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Abstract. A one-parameter family of trans-series asymptotics as 7 — +o0o and 7 — +ico
for solutions of the degenerate Painlevé IIT equation (DP3E),
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where € € {£1}, a € C, and b € R\ {0}, are parametrised in terms of the monodromy

data of an associated first-order 2 x 2 matrix linear ODE via the isomonodromy deformation

approach: trans-series asymptotics for the associated Hamiltonian and principal auxiliary

functions and the solution of one of the o-forms of the DP3E are also obtained. The actions
of various Lie-point symmetries for the DP3E are derived.
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1 Introduction

In this section, which is partitioned into five inter-dependent subsections, the reader is given
a concise overview of the information subsumed in the text: (i) in Section 1.1, the degenerate
Painlevé III equation (DP3E) is introduced, and the qualitative behaviours of the asymptotic
results the reader can expect to excise from this work are delineated; (ii) in Section 1.2, the
DP3E’s associated Hamiltonian and principal auxiliary functions, as well as one of its o-forms,
are introduced; (iii) in Section 1.3, pre- and post-gauge-transformed Lax pairs giving rise to
isomonodromy deformations are reviewed; (iv) in Section 1.4, canonical asymptotics of the post-
gauge-transformed Lax-pair solution matrix is presented in conjunction with the corresponding
monodromy data; and (v) in Section 1.5, the monodromy manifold and the direct and inverse
problems of monodromy theory are introduced, and a synopsis of the organisation of this work
is given.

1.1 The degenerate Painlevé III equation (DP3E)

This paper continues the studies in [56, 57, 58, 59, 60, 61] of the DP3E,

! 2 ! 2

" (u (T)) u (T) 1 2 b
= — — (-8 2ab) + ——
u"(7) () s (—8e(u(7))* + 2ab) + o)
where the prime denotes differentiation with respect to 7, C 3 a is the parameter of formal
monodromy, and R\ {0} > b is a parameter (see also [33, Chapter 7, Section 33]); in fact, making

e e {1}, (1.1)

This paper is a contribution to the Special Issue on Evolution Equations, Exactly Solvable Mod-
els and Random Matrices in honor of Alexander Its’ 70th birthday. The full collection is available at
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the formal change of variables 7 — t'/2, u(7) — 73t ~/2X\(t), a — Fiofio, and b — +i273, where
¢p € C and iy € R\ {0}, and setting € = +1, one shows that the DP3E (1.1) transforms into,
in the classification scheme of [66], the degenerate third Painlevé equation of type D7,

~ ~\ 2 ~ ~
A2\ 1 (d) 1dx P |
(Prr) Dy : @y (dt) T <—2tg+t—/~\ : (1.2)

It is known that, in the complex plane of the independent variable, Painlevé equations admit,
in open sectors near the point at infinity containing one special ray, pole-free solutions that are
characterised by divergent asymptotic expansions: such solutions, called tronquée solutions by
Boutroux, usually contain free parameters manifesting in exponentially small terms for large
values of the independent variable. There also exist pole-free solutions that are void of pa-
rameters in larger open sectors near the point at infinity containing three special rays: such
solutions are called tritronquée solutions (see, for example, [21, Chapter 3]). In contrast to the
asymptotic results of [57, 61], this work entails an analysis of one-parameter families of trans-
series (see [21, Chapter 5]) asymptotic (as 7 — +oo and 7 — =£ioco) solutions related to the
underlying quasi-linear Stokes phenomenon associated with the DP3E (1.1): such solutions are
also referred to as instanton-type solutions in the physics literature [30] (see also [44, 49, 50, 51],
and [29, Chapter 11]); in particular, tronquée solutions that are free of poles not only on the
real and the imaginary axes of 7, but also in open sectors about the point at infinity, are consid-
ered.! The existence of one-parameter tronquée solutions for a scaled version of the DP3E (1.1)
was proved in [62] via direct asymptotic analysis. A review of recent manifestations of the
DP3E (1.1) and (Ppy)p, (1.2) in variegated mathematical and physical settings such as, for
example, nonlinear optics, number theory, asymptotics, nonlinear waves, random matrix theory,
and differential geometry, is presented in Appendix F.

An effectual approach for studying the asymptotic behaviour of solutions (in particular, the
connection formulae for their asymptotics) of the Painlevé equations PI, PII, ..., PVI is the
isomonodromic deformation method (IDM) [29, 41, 42, 43, 45]: specific features of the IDM as
applied, in particular, to the DP3E (1.1) can be located in [61, Sections 1 and 2]. It is imperative,
within the IDM framework, to mention the seminal rdle played by the recent monograph [29], as
it summarizes and reflects not only the key technical and theoretical developments and advances
of the IDM since the appearance of [45], but also of an equivalent, technically distinct approach
based on the Deift-Zhou nonlinear steepest descent analysis of the associated RHP [20]. The
methodological paradigm adopted in this paper is the IDM. Even though the DP3E (1.1) re-
sembles one of the canonical variants of the Painlevé equations PI, PIL, ..., PVI, the associated
asymptotic analysis of its solutions via the IDM subsumes additional technical complications
due to the necessity of having to extract the explicit functional dependencies of the contributing
error terms rather than merely estimating them, which requires a considerably more detailed
study of the error functions. By studying the isomonodromic deformations of a first-order 3 x 3
matrix linear ODE (see also [24, Section 8]) with two irregular singular points, asymptotics
as 7 — oo and 7 — 0 of solutions to the DP3E (1.1) for the case a = 0, as well as the corre-
sponding connection formulae, were obtained in [53] via the IDM. As observed in [52], though,
there is an alternative first-order 2 x 2 matrix linear ODE whose isomonodromy deformations
are described, for arbitrary a € C, by the DP3E (1.1): it is this latter 2 x 2 ODE system that
is adopted in this work.

In order to eschew a flood of superfluous notation and to motivate, in as succinct a manner
as possible, the qualitative behaviour of the solution of the DP3E (1.1) that the reader will
encounter in this work, consider, for example, asymptotics as 7 — 400 with b > 0 of u(r).

!The terms trans-series [3, 26] and tronquée are used interchangeably in this work.
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As is well known [2, 5, 21, 29, 63, 67, 68, 69, 70, 78, 81], the Painlevé equations admit a one-
parameter family of trans-series solutions of the form “(power series) + (exponentially small
terms)”. As noted in Remark 1.1 below, u(7) admits the ‘complete’ asymptotic trans-series
representation u(7) . = . cok (7'1/3 +vok(7)), k € {£1}, where

1€(€b)2/3e_127rk/3,

CO,]{: =
vo (1) i= T U (1) +ups(r)  with Clr7 3] 2 ug Z (Y
U (T Z an]k M 1/3)j(e_gT\/g(\/g-l—ik)(ab)l/?’T?N)m,

m=1 j=0

where the monodromy-data-dependent expansion coefficients vy, j(») and vy, j () can be deter-
mined recursively provided that certain leading coefficients are known a priori. The purpose of
this work, though, is not to address the complete asymptotic trans-series representation stated
above, but, rather, to determine the coefficient of the leading-order exponentially small cor-
rection term to the asymptotics of solutions of the DP3E (1.1), which is, to the best of the
author’s knowledge as at the time of the presents, the decidedly non-trivial task within the IDM
paradigm, in which case, the asymptotic trans-series representation for u(7) reads?

uw(r) = ( /3 4 Z 1/3 m+1 Ake3‘2/§(\/§+ik)(5b)1/37-2/3(1+0(7_1/3)))7

T—)-‘rOO
ke {£1). (1.3)

While the expansion coefficients {u,,(k)}>°_,, k € {£1}, can be determined (not always unique-
ly) by substituting the trans-series representation (1.3) into the DP3E (1.1) and solving a sys-
tem of recurrence relations for the u,,(k)’s, the monodromy-data-dependent expansion coeffi-
cients Ag, k € {1}, can not, and must, therefore, be determined independently; in fact, the
principal technical accomplishment of this work is the determination, via the IDM, of the ex-
plicit dependence of the coefficients Ay, k € {£1}, on the Stokes multiplier 58 (see, in particular,
Section 4, equations (4.71) and (4.92)). Even though the motivational discussion above for the
introduction of the monodromy-data-dependent expansion coefficients Ay, k € {£1}, relies on
the asymptotics of u(7) as 7 — +oo for eb > 0, it must be emphasized that, in this work,
the coefficients Ay, k € {£1}, and their analogues, corresponding to trans-series asymptotics
of u(7), the associated Hamiltonian and principal auxiliary functions, and one of the o-forms
of the DP3E (1.1) as 7 — +oce'™! for eb = |eb|e'™2, 1,5 € {0, %1}, and 7 — 4o0el™1/2
for eb = |eblei™2, &; € {£1} and & € {0,41}, are obtained (see, in particular, Section 2,
Theorems 2.4 and 2.8, respectively).

