2n +m. The number of equations (2.10) is equal to n +m. That is why the generic
solution of the system of equations (2.10) is n-parametric. On the other hand, the algebraic
equations (2.10) and (2.9) are homogeneous. That is why there is one common multiplicative
parameter among n parameters of generic solution of (2.10) not fixed by (2.9). It is fixed by
the normalization condition Z(Cm) = 1. All other n − 1 parameters should be fixed by the
constraints (2.9). That is why the number of the constraints (2.9) should be equal to n − 1,
i.e., (n1 + 1) + (n2 + 1) + · · · + (nr + 1) = n − 1. On the other hand, the Proposition 2.5
provides the following dimensional constraint: n1 +n2 + · · ·+nr = m− r− 1. Comparing these
two-dimensional constraints, we immediately obtain that m = n. ■

Remark 2.8. Observe, that although the condition m = n is a restrictive one, it is a typical
situation for the Lax-integrable systems in the small-rank cases. To generalize this condition in
the higher rank cases, one will probably need to consider several vectors fields Z with the above
special properties. Let us remark, that the condition m = n has appeared in another context in
the recent paper [5].
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2.3.2 The separating polynomial: the non-Stäckel case

Having found the algebraic vector field Z satisfying (2.9), (2.10) we can start to look for the
separating polynomial. Unfortunately, in the general m > 1 case, one cannot construct the
formula for the separating polynomial with the help of only one vector field Z. One can proceed
in a systematic way only for certain types of the equations of separation. That is why we will
assume the following form of the equations of separation:

Φi(qi, pi, C1(qi), . . . , Cm(qi))

= Φi(qi, pi, C1(qi), . . . , Cr(qi), ϕ(qi, Cr+1(qi), . . . , Cm(qi))) = 0, (2.11)

where function ϕ(u,Cr+1(u), . . . , Cm(u)) is linear in Cs(u), s ∈ {r+1, . . . ,m}, the functions Φi,
i ∈ {1, . . . , n} are linear in ϕ(u,Cr+1(u), . . . , Cm(u)) and nonlinear in Ck(qi), k ∈ {1, . . . , r}.

Acting on the equations (2.11) by the vector field Z and taking into account that by our
construction Z(q1) = · · · = Z(qn) = Z(p1) = · · · = Z(pn) = 0, Z(C1(u)) = · · · = Z(Cr(u)) = 0,
we easily obtain that the coordinates qi should satisfy the following equations:

Z(ϕ(qi, Cr+1(qi), . . . , Cm(qi))) = 0, i ∈ {1, . . . , n}, (2.12)

i.e., that S(u) = Z(ϕ(u,Cr+1(u), . . . , Cm(u))) is a separating polynomial in u of degree n.

Remark 2.9. In practice, we do not know a priori the equations of separation (2.11). That is
why we have to construct the function ϕ as polynomial of degree n in u by the linear combination
of the polynomials Cs(u), s ∈ {r+1, . . . ,m} of degree ns in u, where n1+n2+· · ·+nr = m−r−1,
n1+n2+· · ·+nm = n, with monomial in u coefficients. The form of separating polynomial (2.12)
will be only indicative. Indeed, since we have no closed differential conditions of the type (2.5)–
(2.6) for the unique vector field Z, we have yet to control that the roots qi of S(u) Poisson-
commute and that qi together with the corresponding conjugated momenta pi satisfy some
equations of separation of the form (2.11). In the next sections, we will illustrate this on the
examples of the extended Clebsh and Manakov models.

3 Three-dimensional extension of the Clebsch model

3.1 The model

Let us consider nine-dimensional linear space with the coordinates Sα, Tα, Wα, α ∈ {1, 2, 3},
which satisfy the following Lie–Poisson brackets:

{Sα, Sβ}1 = ϵαβγ(Sγ + jγWγ), {Sα, Tβ}1 = ϵαβγTγ , {Sα,Wβ}1 = ϵαβγWγ , (3.1a)

{Tα, Tβ}1 = ϵαβγWγ , {Tα,Wβ}1 = 0, {Wα,Wβ}1 = 0, (3.1b)

where jα, α ∈ {1, 2, 3}, are arbitrary parameters, and we will hereafter assume that jα ̸= jβ
if α ̸= β.

These brackets possess three Casimir functions

C3 =

3∑
α=1

W 2
α, C2 =

3∑
α=1

(
jαW

2
α + 2WαSα + T 2

α

)
C1 = 2

3∑
α=1

TαWα. (3.2)

Let us consider the following Hamiltonian:

H =
3∑

α=1

(
S2
α + (jβ + jγ)T

2
α + 2jαSαWα

)
, (3.3)
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where the indices α, β, γ hereafter denote cyclic permutation of the indices 1, 2, 3, i.e., for α = 1
we have that β = 2, γ = 3, for α = 2 we have that β = 3, γ = 1, for α = 3 we have that β = 1,
γ = 2.