Remark 1.1. In the seminal work [62], the authors consider, in particular, the existence and
uniqueness of tronquée solutions of the PIII equation with parameters (1,3,0,—1), denoted
by Pﬁll) in [62, equation (1.5)]:
/ 2 /
1 1
U”(l‘) — (U (:‘C)) _ v (l’) + 7((1}(33))2 +6) _

v(x) x x v(z)’

where C > 8 is arbitrary; Pﬁll) can be derived from the DP3E (1.1) via the mapping

S.: (ryu(r),a,b) — <aw,'yv(x), §671(2m+1)ﬂ—/2, b) , e==1, m=0,1,

*The notation A1(t), 3, O(A2(t)) means that there exists C > 0 and sufficiently small ¢ > 0 such that
A (t)/A2(t)] < C for all ¢ > 1/e.
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where o := 2—3/2b—1/2 i(2+5)7r/4 i(2m’+m)7r/2 2_3/28131/2 —i(2+s)7r/4 —i(2m’+m)7r/2 m' = 0,1.
In [62, Theorem 2], the authors prove that in any open sector of angle less than 37r/ 2, there
exist one-parameter solutions of P( I) with asymptotic expansion

v(x) Nvf,ml (x) —x1/3z (ml) 2/3 for S 35200, m =0,1,2,

where the sectors SV, k = 0, 1,2, 3, are defined in [62, equation (1.10)], aJ™ := exp(i27m1/3),
and the (z- mdependent) coefficients ay"", n € N, solve the recursion relatlons [62, equa-
tion (1.12)]; moreover, the authors prove that, for any branch of z1/3, there exists a unique
solution of Pﬁll) in C \ \ with asymptotic expansion v""(z), where X is an arbitrary branch
cut connecting the singular points 0 and oo (they also address the existence of the exponentially
small correction term(s) of the tronquée solution of PSII)) This crucial result of [62], in conjunc-
tion with the invertibility of the mapping §., implies the existence and the uniqueness of the
asymptotic (as 7 — +oo with b > 0) trans-series representation (1.3).

1.2 Hamiltonian structure, auxiliary functions, and the o-form

Herewith follows a brief synopsis of select results from [61] that are relevant for the present work;
for complete details, see, in particular, [61, Sections 1, 2 and 6], and [58].

An important formal property of the DP3E (1.1) is its associated Hamiltonian structure; in
fact, as shown in [61, Proposition 1.3], upon setting

He, (P(7),4(7); 7) = (B(1)4(1))*r " = 2e1p(7)4(7) (i + 1/2)7 " + 4e4(7) + ibp(7)

1
+ 5 lia+1/217,

where the functions p(7) and §(7) are the generalised impulse and co-ordinate, respectively,

€1 € {£1}, and € = &% = 1, Hamilton’s equations, that is,

() - - aldlr) )

and  §'(1) = (1.4)

o' (1))2 P(r
(1) = (pﬁ((T))) £ i i %( 2ib(p(7))” + 8e(iaer + (e1 — 1)/2)) — ﬁtf)’
7(T))? @7 2
q'(t) = (q(j((T))) — qS— ) %( 8e(g(r ))2 — b(2ae; —i(1 + 61))) + %;

it was also noted during the proof of the above-mentioned result that the Hamiltonian sys-
tem (1.4) can be rewritten as

7(d' (1) — ib) n ie1(a —1i/2)
2(4(7))? q(7)

As shown in [61, Section 2], the Hamiltonian function, H(t

H(7) := He (D(7),4(7); T)ley=—1, (1.6)

where p(7) is calculated from the first (left-most) relation of equations (1.5) with ¢(7) = u(7);
moreover, as shown in [61, Section 2], the definition (1.6) implies the following explicit expression
for H(7) in terms of u(7):

T(p'(7) + 4e) N ie1(a —1i/2)
2(p(7))? pr)
),

p(r) = q(t) = — (1.5)

is defined as follows

2 4 b2) + 4deu(r). (1.7)
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It was shown in [61, Section 1] that the function o(7) defined by
0(7) 1= TH (p(r),4(r); ) + P(T)i(r) + 5 (ia -+ 1/2) — ealia+1/2) + |
= ((r)i(7) — elia + (1~ e1)/2))* + 7(ded(r) +ibp(7)) (18)

satisfies the second-order nonlinear ODE (related to the DP3E (1.1))

(ro"(7) = o'(1))? = 2(20(r) — 70" (7)) (0" (7))?
— 32iebr(((1 — €1)/2 — iaey)o’ (1) + 2iebr). (1.9)

Equation (1.9) is referred to as the o-form of the DP3E (1.1). Motivated by the definition (1.6)
for the Hamiltonian function, setting € = —1, letting the generalised co-ordinate ¢(7) = u(7),
and using the first (left-most) relation of equations (1.5) to calculate the generalised impulse, it
suffices, for the purposes of the present work, to define the function (cf. definition (1.8)) o(7)
and the second-order nonlinear ODE it satisfies as follows

o T(u/'(r)—1ib) 1. 1
o(r):= TH(T)+T(7’)+§(IQ+1/2)2+Z’ (1.10)
and
(o (1) — o' (1))? = 2(20(7) — 70" (7)) (0" (7))? — 32iebr((1 + ia)o’ (1) + 2iebr). (1.11)

Via the Bécklund transformations given in [61, Section 6.1], let
= —— (7((7) —ib) + (1 — 2ia_)u(7)),

ug(7) = _8(:?71?))2(7(1/(7) +ib) + (1 + 2ia4)u(r)), (1.12)

where u(7) denotes any solution of the DP3E (1.1), and a+ := a £ i; in fact, as shown in [61,
Section 6.1], u_(7) (resp., u4+ (7)) solves the DP3E (1.1) for a = a_ (resp., a = a4 ). From the
results of [58], define the two principal auziliary functions

2i

f-(r) = —guln)u-(7),  f+(7) = u(r)us(7), (1.13)

where f_(7) solves the second-order nonlinear ODE?
T2(f(7) + 4ieb)? — (4f_(7) + 2ia + 1)?((f(7))* + 8iebf_(7)) = 0, (1.14)

and f(7) solves the second-order nonlinear ODE*

(ebr)? (F1L(1) — 2(51))2)2 + (8f1(7) +ieb(2ia — 1)) (f1())? — 4(eb)f4(1)) = 0. (1.15)

It follows from the definitions (1.12)—(1.13) that the functions fi(7) possess the alternative
representations

7(u'(1) —ib)

2f (r) = —ila—i/2) + TG,

(1.16)

3This is a consequence of the ODE for the function f(7) presented on [61, p. 1168] upon making the notational
change f(7) — f—(7) and setting e; = —1.

“See [58, equation (2)].
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7(u/'(7) + ib) ‘

e (1.17)

4
Zfi(r) =ila+1/2) +
eb

incidentally, equations (1.16) and (1.17) imply the corollary

gfm) —2f (r) +ir (2“ + b) .

T u(r)

For the monodromy data considered in [56], preliminary asymptotics as 7 — 400 with b > 0
for [ €1 f4(€)d¢ have been presented in [58].

1.3 Lax pairs and isomonodromic deformations

In this subsection, the reader is reminded about some basic facts regarding the isomonodromy
deformation theory for the DP3E (1.1).

Remark 1.2. Pre-gauge-transformed Lax-pair-associated functions are denoted with ‘hats’,
whilst post-gauge-transformed Lax-pair-associated functions are not; in some cases, these func-
tions are equal, and in others, they are not (see the discussion below).

The study of the DP3E (1.1) is based on the following pre-gauge-transformed Lax pair (see [61,
Proposition 2.1}, with notational amendments):

0,0 (p, ) = U(p, )W (g, 7), -0 () = V1, 7) W (11, 7), (1.18)

where

- 0 20\ 1 27A(r)D
W(p, 7) = — 2iTpos + 271 V-AMB(r) | — u ia+ -+ T ET) (7) 03

* :2 (m?g(f) &E)T)) ’ (119)

% 0 A0\
V(p,m) = —ipos+p V=A@BE) |+ | oo ~oAmEm)
T

B ,1217 (méo(T) é?) ’ (1:20)

with o3 = diag(1,—1),

a(r) == =2(B(m)) " (iaV —A(m)B(r) + 7(A(")D(r) + B(1)C(1))), (1.21)
and where the differentiable, scalar-valued functions A(7), B(r), C(r), and D(7) satisfy the
system of isomonodromy deformations

/1( ) = CA’( )V —A(r )A( ), B'(r)=—4D(r)V-A(r)B(r),

(rC(r ) = 2iaC(1 ) TA(r),  (rD(r)) = —2iaD(r) + 27 B(7),

(V=A(r)B(r))" = 2(A(r)D(7) = B(r)C(7)). (1.22)

(Note: the isomonodromy deformations (1.22) are, for arbitrary values of p € C, the Frobenius
compatibility condition for the system (1.18).)
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Remark 1.3. In fact, —id(7)B(7) = eb, ¢ = +1, so that the definition (1.21) is the first integral
of the system (1.22) (see [61, Lemma 2.1], with notational amendments).