As it is easy to check, it possesses two quadratic integrals of the following explicit form:

K =
3∑

α=1

(
jαS

2
α + jβjγT

2
α

)
, (3.4)

L = 2
3∑

α=1

TαSα. (3.5)

The model is integrable in the sense of Liouville: the dimension of the generic symplectic leaf
(level set of three Casimir functions) is six and we have three independent Poisson commuting
integrals {H,K}1 = 0, {H,L}1 = 0, {K,L}1 = 0 which is sufficient for the complete integrability
of the considered Hamiltonian system. Observe, that from the point of view of the notations of
the previous section we have that n = m = 3 in this case.

Remark 3.1. Note that the Poisson algebra (3.1) possesses an ideal spanned by {Wα | α ∈
{1, 2, 3}}. Factorizing over this ideal, i.e., putting Wα = 0, α ∈ {1, 2, 3}, we obtain that
the Lie–Poisson brackets (3.1) become the standard Lie–Poisson brackets on e∗(3), the Casimir
functions C3 and C1 turn zero, the Casimir C2 and integral L become Casimir functions on e∗(3)
and the integralsH andK become the Hamiltonian and integral of motion of the famous Clebsch
model [6]. That is why we call the integrable system considered in the present section to be
three-dimensional extension of the Clebsch model.

3.2 The bi-Hamiltonian structure and the Poisson pencil

It is possible to show that there is a second Poisson structure for our extended Clebsch system,
compatible with the first one, standing behind the integrability of the model and having the
form

{Sα, Sβ}2 = ϵαβγjγSγ , {Sα, Tβ}2 = ϵαβγjβTγ , {Tα, Tβ}2 = ϵαβγSγ , (3.6a)

{Tα,Wβ}2 = 0, {Sα,Wβ}2 = 0, {Wα,Wβ}2 = −ϵαβγWγ . (3.6b)

The function C3 is a common Casimir function for the both brackets { , }1 and { , }2, the
other two Casimir functions of the brackets { , }2 are the functions K and L. The functions H,
C1 and C2 are the Poisson-commuting integrals of motion with respect to { , }2 {H,C1}2 = 0,
{H,C2}2 = 0, {C1, C2}2 = 0. Due to the compatibility of the brackets { , }1 and { , }2, it
is possible to consider the so called Poisson pencil of the brackets { , }1 and { , }2, { , }u =
u{ , }1+{ , }2. The function C3 is a Casimir of { , }u. The second and third Casimirs of { , }u
are the functions C2(u) = u2C2 + uH + K, C1(u) = uC1 + L. They will be used below while
constructing separating polynomial and equations of separation. We will also use the following
cubic in u combination of the Casimirs C3(u) ≡ C3 and C2(u):

ϕ(u,C2(u), C3) = u3C3 + C2(u) = u3C3 + u2C2 + uH +K.

Remark 3.2. Observe that in the case jα ̸= 0, α ∈ {1, 2, 3}, the Poisson algebra (3.6) is
isomorphic to so(4) ⊕ so(3). The isomorphism is achieved by the following substitution of
variables Sα →

√
jβ
√

jγSα, Tα →
√
jαTα, Wα → −Wα, α ∈ {1, 2, 3}. In such a way, the

considered model is isomorphic to the so-called Manakov or Schottky–Frahm model on so(4)
interacting with anisotropic so(3) Euler top. Due to the isomorphism so(4) ≃ so(3)⊕ so(3), the
Poisson algebra (3.6) is isomorphic to so(3) ⊕ so(3) ⊕ so(3) and the corresponding integrable
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system is equivalent to the system of three interacting anisotropic tops. It is possible to show
that this system is equivalent to N = 3 elliptic Gaudin model, but we will not develop this line
in the present article.

4 The algebraic vector field Z

In this section, we will solve the equations (2.10)

Z(Z(H)) = 0, Z(Z(K)) = 0, Z(Z(L)) = 0,

Z(Z(C1)) = 0, Z(Z(C2)) = 0, Z(Z(C3)) = 0 (4.1)

under the additional assumption that the vector field Z is algebraic.
The general vector field on the three-dimensional extension of e∗(3) is written as follows:

Z =
3∑

α=1

(
Aα

∂

∂Sα
+Bα

∂

∂Tα
+Dα

∂

∂Wα

)
,

where Aα, Bα, Dα, α ∈ {1, 2, 3}, are certain functions on e∗(3).
In order to solve the equations (4.1), we will impose an additional restriction that vector

field Z is algebraic, i.e., annihilates its own components

Z(Aα) = 0, Z(Bα) = 0, Z(Dα) = 0, α ∈ {1, 2, 3}. (4.2)

This condition transforms the system of the differential equations (4.1) for the vector field Z in
the system of the algebraic equations for its components Aα, Bα, Dα, α ∈ {1, 2, 3}.

For the future, we need to introduce the following “elliptic” constants cα:

c2α = jβ − jγ , α ∈ {1, 2, 3}. (4.3)

The following proposition holds true.

Proposition 4.1. The vector field Z with the following components:

Aα = λcα
(
x2 + (jβ + jγ − jα)y

2 + 2jβjγy + jαjβjγ
)
, (4.4a)

Bα = 2λcαx(y + jα), (4.4b)

Dα = λcα
(
y2 + 2jαy + jα(jβ + jγ)− jβjγ

)
, (4.4c)

where λ, x and y are arbitrary functions annihilated by Z, i.e., Z(x) = 0, Z(y) = 0, Z(λ) = 0,
is a solution of the system of equations (4.1) possessing the property (4.2).