Remark 1.4. With conspicuous changes in notation (cf. [61, system (4)]), whilst transforming
from the original Lax pair

. . 1ia 1 0 é( )
a0 =7 (<o~ 35t (o 0
1i(V-AMB() A i
A2 ( B(T) - —A(T)B(T))) A7),
L (VEA@BE) AW 500
A2\ BG) —VAMB()

(
to the Fuchs-Garnier pair (1.18), the Fabry-type transformation (cf. [61, Proposition 2.1])

A(r)
1 0y 1[0 ——20 -
A=p?  and  ®(\7) = ((0 0> + (0 x/AlmB(r))) (p, )

was used; if, instead, one applies the slightly more general transformation

10 1 /- A(r)P* A(r)
DN T) =1 <0 0>+u x/—ég;)é(r) s A<TB(T) U (g, 7)

for some constant or 7-dependent P, then, in lieu of, say, the p-part of the Fuchs-Garnier
pair (1. 18) that is, 0, ¥ (u, 7) = U(w, )\I/(,u, T), one arrives at 0 \I!(u, T) = (L’ v Lo+ Ly +
Loy~ 2) (u, T), where

fmar (e ) dom oty §) s (& 7).

. 12 D —
Q:<m++'ry>pv>6$ ).
> V-AMB()
S . 0 O . P* 1
Ly =ir <B(7_) O) + (T) <—(P*)2 —P*> >
with &(7) defined by equation (1.21). Setting P* = 0, one arrives at the Fuchs-Garnier pair

stated in [61, Proposition 2.1], [57, system (1.4)], and system (1.18) of the present work.

A relation between the Fuchs-Garnier pair (1.18) and the DP3E (1.1) is given by (see, in
particular, [61, Proposition 1.2], with notational amendments) the following statement.

Proposition 1.5 ([57, 61]). Let 4 = u(7) and ¢ = ¢(7) solve the system

1 7(1?’(7))2_@’() 1 (i a v A,T:ga b
" (1) = a0r) . T( Se(u(r))? + 2 b)+ﬂ(7), (1) r+a(7)’ (1.23)

where € = +1, and a,b € C are independent of T; then,

A(T) — Meisb(f), 3(7) — _@e—isé(f)

)
T T
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A A (1 () 7(u' (1) +1

Cr)i= S == (i iz 4 TR

A B (r e iA(7) (W' (1) —1

D(r) = —545(7()) = 2;0 (i(a —i/2) - W) (1.24)

oY

solve the system (1.22). Conversely, let A(t) £ 0, B(r) £ 0, C(r), and D(r) solve the sys-

tem (1.22), and define

>

(1) :=erV—A(T)B(r),  ¢(r):=—=In(-A(1)/B(1)),
b= a(r) (¢ (1) — 2a771); (1.25)
then, b is independent of T, and 4(T) and ¢(T) solve the system (1.23).

Proposition 1.6. Let (c¢f. equation (1.16))

2f-(r) = —ila—i/2) + <W) , (1.26)

and (cf. equation (1.17))
iﬁﬁy:m+vm+;<m?+w)

Then, for e € {1},

- 2 A(T)D(r T (T

ﬁJﬂ:%§$M):2£<m(iv—mﬁo, (1.27)
and

4i . B 2¢72B(7)C(7) _7d a(r . )

gf+<T) =T an aar <ln (7’) + 1@(7)) ; (1.28)
furthermore,

A f ir¢! (1) = 2f () +ir 2a b

gf+(7’)—2f,(7')—|—17'4p (ry=2f_(7) + (T +a(T)>. (1.29)

Proof. Without loss of generality, consider, say, the proof for the function f_ (7): the proof for
the function f;(7) is analogous. One commences by establishing the following relation:

wﬂ—w_2<%Mﬂmﬂ
U T \V-AmB()
From definition (1.21), the system of isomonodromy deformations (1.22), Remark 1.3, and the

definition of the function @(7) given by the first (left-most) member of equations (1.25), it follows
via differentiation that

+ (ia + 1/2)) . (1.30)
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|
[\]
3
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>
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o
—~~
~—
[
ou]l
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—~~
-y
_|_
|
b
—~
9
~—
>
3

conversely, from the system of isomonodromy deformations (1.22), the system (1.23), and the
definitions (1.24) and (1.25), it follows that

Sa\ YT T CAUEECAETC
RGN f/:)) ) a'(;()T— 20,
whenee
#(r) — ib

which establishes equation (1.30). Via definition (1.26) and equation (1.30), one shows that

f (r) = TA(T)D(AT)

0 VEAmBGe)

hence, via the definition for 4(7) given by the first (left-most) member of equations (1.25), one
arrives at the first (left-most) relation of equation (1.27); moreover, it follows from the ODE for
the function ¢(7) given in the system (1.23) and definition (1.26) that

() = (?'(T) | e i¢'(7)> ~ oGt 1/2) = <(f71n (“m> - i@’(ﬂ) :

a(T) T T

which implies the second (right-most) relation of equation (1.27). Equations (1.27) and (1.28)
imply the corollary (1.29), which is consistent with, and can also be derived from, the defini-
tion (1.21) and the first integral of system (1.22) (cf. Remark 1.3). [

Herewith follows the post-gauge-transformed Fuchs—Garnier pair.

Proposition 1.7. Let ‘:I\/(M,T) be a fundamental solution of the system (1.18). Set

A(r)==A(r)r*,  B(r):=B(r)r,  C(r):=C(r)r™*,  D(r):=D(r)r',

~

afr) == a(r)r e, U(p, )= 7%03\11(%7'). (1.31)
Then

(1) U(p,T) is a fundamental solution of

8M\I’(/“L’ 7) = W, 7)¥ (1, 7), 0V (p,7) =V, )W (1, 7), (1.32)
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where

U(,U,T) = _2iTMU3 + 27 ( DO( ) A(&)B(T)) N (ia + =+ W) o3
- T

p 2 V—A(T)B(r
+ Mlz (iTlg(T) O‘@) : (1.33)
V(u,7) = —ipos + g (_;’(7) %) - % o3
A2 (ke )
with
a(r) = —2(B(1)) " (iaV—A(r)B(7) + 7(A(T)D(1) + B(1)C(7))); (1.35)

(7i) if the coefficient functions 121(7'), B(T), C’(T), and ﬁ(T) satisfy the system of isomonodromy
deformations (1.22) and the functions A(T), B(t), C(7), and D(T) are defined by equa-
tions (1.31), then the Frobenius compatibility condition of the system (1.32), for arbitrary
values of u € C, is that the differentiable, scalar-valued functions A(t), B(t), C(7), and
D(1) satisfy the corresponding system of isomonodromy deformations

A7) =~ Ar) +4C@V=AMB(),  Bl(r) = “B(r) ~ 4D(r)V= A B(7),
(1O (7)) = iaC(1) — 27A(7), (rD(7)) = —iaD(7) + 27B(7),
(V=A(1)B(r))" = 2(A(r)D(1) — B(1)C(7)). (1.36)

Proof. If \Tl(u, 7) is a fundamental solution of the system (1.18), then it follows from the isomon-
odromy deformations (1.22) and the definitions (1.31) that W(u, ) solves the system (1.32), and
that the functions A(7), B(1), C(7), and D(7) satisfy the corresponding isomonodromy defor-
mations (1.36). One verifies the Frobenius compatibility condition for the system (1.32) by show-
ing that, Vu € C, 8/&(;1,7’) - 8,ﬂ~7(,u, T) + [ﬁ(u,7),\~7(u,7’)] = (939), where, for X,9 € My(C),
[X,92)] := XY — VX is the matrix commutator. [

Remark 1.8. Definitions (1.21), (1.31), and (1.35), and Remark 1.3 imply that —ia(7)B(7) =
eb, e = £1.

Proposition 1.9. Let u(7) and ¢(7) solve the system

()2 (T 2 a
()= WO O e um)? paan) + 2, g =Y (137
u(T) T T u(T) T u(r)
where ¢ = +1, and a,b € C are independent of T; then,
A(T) = u(:)ei‘p(T), B(r) := —u(:)ei“’(ﬂ,
T ia ele(7) T (1) +1
Clr) = 45(7) (A'(T) + TA(T)> == (i(a—i— i/2) + W) :

D(r) = —— (B’(T) . mB(T)> - fe;jm (i(a —i/2) - W) (1.38)
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solve the system (1.36). Conversely, let A(T) # 0, B(t) # 0, C(7), and D(T) solve the sys-
tem (1.36), and define

u(r) :==erv—A(T)B(T1), o(1) == —% In(—A(7)/B(1)),
b= u(r) ((,0'(7') — aT_l); (1.39)
then, b is independent of T, and u(T) and p(7) solve the system (1.37).

Proof. Via the definition of 4(7) given by the first (left-most) member of equations (1.25) and
the definitions (1.31), one arrives at the definition for u(7) given by the first (left-most) member
of equations (1.39); in particular, it follows that u(7) = 4(7), and, from the first equation of
system (1.23), u(7) solves the DP3E (1.1) (see the first equation of the system (1.37)). Let ¢(7)
be defined as in equations (1.39), that is, (1) = —iln(v—A(7)B(7)/B(7)); then, via differenti-
ation, the definition (1.35), and the corresponding system of isomonodromy deformations (1.36),
it follows that

¢ ) =1 (S (VADBD) - 3 )

—A(T)B(7) B(T).
_ <2<A(T%C(T” - Bé) (fB(T) —4D(7) —A(T)B(T)>>
=~ e AMDE) + B)CE)
N

that is, ¢(7) solves the ODE given by the second (right-most) member of the system (1.37);
moreover, it also follows from the definitions (1.25), (1.31), and (1.39) that

(1) = ¢(r) —aln. (1.40)

The definitions (1.38) for the functions A(7), B(7), C(7), and D(7) are a consequence of the
definitions (1.24) and (1.31), the fact that u(7) = @(7), and equation (1.40). A series of lengthy,
but otherwise straightforward, differentiation arguments completes the proof. |

Remark 1.10. It also follows from the ODE satisfied by ¢(7) given in the system (1.23) and
equation (1.40) that ¢(7) solves the corresponding ODE given in the system (1.37).

Proposition 1.11. Let

2/-(r) = —ila—i/2) + (W) , (1.41)
and
gfm) =ia+i/2)+ <W> . (1.42)

Then, for e € {+1},
2f (1) = ETAMD() _ gi <ln (“T)> —i(p(7) +a1m)> ,

and
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furthermore,

2a b

§f+(7') =2f-(7) +i7'% (p(r) +alnT)=2f_(1)+ir <7_ + u(7‘)> : (1.43)

Proof. Via definition (1.35), the system (1.37), the corresponding system of isomonodromy
deformations (1.36), Remark 1.8, and the definitions (1.38) and (1.39), one establishes the
veracity of the relation

u'(t) —ib 2 ( 27 A(T)D(T)

V—A(r)B(7)

and then proceeds, mutatis mutandis, as in the proof of Proposition 1.6. The corollary (1.43)
.3

follows from, and is consistent with, the definition (1.35) and the first integral of system (1.36)
(cf. Remark 1.8). [ ]

+ (ia + 1/2)> , (1.44)

u(t) T
1
1

Remark 1.12. One deduces from the definitions (1.31), equation (1.40), and Propositions 1.6
and 1.11 that fi(7) = f+(7).

Remark 1.13. A lengthy algebraic exercise reveals that, in terms of the coefficient func-
tions A(7), B(7), C(7), and D(7) satisfying the corresponding isomonodromy deformations
(1.36), the Hamiltonian function (cf. equation (1.7)) reads

_ (i L 2A0D@) N s WD)
Hir) = 5 (i + DD VA BG) - T s arcnp(r)

AD(r)
V=A()B()

Remark 1.14. Hereafter, explicit 7-dependencies are suppressed, except where imperative.

1.4 Canonical solutions and the monodromy data

A succinct discussion of the monodromy data associated with the system (1.32) is presented in
this subsection (see, in particular, [57, 61]).

For p € C, the system (1.32) has two irregular singular points, one being the point at
infinity (4 = 0o0) and the other being the origin (u = 0). For d,dp > 0 and m € Z, define the
(sectorial) neighbourhoods Q%° and Q¥ | respectively, of these singular points:

™

1
0 = {u € C: ] > 35 T m— 1) < arg(p) +  ang(r) < 2<m+1>},
1 1
Qo= {u € C; |u| < b, m(m —1) < arg(p) — 3 arg(T) — 3 arg(eb) < m(m + 1)} .

Proposition 1.15 ([57, 61]). There exist solutions Y (u) = Y (1, 7) and X0, (u) = X2 (i, 7),
m € Z, of the system (1.32) that are uniquely defined by the following asymptotic expansions:

Yo (k) Qoo T+ oWt w@ =2 Y exp(—i(mp® + (a —i/2) Inp)os),
0 ,_ 5 . -1
X5, (1) 0 o Uo(I+ Zip+ -+ ) exp(—ivrebu o),

where I = diag(1,1), Inp := In |u| + iarg p,

A(r)
v = 0 V=A@MB@ |, w®@
—iD(7)/2 0

Il
/o~
=
&
NE O
~_
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(2) . —i ™V —-A(T)B(7) + 7C(7)D(7 —A(T)D(T)
e 5 (VA + rop) + A
& =5 (V=A(MB(r) + C(1)D(r)),

i (5b)1/4 73 . eRy L(12)
Ug=— [ ————= o1+ 03), Z = 1 1 ,
0 5 <7_1/4 /73(7') (01 3) 1 _2512) _2511)
( + 1 + M)z . 3/2
an _ _1 167+ 35 V_AMB@/ 2T V—A(T)B(T) B D(71)VTeb

2V 1eb \/e% B(T) ’
L (s 1 27 A(T)D(T)

az etz + HE5)

’ 2V 1eb ’

and o1 = (9}).

Remark 1.16. The canonical solutions X% (1), m € Z, are defined uniquely provided that
the branch of (B(7))'/? is fixed: hereafter, the branch of (B(7))/? is not fixed; therefore, the
set of canonical solutions {X?n (,u)}m ez 18 defined up to a sign. This ambiguity does not affect
the definition of the Stokes multipliers (see equations (1.45) below); rather, it results in a sign
discrepancy in the definition of the connection matrix, G (see equation (1.48) below).

The canonical solutions, Y5O (1) and X9, (1), m € Z, enable one to define the Stokes matrices,
S and S9, respectively,

() = YR (S, X510 () = X5, (1) S, (1.45)

The Stokes matrices are independent of p and 7, and have the following structures:
1 0 1 s 0 1 s
Son = (sazl 1> S = <0 2“1”1> B <0 21m> |

1 0
ngﬂ N (33 +1 1) .
m

The parameters s and s, are called the Stokes multipliers: it can be shown that

00 _ 27w (a—i/2)o3 goo, 2w(a—i/2)o3
o0, = o 2m(a-i/2)3 geog2n(a=i/2)

Equations (1.46) imply that the number of independent Stokes multipliers does not exceed six;
for example, sJ, sV, s5°, s3°, s5°, and s§°. Furthermore, due to the special structure of the
system (1.32), that is, the coefficient matrices of odd (resp., even) powers of p in U(u, ) are
diagonal (resp., off-diagonal) and wvice-versa for \7(”, 7), one can deduce the following relations
for the Stokes matrices:

S’r?f—&& _ 0_36—7r(a—i/2)03 S7c7>10e7r(a—i/2)030_3’ 57(7)1

1= 018501 (1.47)

Equations (1.47) reduce the number of independent Stokes multipliers by two, that is, all Stokes
multipliers can be expressed in terms of 38, 50°, s7°, and a. There is one more relation between
the Stokes multipliers that follows from the so-called cyclic relation (see equation (1.49) below).
Define the monodromy matrix at the point at infinity, M°°, and the monodromy matrix at the
origin, MY, via the following relations:

Y5 (ue ™) = Y (WM™, XJ(ne™?™) := Xg(n) M.
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Since Y(u) and X§(p) are solutions of the system (1.32), they differ by a right-hand (matrix)
factor G-

Yo () = X(u)C, (1.48)

where G is called the connection matriz. As matrices relating fundamental solutions of the sys-
tem (1.32), the monodromy, connection, and Stokes matrices are independent of 1 and 7; more-
over, since tr(U(y, 7)) = tr(V(p,7)) =0, it follows that det(M>) = det(M?) = det(G) = 1.
From the definition of the monodromy and connection matrices, one deduces the following

cyclic relation:

GM>= = M°G. (1.49)
The monodromy matrices can be expressed in terms of the Stokes matrices

M™ = Sg87eS5°850e2rlemi/2os - A0 = §08).