Proof. In order to prove the proposition, we rewrite the equations (4.1) (with the help of the
conditions (4.2)) in the form of six algebraic equations

3∑
α=1

(
A2

α + (jβ + jγ)B
2
α + 2jαAαDα

)
= 0,

3∑
α=1

(
jαA

2
α + jβjγB

2
α

)
= 0, (4.5a)

3∑
α=1

BαAα = 0,
3∑

α=1

BαDα = 0, (4.5b)

3∑
α=1

(
jαD

2
α + 2DαAα +B2

α

)
= 0,

3∑
α=1

D2
α = 0. (4.5c)

Substituting the ansatz (4.4) into the equations (4.5), taking into account the definitions (4.3)
and the following equalities

∑3
α=1 c

2
α = 0,

∑3
α=1 jαc

2
α = 0, after the direct calculations, we

obtain that the equations (4.5) hold true. ■
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Remark 4.2. Observe that we have six independent equations (4.5) for nine functions Aα, Bα,
Dα, α ∈ {1, 2, 3}. That is why the generic solution of the equations (4.5) is three parametric.
In the case of the proposed solution, these three parameters are λ, x and y. We conjecture that
there are only two three-parametric, non-equivalent solutions of the equations (4.1) satisfying
also the conditions (4.2). They are the presented solution (4.4) and the solution found in our
paper [20].

Now we have to define the functions λ, x and y. As it follows from our theory of non-Stäckel
vector field Z, it should annihilate one of the non-common Casimir functions C2(u) or C1(u)
of { , }u. It is easy to see that only the Casimir C1(u) can be taken for such a role because the
condition n1 = m − r − 1 is satisfied for it: we have m = 3, r = 1, n1 = 1. That is why we
will impose the condition Z(C1(u)) = 0, that is, we will define the functions x and y from the
following two equations:

Z(C1) =
3∑

α=1

(TαDα +WαBα) = 0, Z(L) =
3∑

α=1

(TαAα + SαBα) = 0.

These will be our main constraint equations. They are written more explicitly as follows:

3∑
α=1

cα
(
y2 + 2jαy + jα(jβ + jγ)− jβjγ)Tα + 2x(y + jα)Wα

)
= 0, (4.6a)

3∑
α=1

cα
((
x2 + (jβ + jγ − jα)y

2 + 2jβjγy + jαjβjγ
)
Tα + 2x(y + jα)Sα

)
= 0. (4.6b)

The following proposition holds true.

Proposition 4.3. Let the functions x and y be solutions of the equations (4.6). Then they are
annihilated by the vector field Z,

Z(x) = 0, Z(y) = 0. (4.7)

Proof. In order to prove the proposition, we use that by the very same definition

Z(x) =

3∑
α=1

(
Aα

∂x

∂Sα
+Bα

∂x

∂Tα
+Dα

∂x

∂Wα

)
,

Z(y) =
3∑

α=1

(
Aα

∂y

∂Sα
+Bα

∂y

∂Tα
+Dα

∂y

∂Wα

)
.

To prove that the above expressions are zero, it is necessary to find explicitly the derivatives ∂x
∂Yα

and ∂y
∂Yα

, where Yα = Sα or Yα = Tα or Yα = Wα. This is done using the equations (4.6). In
more details, for each α ∈ {1, 2, 3}, we have the following system of two equations that permits
to find ∂x

∂Yα
, ∂y
∂Yα

:

∂Z(C1)

∂y

∂y

∂Yα
+

∂Z(C1)

∂x

∂x

∂Yα
+

∂Z(C1)

∂Yα
= 0,

∂Z(L)

∂y

∂y

∂Yα
+

∂Z(L)

∂x

∂x

∂Yα
+

∂Z(L)

∂Yα
= 0.

They are obtained by the differentiation of the constraints Z(C1) = 0 and Z(L) = 0 with respect
to Yα.

Now, using the derivatives ∂x
∂Yα

and ∂y
∂Yα

calculated as it is explained above, the explicit form of
the components Aα, Bα, Dα given by the formulae (4.4), the explicit form of the coordinates and
momenta of separation given in the theorem, the constraint equations (4.6), the definition (4.3)
of the constants cα, after direct and tedious calculations, we obtain the equalities (4.7). ■
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Remark 4.4. The overall multiplier λ is determined from the normalization condition Z(C3) =
1, i.e., λ =

(∑3
α=1DαWα)

−1. Using the fact that Z(x) = Z(y) = 0 (see the proposition above),
it is easy to show that Z(λ) = 0, i.e., the construction of this section is self-consistent.

5 Symmetric separated variables

5.1 Separating polynomial and the coordinates of separation

5.1.1 The separating polynomial

As it follows from the exposed above bi-Hamiltonian theory of non-Stäckel vector field Z one
should look for the coordinates of separation as the roots of the following cubic polynomial:

S(u) = Z(ϕ(u,C2(u), C3)) = Z
(
u3C3 + C2(u)

)
= Z(C3)u

3 + Z(C2)u
2 + Z(H)u+ Z(K), (5.1)

where u is a parameter of the bi-Hamiltonian pencil and the needed vector field Z is defined as
in the previous section, i.e., Z is algebraic and Z(C1(u)) = 0.