The Stokes multipliers, s3, s, and s$°, the elements of the connection matrix, (G);; =: gij,
i,7 € {1,2}, and the parameter of formal monodromy, a, are called the monodromy data.

1.5 The monodromy manifold, the direct and inverse problems
of monodromy theory, and organisation of the paper

In this subsection, the monodromy manifold is introduced, the direct and inverse problems of
monodromy theory are discussed (see, for example, [10, 29, 45, 54], and [55, Section 2]), and the
contents of this work are delineated.

Consider C® with co-ordinates (a, s9,88°,55°, 911, 912, 921, 922). The (algebraic) variety defined
by det(G) = 1 and the semi-cyclic relation

G718901G = S3° S ogeaT1/2)s (1.50)

are called the manifold of the monodromy data, M. Since only three of the four equations in the
semi-cyclic relation (1.50) are independent, it follows that dimc (M) = 4; more specifically, the
system of algebraic equations defining M reads®

-2 : 0 — 0 -
500870 = —1—e *T —ispe ", 921922 — g11912 + Spg11922 = ie” "%,
2 2 0 __ s, 00, . —Ta 2 2 0 __ .00 Ta
911 — 921 — Spg11921 =155 € 7, 950 — 912 + 809120922 = 187 €7,
911922 — 912921 = 1. (1.51)

Remark 1.17. To achieve a one-to-one correspondence between the coefficients of the sys-
tem (1.32) and the points on M, one has to factorize M by the involution G — —G (cf. Re-
mark 1.16), that is, G € PSL(2,C).

As shown in [61, Section 2], equations (1.51) defining M are equivalent to one of the following
three systems: (i)® g11go2 # 0 =

o (g21+ie™g11) o 1(go2+igize™™)e ™ o _ 7™+ g11012 — 921922
S§g =————————, s = — ) ) = ;
922 g1 g11922

a

°In these equations, €™ is considered to be a parameter.

5This case does not exclude the possibility that gi2 = 0 or g1 = 0. There is a misprint in [61, Sec-

tion 2, p. 1172]: in item (12, below equations (33), the formula for the Stokes multiplier si° must be changed
co _ _ i(geatigige” T*)e” "¢

to s77 = — .

gi1
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(ii) g11 # 0 and g2o = 0, in which case the parameters are s) and g1, and

ie—ﬂ'a

. .2 2 .
gi12 = — P ) g21 = —ie"™ g1, 580 = *1911(1 +e ™+ 158e’m)em,
11
:—3Ta
ie
oo .
s = — 92 ; (1.52)
11

and (iii) g11 = 0 and g2 # 0, in which case the parameters are 38 and g92, and

Ta —Ta

. ie” ie
g12 = ie"%gag, go1 = : s = ——5
g22 952
30 = —igs, (1 + €*™ +isfe™)e ™. (1.53)

Asymptotics as 7 — £0 and 7 — £i0 (resp., as 7 — £oo and 7 — +ico) of the general (resp.,
general regular) solution of the DP3E (1.1), and its associated Hamiltonian function, H(7),
parametrised in terms of the proper open subset of M corresponding to case (i) were presented
in [61],” and asymptotics as 7 — 400 and 7 — +ico of general regular and singular solutions
of the DP3E (1.1), and its associated Hamiltonian and auxiliary functions, #(7) and f_(7),8
respectively, parametrised in terms of the proper open subset of M corresponding to case (i)
were obtained in [57]; furthermore, three-real-parameter families of solutions of the DP3E (1.1)
that possess infinite sequences of poles and zeros asymptotically located along the imaginary
and real axes were identified, and the asymptotic distribution of these poles and zeros were also
derived. The purpose of the present work, therefore, is to close the aforementioned gaps, and
to continue to cover M by deriving asymptotics (as 7 — too and 7 — +ioco) of u(7), and the
related functions fi(7), H(7), and o(7), that are parametrised in terms of the complementary
proper open subsets of M corresponding to cases (ii) and (iii).” For notational consistency with
the main body of the text, cases (ii) and (iii) for M will, henceforth, be referred to via the
integer index k € {£1}; more specifically, case (ii), that is, gi1 # 0, goo = 0, and gi2g21 = —1,
will be designated by k = +1, and case (iii), that is, g11 = 0, ga2 # 0, and g12g21 = —1, will be
designated by k = —1.

Without loss of generality, and with a slight, temporary amendment of the notation, recon-
sider, for given a € C, b € R\ {0}, and € € {£1}, the first-order linear matrix ODE that consti-
tutes the p-part of the post-gauge-transformed Fuchs-Garnier pair given in the system (1.32),°

Y (p, ) = Wk, 73 ¥) ¥ (1, 7), (1.54)
where pu, 7 € C,
C®> y = (A(T),B(T),C’(T),D(T), 7A(T)B(’T))

is a vector-valued function constructed from the matrix elements of the coefficient matrices in
the decomposition of (cf. equation (1.33)) M2(C) > U(p, 7;¥) into partial fractions, U(u,;¥)
is a rational function with respect to the spectral parameter p with poles that are indepen-

dent of 7, and tr(U(u,T;y’)) = 0. The direct problem of monodromy theory (DMP) can be

" Asymptotics as 7 — £0 and 7 — +i0 for the corresponding 7-function, but without the ‘constant term’, were
also conjectured in [61].

8Denoted as f(r) in [57].

9 Asymptotics as 7 — +0 and 7 — +i0 for u(7), H(7), f+(7), and o(7) corresponding to cases (ii) and (iii)
will be presented elsewhere.

0One merely makes the purely notational change ﬁ(,u, T) — ﬁ(p, 7;¥) in equation (1.33). Analogous statements
can be made regarding the p-part of the pre-gauge-transformed Fuchs—Garnier pair presented in the system (1.18).
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stated as follows: using the tuple of coefficients (7, A(7), B(),C(7), D(1),V—A(7)B(1)), find
the monodromy data 91 := (a,58,sgo,s?fo,gu,gu,ggl,ggg) € M (recall that the monodromy
data are not independent and are related via the algebraic equations (1.51), which define the
complex manifold M € C® called the manifold of the monodromy data), or, in other words, it
is a correspondence (7, A(7), B(7),C(1),D(1),V—A(7)B(7)) — system (1.54) — 9t € M. The
inverse problem of monodromy theory (IMP) can be stated as follows: using the data set {7, 0},
find ¥ € C° such that the system (1.54) constructed with the help of the co-ordinate (or coef-
ficient) functions of ¥ has the monodromy data 9t € M, or, in other words, it is the inverse

map!!

{r, M} — (T,A(T),B(T),C(T),D(T), —A(T)B(T)).

Thus, if one fixes the collection of the monodromy data 2t € M and denotes by T C C the set
of all 7 for which the IMP is solvable, then the functions A(7), B(7), C(7), D(7), V—A(T)B(1):
T — C are determined, and thus, via Proposition 1.9, the 2-tuple (u(7), ¢(7)) solves the system
(1.37).12 The complete set of the monodromy data corresponding to the system (1.54) (equiva-
lently, the system (1.32)) depends, in general, on both 7 and y, and will be denoted by 9(7;¥).
As a consequence of the requirement that the monodromy data be independent of 7 and ¥,
that is, 9(7;¥) = const, it is necessary that y = ¥(7) satisfy the system of isomonodromy
deformations (nonlinear ODEs) (1.36), which can be presented in the form

30 = (~2400) + 40V =ABD), 2 B(r) - 1D(r)V AT
('“‘7_1)0(7) 240, - Y by 9B, (A D) - B(T)C(T))) .

Clearly, M(7;y) € M. Denote by Mg the collection of monodromy data for which the IMP
is explicitly solvable: for other M(7;y) € M, it is possible to solve the IMP asymptoti-
cally (as 7 — 400, say); this leads to, for example, asymptotic formulae for solutions of the
DP3E (1.1). Let D C M\ M3 be a domain. The IMP is said to be asymptotically solvable
(as 7 — +o0, say) if, for any 9t € D representing the monodromy data, there exists an asymp-
totically locally uniform'3 vector-valued function

y* =y* (M) = (A(T;E)JT),B(T; M), C(r;9M), D(; M), \/—A(T;EW)B(T;SIR)) cC?

constructed from the matrix elements of the Msy(C)-coefficients of the system (1.54) that is
analytic in (T, +00) x D and invertible with respect to 9, and the monodromy data 9t*(7; 91)
corresponding to ¥*(7;91) can be represented as

M*(7; M) = M + S(r; M),

where &(7;90) is a locally uniformly decreasing vector-valued function, that is, ||9t*(7;90) —
M| = [|&(T;M)|| < C|r|7% as 7 — 400,'* where C > 0 and 8, > 0 are the same for all

HTf there exists a solution of the IMP, then it is unique [10, 29, 45, 54, 55].