Remark 5.1. Observe that the needed roots of the polynomial (5.1) do not depend on the overall
normalization coefficient λ, that is why we will simply ignore it, putting hereafter that λ = 1.

5.1.2 The auxiliary coordinate system

In order to better understand the structure of S(u) and simplify the constraint (4.6), we will
introduce a system of the auxiliary coordinates. In more details, we will consider the following
set of nine functions:

f1 =
3∑

α=1

DαSα, f2 =
3∑

α=1

BαSα, f3 =
3∑

α=1

AαSα, (5.2a)

g1 =
3∑

α=1

DαTα, g2 =
3∑

α=1

BαTα, g3 =
3∑

α=1

AαTα, (5.2b)

h1 =

3∑
α=1

DαWα, h2 =

3∑
α=1

BαWα, h3 =

3∑
α=1

AαWα. (5.2c)

It is easy to see, that in the terms of these functions the constraint equations (4.6) are written
as follows:

h2 + g1 = 0, f2 + g3 = 0. (5.3)

In other words, as a system of (local) coordinates on the nine-dimensional phase space one can
take nine functions f1, f3, g2, g3, h1, h2 h3, x, y. It is possible to show that they are functionally
independent.

The formulae (5.2) define the invertible quasi-linear, i.e., linear in (Sα, Tα,Wα) and (fα, gα,
hα) but nonlinear in x, y, map (Sα, Tα,Wα) → (fα, gα, hα). We have

Sα =
cα

2c21c
2
2c

2
3

((
1 +

y
(
y2 + 2yjα + jα(jβ + jγ)− jβjγ

)
x2 + (y + j1)(y + j2)(y + j3)

)
f1 −

(y + jα)f2
x

+

(
y2 + 2yjα + jα(jβ + jγ)− jβjγ

)
f3

x2 + (y + j1)(y + j2)(y + j3)

)
, (5.4a)
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Tα =
cα

2c21c
2
2c

2
3

((
1 +

y
(
y2 + 2yjα + jα(jβ + jγ)− jβjγ

)
x2 + (y + j1)(y + j2)(y + j3)

)
g1

−(y + jα)g2
x

+

(
y2 + 2yjα + jα(jβ + jγ)− jβjγ

)
g3

x2 + (y + j1)(y + j2)(y + j3)

)
, (5.4b)

Wα =
cα

2c21c
2
2c

2
3

((
1 +

y
(
y2 + 2yjα + jα(jβ + jγ)− jβjγ

)
x2 + (y + j1)(y + j2)(y + j3)

)
h1

−(y + jα)h2
x

+

(
y2 + 2yjα + jα(jβ + jγ)− jβjγ

)
h3

x2 + (y + j1)(y + j2)(y + j3)

)
. (5.4c)

We use these formulae in the subsequent proofs.

5.1.3 The coordinates of separation q1, q2, q3

By direct calculation, using the formulae (5.4), it is possible to show that on the constraint (5.3)
the polynomial S(u) acquires (in terms of the introduced f − g − h coordinates) the following
form:

S(u) = u3s3 + u2s2 + us1 + s0, (5.5)

where

s3 = 2xh1
(
x2 + (y + j1)(y + j2)(y + j3)

)
, (5.6a)

s2 = 2(f1 + g2 + h3 − yh1)x
3 + h2

(
3y2 + 2y(j1 + j2 + j3) + j1j2 + j1j3 + j2j3

)
x2

+ (y + j1)(y + j3)(y + j2)
(
2(f1 + g2 − h3 − 3yh1)x

+ h2
(
3y2 + 2y(j1 + j2 + j3) + j1j2 + j1j3 + j2j3

))
, (5.6b)

s1 = −x4h2 + 2(f3 − (f1 + h3 + 2g2)y)x
3 −

(
3y2 + 2y(j1 + j2 + j3) + j1j2 + j1j3 + j2j3

)
× (3yh2 + f2)x

2 + (y + j1)(y + j2)(y + j3)
(
−2
(
− 2y2h1 + (−h3 + 3f1 + 2g2)y

+ f3
)
x− 2y3h2 + (3f2 − h2(j1 + j3 + j2))y

2 + 2(j1 + j3 + j2)f2y

+ (j1j2 + j1j3 + j2j3)f2 + j1j2j3h2
)
, (5.6c)

s0 = (f2 + 2yh2)x
4 − 2y(f3 − yg2)x

3 +
(
4y4h2 + (f2 + 2h2(j1 + j2 + j3))y

3

− ((j1j3 + j2j3 + j1j2)f2 + 2j1j2j3h2)y + 2j1j2j3f2
)
x2

+ (y + j1)(y + j2)(y + j3)
(
2y((2f1 + g2)y + f3)x

− f2
(
2y3 + y2(j1 + j2 + j3)− j1j2j3

))
, (5.6d)

and we have taken into account the constraints (5.3).