12 A5 long as the monodromy data is given, the function ¢(r) is fixed modulo 2xl, I € Z, or, alternatively, the
constant of integration in the system (1.37) is defined via the monodromy data modulo 2xl. The function ¢(7)
belongs to the class of functions defined by the equivalence relation ¢ = ¢ + 27l, | € Z.

13A function f(r,)) is said to be asymptotically locally uniform (as T — +oo, say) if, for any point X in the
domain of definition of f(7,A), there exist functions h1(7, A) and ha(7, A) such that, for any €. > 0, there exist
numbers T and 5, = &(},E*) > 0 such that, for any (T, 4+00) > 7 and for all 51 € Bs (A) := {5\ | ‘X -\ < S*}
(the open ball of radius d. centred at A), the inequality hi (7, A)(1 — &) < ’f(T, )\)’ < ha(1,A\)(1 + €.) is satisfied;
furthermore, if hi(7, \), ha(7,A\) = 0 (as 7 — 400, say) in the latter inequality, then f(7, \) is said to be a locally
uniformly decreasing function [54].

Y|]-| is any norm in C?.
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IM*(7;9M) [54, 55].1° In fact, according to the THEOREM in [54], if the IMP is solvable for the
domain D, then, for any My € D representing the monodromy data for the system (1.54), there
exists a unique vector-valued function

¥ = §(r; M) == (A(r; M), B(m3 M), C(1; M), D(1; M), V—A(1; Mo) B(7; My)) € C°

formed by the matrix elements of the Ma(C)-coefficients of the system (1.54) that is analytic
in (7, +00) x D such that the monodromy data 9t(7; M) corresponding to ¥(7;My) coincides
with My for all 7 € (T, +00), namely, ||[9(7;My) — Mo|| = o(77%) uniformly as 7 — 4o,
dx > 0.

Remark 1.18. The explication above of the DMP and IMP for the u-part of the system (1.32)
was formulated within the framework of the C-valued functions A(r), B(7), C(r), D(7), and
V—A(7)B(7) (solving the system of isomonodromy deformations (1.36)) which appear as matrix
elements of the Ma(C)-coefficients of (cf. equation (1.33)) U(u,7) in its partial fraction decom-
position with respect to the spectral parameter pu. Equivalently, via the definition (1.35), Re-
mark 1.8, and Proposition 1.9, one may eschew the C-valued functions A(7), B(r), C(7), D(7),
and V—A(7)B(7) altogether and re-express U(u,7) € My(C) solely in terms of the 3-tuple of
C-valued functions (u(7),¢(7),u (7)), where, in particular, the 2-tuple (u(7), (7)) solves the
system (1.37), that is,

) . o 0 2igeP(7)
W, T) = —2iTpog + 27 | Le-ie(r) . i (r)—ib
=g (ila—3) - (22(1) ) 0
17(u/ (1) —1ib 1 0 — 1ebr oie(7)
- ( ( ) )0_3 + = . i) u(T) ’
po 2u(r) pe \ —iu(r)e™% 0

and regurgitate verbatim the above discussion of the DMP and IMP in terms of the C-valued
functions u(7), ¢(7), and «/(7); but, since the former, and not the latter, approach has been
adopted in the present work, this matter will not be addressed further.

The contents of this paper, the main body of which is devoted to the asymptotic analysis
(as 7 — +oo for eb > 0) of u(7) and the related, auxiliary functions fi(7), H(7), and o(7),
are now described. In Section 2, the main asymptotic results as 7 — 4oo and 7 — 4ioco
for w(7), f+(7), H(7), and o(7) parametrised in terms of the monodromy data corresponding
to the cases designated by the index k € {41} (see the discussion above) are stated. In Sec-
tion 3, the asymptotic (as 7 — +oo for eb > 0) solution of the DMP for the p-part of the
system (1.32), under certain tempered restrictions on its coefficient functions (in some class(es)
of functions) that are consistent with the monodromy data corresponding to k € {£1}, is pre-
sented; in particular, with the coefficient functions satisfying the asymptotic conditions (3.17),
the asymptotic representation for the connection matrix, G, corresponding to k € {+1} stated
in Theorem 3.23 is obtained, and, in conjunction with the parametrisations (1.52) and (1.53),

5There are also asymptotics obtained via the IDM for which the vector-valued function(s) y* = 3*(r; M)
have poles for certain M € D with co (the point at infinity) being an accumulation point of the poles (see, for
example, [57]). In such cases, (T, +oco) must be replaced by U;>_,(T2m, Tem+1), with T3, * 0o, where the poles
lie in the intervals (lacunae) (T2m+1,T2m+2), and where the ratio of the lengths of the intervals containing the
poles to the lengths of the intervals devoid of poles must tend to zero, that is, W —+0asN>3m —= o0
(see [54] for technical details). In such cases, | y_;(Tom, T2m+1) X D should be regard+ed as"tlhe domain of definition
for y*(7;901), and the IDM enables one to prove the existence of an analytic solution for 7 € C whose asymptotic
behaviour on (J,°_(T2m, Tam+1) is determined by ¥*(7;9M) and with poles in the intervals (Tom+1, T2m+2) [54].
For complexified 7 with |7| — 400, (T, +00) must be replaced by a Swiss-cheese-like, multiply-connected strip
domain (see, for example, [57]).
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the complete asymptotic representation for the monodromy data is derived. The latter anal-
ysis is predicated on focusing the principal emphasis on the study of the global asymptotic
properties of the fundamental solution of the system (1.32) via the possibility of ‘matching’
different local asymptotic expansions of W(u, 7) at singular and turning points, namely, match-
ing WKB-asymptotics of the fundamental solution of the system (1.32) with its parametrix
represented in terms of parabolic-cylinder functions in open neighbourhoods of double-turning
points. In Section 4, the asymptotic results derived in Section 3 are inverted in order to solve
the IMP for the p-part of the system (1.32), that is, explicit asymptotics for the coefficient
functions of the u-part of the system (1.32) are parametrised in terms of the monodromy data
corresponding to k € {£1}; in particular, via the inversion of the asymptotic representation
for the connection matrix corresponding to k € {£1}, explicit asymptotic expressions for the
coefficient functions parametrised in terms of points on M are obtained. Under the perma-
nency of the isomonodromy condition on the corresponding connection matrices, namely, the
monodromy data are constant and satisfy certain conditions, one deduces that the asymptotics
obtained via inversion represent an asymptotic solution of the IMP and satisfy all the restric-
tions imposed in Section 3; however, since it is not immediately apparent that an asymptotic
solution of the IMP represents an asymptotic expansion of the functions in the systems (1.36)
and (1.37), because the asymptotic solution of the corresponding monodromy problem was ob-
tained via the IDM, one can use the justification scheme presented in [54] (see also [10, 29, 42])
to prove solvability of the corresponding monodromy problem, from which it follows, therefore,
that there exist (exact) solutions of the system of isomonodromy deformations (1.36) whose
asymptotics coincide with those obtained in this section. In order to extend the results derived
in Sections 3 and 4 for asymptotics of u(7), f+(7), H(7), and o(7) on the positive semi-axis
(1 — +00) for eb > 0 to asymptotics on the negative semi-axis (7 — —o0) and on the imaginary
axis (7 — +ioco) for both positive and negative values of b, one applies the (group) action of
the Lie-point symmetries changing 7 — —7, 7 — 7, a — —a, and 7 — =+ir derived in Ap-
pendix D on the proper open subsets of M corresponding to k € {£1}. Finally, in Appendix E,
asymptotics as 7 — oo and 7 — %ico with £(eb) > 0 for the multi-valued function ¢(7) are
presented.

2  Summary of results

In this work, the detailed analysis of asymptotics as 7 — 400 for b > 0 of u(7) and the associ-
ated functions fi(7), H(7), o(7), and ¢(7) is presented. In order to arrive at the corresponding
asymptotics of u(1), f+(7), H(T), o(7), and (1) for positive, negative, and pure-imaginary
values of 7 for both positive and negative values of €b, one applies the actions of the Lie-point
symmetries changing 7 — —7, 7 — 7, a = —a, and 7 — +iT on M (see Appendices D.1-D.4, re-
spectively). The ‘composed’ symmetries of these actions on M are presented in Appendix D.5 in
terms of two auxiliary mappings, both of which are isomorphisms on M, denoted by ff_ff}sz m(e)?
which is relevant for real 7, and F E{f}ez /n(25)» Which is relevant for pure-imaginary 7; more precisely,
from Appendix D.5,'6

g:{@}

e1,62,m(e2) *

: M — M,

((17 88750 y S1 7911791279217922) — (( 1)626L, 58(517527 (€2)’€)7
so (1,82, m(e2)[f), 577 (€1, €2, m(e2)[¢), g11(e1, €2, M ( 2)[¢),
)

|
g12(e1, 82, m(2)|0), g21 (€1, €2, m(2) |£), g22(€1, €2, M(£2) |£)),

Due to the involution G — —G (cf. Remarks 1.16 and 1.17), it suffices to take I =1 = +1 in equations
(D.47)—(D.93).
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where

0, g9 = 0,

¢ e{0,1},
+eo9, €9 € {:tl}, { }

€1,€2 € {O,il}, m(52) - {

and the explicit expressions for s)(e1, g9, m(2)|¢), s5°(e1, g2, m(e2)|€), s5°(e1, 2, m(e2)|¢), and
gij(e1,e2, m(e2)|0), i,j € {1,2}, are given in equations (D.47)—(D.61) and (D.71)—(D.85), and

St{/}

é1,€2,m(€2)

(CL, 58780 »S1 791179127921,922) = ((_1)1+é2aa '§8(éla52a 7 é2)|®7§80(51>627 7 (é2)|é)7
852 (21,20, m(62)[0), g1 (21, 22,1 (E2)[0), G2 (81, ) £2)|0)
922(6176% (52)|€))

: M —=M,

where

0, €9 € {£1},

7 e 0,1},
+e1, €2=0, { }

€ € {£1}, €y € {0, £1}, (&) = {

and the expressions for §8 (él, éo, m(ég)\é), 53° (él, €9, m(é |€) (é &9, (ég)@, and g;; (él, &9,
m(@)]é) i,7 € {1,2}, are given in equations (D.62)—(D.70) and (D.86)-(D.93).
30
0

(é
&2)[¢

A~

m(€2) @ furthermore,

Remark 2.1. It is worth noting that s3(e1, g9, m(g2)|f) = s§ = , €2,
)} = 16, that is, for ¢,/ €

it follows that card{(e1,e2, m(e2)|¢)} = 30 and card{(el,eg, 7

{071}7
(0,0,0¢),
(—1,0,0[¢),
(1,0 oye)
116), )

E -1 1|£)| | (1,1,0[),
(0,1, —1¢), (1,—1,0/¢),
.11, (=1,1,000),

(e1,82,m(e2)[€) = ¢ (- 1,—1 —1}0), and (21,8, 1m(E))0) = El—lo,—_ll,%w),
(1,-1,-1¢), ,0,—1] ,
(-1 1 ,110), (=1,0,-10),

| (1,0,11¢),

o (—=1,0,1]¢)
(— 1,1, 110), ,0,110).
(L,1,-1[6),
(=1,1,1}0),
(1, 1 110),

Via the above-defined notation(s) and Remark 2.1, asymptotics as 7 — 400 (resp., 7 — +ic0)
for £(eb) > 0 of u(7), f+(7), H(7), and o(7) are presented in Theorem 2.4 (resp., Theorem 2.8)
below, whilst asymptotics as 7 — +oo (resp., 7 — +ioo) for +(eb) > 0 of (1) are presented in
Appendix E, Theorem E.3 (resp., Theorem E.6).

Remark 2.2. The roots and fractional powers of positive quantities are assumed positive,
whilst the branches of the roots of complex quantities can be taken arbitrarily, unless stated

otherwise; moreover, it is assumed that, for negative real z, the following branches are always
taken: z1/3 =—|z \1/3 and 2%/3 = (= 1/3)
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Remark 2.3. If one is only interested in the asymptotics as 7 — +oo for eb > 0 of the
functions u(7), f+(7), H(7), and o(7), then, in Theorem 2.4 below, one sets (g1, 2, m(e2)|l) =
(0,0,0]0) and uses the fact that (see Appendix D.5, the identity map (D.47)) s3(0,0,0/0) = s9,
55°(0,0,0]0) = sg°, s7°(0,0,0[0) = s7°, and g¢;;(0,0,0/0) = g45, 1,7 € {1,2}.

Theorem 2.4. Let u(t) be a solution of the DP3E (1.1) and $(7) be the general solution
of the ODE @'(1) = 2ar~! + b(u(r))™! for eb > 0 corresponding to the monodromy data
(a788788078?7911791279217922)- Let

0, g2 :0,
€1,e9 € {0, £1}, m(eq) = ¢ e {0,1},
bez € {0+ (€2) {:I:Ez, ey € {£1}, 0.1}

and b = |gble'™2. 17 For k = +1, let

gi1(e1, €2, m(e2)|0)g12(e1, €2, m(e2)[€) ga1(e1, €2, m(e2)[€) # 0, gaa(er, 2, m(e2)|f) = 0,
and, for k= —1, let

gi(e1,e2,m(e2)[0) =0,  gia(er, e2, m(e2)|0)g21(€1, €2, m(€2)|€) g22(e1, €2, M(€2)[€) # O

Then, for s)(e1,e2, m(2)|0) # je(-1)'F*2ma 18

. (—1)51i5(5be*m52)1/2 irk/4 (80(61, ea,m(e2)]0) — ie(,l)u—ema)
U(T) = ime uO,k’(T) - 1k:( 1 It+eg,
T—+00e!7e1 ﬁ23/231/4(2 € \/>)
x o O (1L O(13)), ke {£1), (2.1)

where

ug o (T) = copT (1 + % Z 5171/3 ) ;

with
2/3
Cop = 8(8192) e7127Tk/37 (22)
qe—i2mk/3 a
ug(k) = B Gl w1 (k) = uz(k) = uz(k) = us(k) = uz(k) = ug(k) =0, (2.3)
k
a(a2 =+ 1) a® (a2 =+ 1)e*127rk/3 a(a2 + 1)612”]“/3

a (k) sigy) o vek) s usk) s 2Y
where

o = 2*1/2(€b)1/6ei”k/3, (2.5)

and, form € Z4 = {0} UN,

1 (CQk 2

Up(mas) (k) = CTAW ) (mQ(m—i-?))(k) — 2ug(k)102(m42) (k) + N2(m+2) (k) — wo(k)N2(m+1) (k)

17See Remark 2.5 below.

8For sq(e1,e2, m(e2)|l) = je(-11 2 ™ the exponentially small correction terms in the asymptotics (2.1), (2.11),
(2.12), (2.15), and (2.16) are absent.
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2(m+4)
+ an mz m+1)— (@) - é Z (up(k) + mp(k))uZ(erél)fp(k)
p=0
2
Y () et
u2(m+5)+1(k) =0, (2.7)
where
mo(k) = —uo(k), ml(kz) = 0,
W pa(k) = —ttnya(k) = D wp(khunp(k),  n€Zy, (2.8)
with
ni(k) == —2(j + 3)ujya(k) + Z (p+1)(G—p+ Dk _p(k),  jeZy, (2.9)
p=0
(1) == 3?(—1)62(55))1/372/3, B(r) == g(—m (eb)'/372/3. (2.10)

Let the auziliary function f_(7) (corresponding to u(r) above) defined by equation (1.41)
solve the ODE (1.14), and let the auziliary function fi(T) (corresponding to u(r) above) defined
by equation (1.42) solve the ODE (1.15). Then, for s3(c1,e2, m(e2)|f) # je(~1)!Te2ma,

2f(r) = fox(7)

T—+00e! €1

(-1 )e1k(€be—m62)1/6 ink/4 17rk/3(80(51’527 (22)]0) —ie(_l)HEQW)

\/7?2k/231/4(\/§+ ) (2+\/>)ik(_1)1+sza
) r! e U 1L o (r717), ke (1), (2.11)

where

for(r) = —i((=1)a —i/2)
i(—1)e2(eb)1/3pi2mk/3 .
LD (62) -2/3 ( -2/3 Z 5171/3) > ’

and
4i(_1)82 . ( 1)51 (gbeﬂﬂ-ez)l/fi irk/4 17rk/3(2(k+1 (\[-i- 1) )
b o) = foaln) + B
€ T—+o00e!"¢1 ﬁzk/231/4(2+\/§)
% (83(c1, e, m(e)[0) — el D1 2ma) £1/3e=(B(r)+ikI(m)
x (1+0(r71%), ke {+1}, (2.12)
where

for(m) =1((=1)a +1/2)
+i(—1) (Sb)1/3e127rk/37_2/3 ( —2/3 Z )+ 2mm(k))> ’