Hence, its roots u = q1, u = q2 and u = q3 are our candidates for the separated coordinates.
In order to prove that they are the coordinates of separation indeed, in the next subsection we
show that they Poisson-commute, find the corresponding canonically conjugated momenta and
equations of separation.

5.2 The momenta of separation p1, p2, p3

In order to construct the momenta of separation p1, p2, p3 (providing that q1, q2 and q3 are
the coordinates of separation indeed), we will proceed directly finding the momenta from the
condition that they are (quasi)canonically conjugated to the coordinates q1, q2 and q3.

The following theorem holds true.
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Theorem 5.2. Let the functions x and y be solutions of the equations (4.6). Let the compo-
nents Aα, Bα, Dα of the vector field Z be defined by the formulae (4.4) and the functions fα,
gα, hα be defined by the formulae (5.2). Then

(i) The coordinates q1, q2, q3 defined in the previous subsection Poisson-commute with respect
to the both brackets { , }1 and { , }2

{qi, qj}1 = 0, {qi, qj}2 = 0, i, j ∈ {1, 2, 3}. (5.7)

(ii) The functions pi, i ∈ {1, 2, 3} given by the following formulae:

pi = p(u)|u=qi , (5.8)

where

p(u) =
1

2c1c2c3

(
(u− 2y)x2 + u(y + j1)(y + j2)(y + j3)

)
h2

x
(
x2 + (y + j1)(y + j2)(y + j3)

)
(u− y)

+

(
(y + j1)(y + j2)(y + j3)− x2

)
f2

x
(
x2 + (y + j1)(y + j2)(y + j3)

)
(u− y)

, (5.9)

are their canonically conjugated momenta with respect to the brackets { , }1, i.e.,

{pi, qj}1 = δij , i, j ∈ {1, 2, 3}, (5.10a)

{pi, pj}1 = 0, i, j ∈ {1, 2, 3}, (5.10b)

and quasi-canonically conjugated momenta with respect to the brackets { , }2, i.e.,

{pi, qj}2 = −qiδij , i, j ∈ {1, 2, 3}, (5.11a)

{pi, pj}2 = 0, i, j ∈ {1, 2, 3}. (5.11b)

(iii) The variables qi, pj are Z-invariants, i.e.,

Z(qi) = Z(pj) = 0, i, j ∈ {1, 2, 3}. (5.12)

Proof. The proof of the items (i)–(ii) is achieved upon the direct calculus of the Poisson brack-
ets among the separating polynomials S(u), S(v) and the momenta-generating functions p(u)
and p(v). In order to calculate the corresponding Poisson brackets one needs to find the Pois-
son brackets among the intermediate coordinates x, y, fα, gβ, hγ , α, β, γ ∈ {1, 2, 3}, in the
closed form. In order to calculate these brackets it is necessary to find explicitly the deriva-
tives ∂x

∂Yα
and ∂y

∂Yα
, where Yα = Sα or Yα = Tα or Yα = Wα. This is done using the constraint

equations (4.6) in the same way as in Proposition 4.3.
In order to find the Poisson brackets among the coordinates fα, gβ, hγ , α, β, γ ∈ {1, 2, 3},

we use the fact that for any functions F ≡ F (Sα, Tβ,Wγ , x, y), G ≡ G(Sα, Tβ,Wγ , x, y) the
following equality holds:

{F,G}i = {F,G}′i +
∂F

∂x

3∑
α,β=1

(
∂x

∂Sα

∂G

∂Sβ
{Sα, Sβ}i +

∂x

∂Tα

∂G

∂Sβ
{Tα, Sβ}i

+
∂x

∂Wα

∂G

∂Sβ
{Wα, Sβ}i +

∂x

∂Sα

∂G

∂Tβ
{Sα, Tβ}i +

∂x

∂Tα

∂G

∂Tβ
{Tα, Tβ}i

+
∂x

∂Wα

∂G

∂Tβ
{Wα, Tβ}i +

∂x

∂Sα

∂G

∂Wβ
{Sα,Wβ}i +

∂x

∂Tα

∂G

∂Wβ
{Tα,Wβ}i



14 T. Skrypnyk

+
∂x

∂Wα

∂G

∂Wβ
{Wα,Wβ}i

)
+

∂F

∂y

3∑
α,β=1

(
∂y

∂Sα

∂G

∂Sβ
{Sα, Sβ}i +

∂y

∂Tα

∂G

∂Sβ
{Tα, Sβ}i

+
∂y

∂Wα

∂G

∂Sβ
{Wα, Sβ}i +

∂y

∂Sα

∂G

∂Tβ
{Sα, Tβ}i +

∂y

∂Tα

∂G

∂Tβ
{Tα, Tβ}i

+
∂y

∂Wα

∂G

∂Tβ
{Wα, Tβ}+

∂y

∂Sα

∂G

∂Wβ
{Sα,Wβ}i +

∂y

∂Tα

∂G

∂Wβ
{Tα,Wβ}i

+
∂y

∂Wα

∂G

∂Wβ
{Wα,Wβ}i

)
− ∂G

∂x

3∑
α,β=1

(
∂x

∂Sα

∂F

∂Sβ
{Sα, Sβ}i +

∂x

∂Tα

∂F

∂Sβ
{Tα, Sβ}i

+
∂x

∂Wα

∂F

∂Sβ
{Wα, Sβ}i +

∂x

∂Sα

∂F

∂Tβ
{Sα, Tβ}i +

∂x

∂Tα

∂F

∂Tβ
{Tα, Tβ}i

+
∂x

∂Wα

∂F

∂Tβ
{Wα, Tβ}i +

∂x

∂Sα

∂F

∂Wβ
{Sα,Wβ}i

+
∂x

∂Tα

∂F

∂Wβ
{Tα,Wβ}i +

∂x

∂Wα

∂F

∂Wβ
{Wα,Wβ}i

)
− ∂G

∂y

3∑
α,β=1

(
∂y

∂Sα

∂F

∂Sβ
{Sα, Sβ}i +

∂y

∂Tα

∂F

∂Sβ
{Tα, Sβ}i +

∂y

∂Wα

∂F

∂Sβ
{Wα, Sβ}i

+
∂y

∂Sα

∂F

∂Tβ
{Sα, Tβ}i +

∂y

∂Tα

∂F

∂Tβ
{Tα, Tβ}i +

∂y

∂Wα

∂F

∂Tβ
{Wα, Tβ}i

+
∂y

∂Sα

∂F

∂Wβ
{Sα,Wβ}i +

∂y

∂Tα

∂F

∂Wβ
{Tα,Wβ}i +

∂y

∂Wα

∂F

∂Wβ
{Wα,Wβ}i

)
+

(
∂F

∂x

∂G

∂y
− ∂G

∂x

∂F

∂y

)
{x, y}i, i ∈ {1, 2},

where { , }′i is a parenthesis { , }i in which x and y are treated as constant non-dynamical
parameters and the brackets {x, y}i, in their turn, are calculated as follows:

{x, y}i =
3∑

α,β=1

(
∂x

∂Sα

∂y

∂Sβ
{Sα, Sβ}i +

∂x

∂Tα

∂y

∂Sβ
{Tα, Sβ}i +

∂x

∂Wα

∂y

∂Sβ
{Wα, Sβ}i

+
∂x

∂Sα

∂y

∂Tβ
{Sα, Tβ}i +

∂x

∂Tα

∂y

∂Tβ
{Tα, Tβ}i +

∂x

∂Wα

∂y

∂Tβ
{Wα, Tβ}i

+
∂x

∂Sα

∂y

∂Wβ
{Sα,Wβ}i +

∂x

∂Tα

∂y

∂Wβ
{Tα,Wβ}i +

∂x

∂Wα

∂y

∂Wβ
{Wα,Wβ}i

)
.

Having calculated the Poisson brackets { , }i, i ∈ {1, 2}, among the functions x, y, fα, gβ, hγ ,
α, β, γ ∈ {1, 2, 3}, in terms of the coordinates x, y, Sα, Tβ, Wγ , α, β, γ ∈ {1, 2, 3}, we apply the
formulae (5.4) and recalculate the right-hand sides of these brackets in terms of the functions
x, y, fα, gβ, hγ , α, β, γ ∈ {1, 2, 3}.

After that, taking into account the explicit form of the functions S(u), p(u) in terms of the
functions x, y, fα, gβ, hγ , α, β, γ ∈ {1, 2, 3}, the constraints (5.3), the definition (4.3) of the
constants cα and the direct calculations, we come to the following equalities:

{S(u), S(v)}i = 0 mod JS(u),S(v), (5.13a)

{S(u), p(v)}i = 0 mod JS(u),S(v), u ̸= v, (5.13b)

{p(u), p(v)}i = 0 mod JS(u),S(v), (5.13c)
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as well as the following equalities:

lim
v→u

{S(u), p(v)}1 = ∂uS(u) mod JS(u),

lim
v→u

{S(u), p(v)}2 = −u∂uS(u) mod JS(u). (5.14)

Here JS(u),S(v), JS(u) are ideals in the space of functions generated by S(u), S(v) and S(u),
respectively. As it follows from the results of [7] the equalities (5.7), (5.10), (5.11) follow from
the equalities (5.13)–(5.14).

This proves the items (i) and (ii) of the theorem.

In order to prove item (iii) of the theorem, we use that for any function F ≡ F (Sα, Tβ,Wγ ,
x, y) the following equality holds:

Z(F ) =
3∑

α=1

(
Aα

∂F

∂Sα
+Bα

∂F

∂Tα
+Dα

∂F

∂Wα

)
+

∂F

∂x

3∑
α=1

(
Aα

∂x

∂Sα
+Bα

∂x

∂Tα
+Dα

∂x

∂Wα

)

+
∂F

∂y

3∑
α=1

(
Aα

∂y

∂Sα
+Bα

∂y

∂Tα
+Dα

∂y

∂Wα

)
.

Then, using the derivatives ∂x
∂Yα

and ∂y
∂Yα

, where Yα = Sα or Yα = Tα or Yα = Wα, calculated as it
is explained above, the explicit form of the components Aα, Bα, Dα given by the formulas (4.4),
the explicit form of the coordinates and momenta of separation given in the text of the theorem,
the constraint equations (4.6), the definition (4.3) of the constants cα, after tedious calculations
we obtain the equalities Z(S(u)) = 0, Z(p(v)) = 0, ∀u, v ∈ C. From these equalities, the
equalities (5.12) immediately follow. This proves item (iii) of the theorem. ■

Remark 5.3. The difference in sign of in the formulae (5.11) with respect to that in (5.7) is
not crucial and amounts only to the change of sign of spectral parameter of the corresponding
Poisson pencil.

5.3 The equations of separation

In this subsection, we will find equations of separation satisfied by the constructed coordinates qi
and momenta pi, i ∈ {1, 2, 3}. The following theorem holds true.

Theorem 5.4. The coordinates qi as the roots of the polynomial S(u) given by (5.5)–(5.6), the
momenta pi defined by the formulae (5.8)–(5.9) and integrals H, K, L, C1, C2, C3 defined by
the formulae (3.2), (3.3), (3.4), (3.5) satisfy the curve of separation K of genus five

(qi + j1)(qi + j2)(qi + j3)p
4
i +

(
q3iC3 + q2iC2 + qiH +K

)
p2i

+
1

4
(qiC1 + L)2 = 0, i ∈ {1, 2, 3}. (5.15)

Proof. In order to prove the theorem, it is necessary to express the integrals H, K, L, C1, C2,
C3 in terms of the intermediate f − g − h coordinate system. Using the explicit form of the
integrals in terms of the initial coordinate functions Sα, Tα, Wα, α ∈ {1, 2, 3}, the formulae (5.4)
and the constraints (5.3) we, in particular, obtain

C1 = − 1

c21c
2
2c

2
3

(
h1f2 + 2yh2h1 + h3h2

x2 + (y + j1)(y + j2)(y + j3)
+

h2g2
2x2

)
, (5.16a)

C3 =
1

c21c
2
2c

2
3

(
yh21 + h3h1

x2 + (y + j1)(y + j2)(y + j3)
− h22

4x2

)
, (5.16b)
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L = − 1

c21c
2
2c

2
3

(
2yf1h2 + f3h2 + f2f1

x2 + (y + j1)(y + j2)(y + j3)
+

g2f2
2x2

)
. (5.16c)

The explicit expressions for C2, H and K have similar (quadratic in fα, gα, hα and rational in x
and y forms). We will not write these expressions explicitly here due to their long form.

Taking into account the explicit formulae (5.16) and similar formulae for C2, H, K, substi-
tuting them and the formula (5.9) into the right-hand sides of the equalities (5.15), after long
and tedious calculations, we obtain that

(u+ j1)(u+ j2)(u+ j3)p(u)
4 +

(
u3C3 + u2C2 + uH +K

)
p(u)2

+
1

4
(uC1 + L)2 = 0 mod JS(u).

Here JS(u) is an ideal generated by separating polynomial S(u) given by the formulae (5.5)
and (5.6). ■

Remark 5.5. It is possible to show that the curve K is equivalent to a spectral curve of a four
by four Lax matrix of the extended Clebsch and Manakov models.

Remark 5.6. Observe, that Theorems 5.2 and 5.4 assure that the constructed variable sep-
aration is a bi-Hamiltonian one and the corresponding vector fields Zi, i ∈ {1, 2, 3}, satisfy-
ing (2.5)–(2.6) do exist. Nevertheless, the vector fields Zi are very complicated and are of no
practical use. That is why we will not present them here leaving their calculation as an exercise
for the interested reader.

Remark 5.7. Note that from the explicit form of the equations of separation together with
the constraints Z(C1) = 0, Z(L) = 0 and from the fact that the coordinates qi and momenta
pi, i ∈ {1, 2, 3}, are Z-invariants also follows that the roots of S(u) = u3Z(C3) + u2Z(C2) +
uZ(H) + Z(K) are separated coordinates. An additional demonstration of this fact is given in
the next subsection.

5.4 The vector field Z in the separated coordinates

In this subsection, we will explicitly calculate the vector field Z in terms of the coordinates of
separation. Resolving two of the equations (5.15) with respect to H and K, we obtain their
following form:

H = −
(
q21 + q2q1 + q22

)
C3 − (q1 + q2)C2 − (q1 + j1)(q1 + j2)(q1 + j3)

p21 − p22
q1 − q2

+
1

4(q1 − q2)

(
(q2C1 + L)2

p22
− (q1C1 + L)2

p21

)
, (5.17a)

K = (q1 + q2)q1q2C3 + q2q1C2 + (q1 + j1)(q1 + j2)(q1 + j3)
q2p

2
1 − q1p

2
2

q1 − q2

+
1

4(q1 − q2)

(
q2(q1C1 + L)2

p21
− q1(q2C1 + L)2

p22

)
. (5.17b)

Substituting this into the third equation (5.15), we obtain the following equation:

(q2 − q3)(q1 − q3)p
2
3C2 + (q2 − q3)(q1 − q3)(q1 + q2 + q3)p

2
3C3 + (q1 + j3)(q1 + j2)(q1 + j1)

×(q2 − q3)

(q1 − q2)
p23p

2
1 − (q2 + j3)(q2 + j2)(q2 + j1)

(q1 − q3)

(q1 − q2)
p23p

2
2 + (q3 + j1)(q3 + j2)

×(q3 + j3)p
4
3 +

1

4
(q3C1 + L)2 − 1

4
(q2C1 + L)2

(q1 − q3)p
2
3

(q1 − q2)p22
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+
1

4
(q1C1 + L)2

(q2 − q3)p
2
3

(q1 − q2)p21
= 0. (5.18)

Taking into account that Z(q1) = Z(q2) = Z(q3) = Z(p1) = Z(p2) = Z(p3) = Z(C1) = 0
and adding the normalization condition Z(C3) = 1, we will look for the vector field Z in the
following form Z = Z3 + c2(q1, q2, q3)Z2. Acting on the equation (5.18) by Z and finding from
the resulting equation Z(L), we obtain

Z(L) =
2(q2 − q3)(q1 − q3)(q1 − q2)p

2
1p

2
2p

2
3((q1 + q2 + q3) + c2(q1, q2, q3))

(q1 − q2)(q3C1 + L)p21p
2
2 + (q3 − q1)(q2C1 + L)p21p

2
3 + (q2 − q3)(q1C1 + L)p23p

2
2

.

From this expression, it immediately follows that the condition Z(L) = 0 yields the equal-
ity c2(q1, q2, q3) = −(q1 + q2 + q3), i.e., we obtain the following simple expression for the vector
field Z:

Z = Z3 − (q1 + q2 + q3)Z2.

Acting by the defined as above vector field Z on the Casimir functions C3, C2 and the
integrals H, K given by (5.17), we obtain Z(C3) = 1, Z(C2) = −(q1 + q2 + q3), Z(H) =
(q1q2 + q1q3 + q2q3), Z(K) = −q1q2q3, which again demonstrates that for the given equations
of separation S(u) = u3Z(C3) + u2Z(C2) + uZ(H) + Z(K) is a polynomial-separator with the
roots q1, q2, q3.

5.5 The Abel-type equations

The most important for the integration of the equations of motion is possibility to represent
these equations in the Abel-type form. As it follows from the general theory exposed in the
Section 2.1, more exactly, from the formula (2.2), the following differential equations for the
coordinates qi hold true:

3∑
i=1

2qip
3
i

4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2
∂qi
∂tj

= δ1j , (5.19a)

3∑
i=1

2p3i
4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2

∂qi
∂tj

= δ2j , (5.19b)

3∑
i=1

(qiC1 + L)pi
4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2

∂qi
∂tj

= δ3j , (5.19c)

where j ∈ {1, 2, 3}, t1, t2, t3 are the parameters along the flows of the integrals H, K and L
correspondingly

∂qi
∂t1

= {H, qi}1,
∂qi
∂t2

= {K, qi}1,
∂qi
∂t3

= {L, qi}1,

and we have used the equation of separation (5.15) in order to simplify the form of the differ-
entials on the curve K entering into the equations (5.19). Using the equations (5.19), we easily
obtain the Abel-type quadratures written in the differential form as follows:

3∑
i=1

2qip
3
i dqi

4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2
= dt1, (5.20a)

3∑
i=1

2p3i dqi
4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2

= dt2, (5.20b)



18 T. Skrypnyk

3∑
i=1

(qiC1 + L)pidqi
4(qi + j1)(qi + j2)(qi + j3)p4i − (qiC1 + L)2

= dt3. (5.20c)

Remark 5.8. Note that the Abel-type equations for the extended Manakov model has the same
(modulo the overall sign) form as the equations (5.19) due to the bi-Hamiltonian equivalence
of this model with the Clebsch model. The difference is that in the Manakov case the time
flows t1, t2, t3 correspond to the brackets { , }2 and the integrals C2, H and C1, but the
Hamiltonian flows themselves (modulo the overall sign) are the same.

6 Conclusion and discussion

In the present paper, using the method of vector field Z [8], we have constructed symmetric,
non-Stäckel variable separation for three-dimensional extension of the Clebsch and Manakov
models, for which all curves of separation are the same and have genus five. We have explic-
itly constructed the coordinates and momenta of separation and Abel-type quadratures in the
considered examples of symmetric SoV for the extended Clebsch and Manakov models.

We would like also to remark, that our recent results [21] on separation of variables for the
Clebsch model can be re-obtained by the restriction of the construction of this paper onto the six
dimensional subspace of Clebsch/Manakov models. By other words, the results of the present
paper give also a bi-Hamiltonian explanation to the new variable separation for the Clebsch
model constructed in [21].

Finally, we would like to outline the following interesting open problems:

(1) To find explicit solution of the Abel–Jacobi inversion problem for the Abel-type equa-
tions (5.20) in terms of theta-functions of Prym variety.

(2) To obtain the generalization of the results of the present paper onto the higher-dimensional
extensions of the Clebsch and Manakov models.
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