517-1/3)
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with
vo(k) = CW’ w1 (k) =0, ea(k) = i(1)eza(118z4i(1)a2a)7
k k
t3(k) =0, (2.13)
20t 1a(6) = 3 (0 sz (4) = (1)
p=0
_ (—;)52 (m —p+ 2)ump(k)> (k) + i4ad (s (k)
— up(k)umaa(k)) — (=1)= (m + Dipya(k), meZy. (2.14)

Let the Hamiltonian function H(7) (corresponding to u(t) above) be defined by equation (1.7).
Then, for 88(517 €2, m(€2)‘£) =+ ie(_1)1+527ra7

H(T) = Hop(r)

T—+ooei™el

(=1)= (Ebefiwez) 1/6 jimk/4 yimk/3 (88(61, £a,m(2)|0) — ie(*1)1+€2”“)
\/7?2k/233/4(\/§+ 1)—k(2 4 \/g)ik(—l)1+f2a

) et GEREN (L O(r 1)), ke {1}, (2.15)

where

Mo (1) = 3(eb)>/ e 23S 1 o(eb) /32T (o —i(—1)72 /2)77 1/ + %((a —i(=1)2/2)?

U3 () 3 (<40 )7 Do) + afon (b

m=0

+ > (By(k) — 4(a i<—1>€2/2>up<k>)mm_p<k>) (@RISTEL

p=0
with
m—+2
0 (k) = Y (Bup(k)wmsa—p(k) + (duty(k) — tp(k))emra—p(k))
p=0
- Z Z tmy (k)tp1—m1 (k)um—pl (k)’ m € Zy,
p1=0m1=0
and
5 a2 eiﬂk/3 5 5
bo(k) = — (12a°+ 1) : h1(k) =0, bint2(k) = ajom (k).

18(eb)1/3

Let the auziliary function o(7) (corresponding to u(1) above) defined by equation (1.10) solve
the ODE (1.11). Then, for s(e1,e2, m(e2)|€) # je(-1)'*2ma
(_1)51 (Ebefiﬂaz)1/66i7rk/4ei7rk/3 (88(61, €9, m(€2)w) . ie(,l)1+52ﬂ.a)
VR334 (VB 4+ 1) TF (1 4 kVE) T (2 + v/3) DT
x 71B3e=BOMHRIM) (1 L O(r713)), ke {£1}, (2.16)

O'(T) = o 0'*7 (7- —
T—+o0e'"c1




Trans-Series Asymptotics of Solutions to the Degenerate Painlevé 111 Equation 23

where

08’]4(7—> — 3(51))2/36712#’6/374/3 _ i(_1)€22(8b)1/3 1271']6/3(1 + 1(_1)82 )7'2/3

1

- g((l +i(=1)%2a)? +1/3) + ajr /3 Z < (a —i(=1)%2/2)upm12(k)

T afon(k +pr 4a—i(~ >52/2>up<k>>mm_p<k>+i<—1>52tm+2<k>)

X ((—1)81771/3)

Remark 2.5. To be unequivocally clear, the first two sentences of the formulation of Theo-
rem 2.4 do not imply that e2 = 0 (similar comments apply, mutatis mutandis, to Theorems 2.8,
E.3, and E.6). The first sentence of Theorem 2.4 states that u(7) is a solution of the DP3E (1.1)
and ¢(7) is the general solution of the ODE ¢/ (1) = 2a7 ! +b(u(7)) ! for ¢b > 0 corresponding to
the monodromy data (a, 38, 50°, 8%, 911, 912, ggl,ggg). Taking into account Remarks 2.1 and 2.3,
these monodromy co-ordinates are ascribed a clearer notational sense, namely, s := s3(0, 0, 0[0),
s° = 5§°(0,0,0]0), s¥° := 57°(0,0,0/0), and g;; := ¢;;(0,0,0[0), ¢,5 € {1,2}. This means
that one first solves the DP3E (1.1) for u(7r) as 7 — +oo (1 = 0) for eb > 0 (g2 = 0) cor-
responding to the monodromy data satisfying the restrictions (take, say, the case k = +1)
g11(0,0,0]0)g12(0, 0, 0|0)g21(0, 0, 0‘0) = 011912921 75 0 and 922(0, 0, 0‘0) = g0 = 0, that is,

. 8(8b)1/2 17r 2+\/> e~ Ta (B i
u(r) = upa(r) + &23/232 /4( )e (B(r)+i9(7))

x (1+0(r713)), (2.17)

and then use this (1,2, m(g2)|¢) = (0,0,0[0) asymptotics (2.17) as a “base”, “seed”, or “germ”
solution to which Lie-point symmetries can be applied (akin to Darboux transformations in the
theory of solitons); for example, if one wants the solution u(7) of the DP3E (1.1) as 7 — —o0
for eb < 0, which corresponds to any one of the parameter values (1,2, m(e2)|¢) = (-1, 1, £1|¢),
£ = 0,1, provided that the corresponding monodromy data satisfy the restrictions

922(_1, 1, :|:1|£) = 07911(_17 1a i1|€)912(_1> 1’ :|:1|f)921(—1, 17 :|:1|£) 7é 07 l= 07 ]-a

where explicit formulae for so( 1,1, £1)0), sg°(—1,1,£1¢), s°(—1,1,£1}¢), and g;;(—1,1,+£1
10), 4,7 € {1,2}, in terms of sJ, s3°, s3°, and gm, are given in Appendlx D.5, equations (D.58),
(D.60), (D.82), and (D.84), one makes the changes 7 — 7e™ (e = —1) and b — |eble™
(e2 = +1) in equation (2.17), and, taking into account Remark 2.2, arrives at the asymptotics
of u(r) as 7 — —oo for eb < 0.

Remark 2.6. For ia € Z, a separate analysis based on Bécklund transformations is required
in order to generate the analogue of the sequence of C-valued expansion coefficients {u,,(k)},
m € Z, k = %1, and the corresponding function uf .(7); this comment applies, mutatis mu-
tandis, to the C-valued expansion coefficients {ﬁm(k‘)} and the corresponding function g ;(7)
given in Theorem 2.8 below (see also Theorems E.3 and E.6). In fact, as discussed in [61, Sec-
tion 1], for fixed values of ia = n € Z, ¢, and b, there is only one algebraic solution (rational
function of 71/3) of the DP3E (1.1) which is a multi-valued function with three branches (see
also [65]): this solution can be derived via the |n|-fold iteration of the Backlund transforma-
tions given in [61, Section 6.1] to the simplest solution of the DP3E (1.1) (for a = 0), namely,
u(r) = %5(5())2/37'1/3. The case ia € Z will be considered elsewhere. In this context, it must be
mentioned that an expansive analysis, based on the RHP approach, of algebraic solutions of the
PIIT equation of D7 type has recently appeared in [13]; in particular, the authors present a study
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of algebraic solutions of the DP3E (1.1) for the parameter values ¢ = —1, b = i, and a = —in,
n € Z.

Remark 2.7. Define the simply-connected strip domain

DY := {1 € C| Re(0¥(1)) > dy 4

Im(6%(7))| < d3.}, (2.18)

where 6% (1) = 3%/2(—1)%2(eb)/372/3 and d . d3, > 0 are some (7-independent) constants. The
asymptotics of u(7), f+(7), H(7), and o(7) stated in Theorem 2.4 are actually valid in D.

Theorem 2.8. Let u(T) be a solution of the DP3E (1.1) and ¢(7) be the general solution of the
ODE ¢'(7) = 2ar ' 4+ b(u(r)) ™" for eb > 0 corresponding to the monodromy data (a, sJ, s3°, s3°,
911, 912, 921, g22) - Let

0, ég € {:i:l},

7e{0,1},
+£1, €9 =0, {0.1}

gre{£l}, & e{0,£1},  m(é&)= {

and b = |eble'™2. For k = +1, let

911 (61, 82,1(82)|D) 12 (61, 82, 1(82)) Go1 (61, 62, (E2)[0) #£ 0 goa(é1,é2,(E2)|E) = 0,
and, for k= —1, let

911 (61,62, m(E))0) =0, 1281, 20, 1(E2)[0) G (€1, €2, 1(E2)|€) G2z (21, E2, 1(€2) |€) # 0.

Then, for & (é17é27m(é2)’é) £ je(~1)2ma 19

ie—iﬂél/Qg(gbe_iWéQ)1/2ei7rk/4 (§8 (51, €9, m(ég)w) — ie(_l)ézm)
JE2/231/4(2 4 /3) D
w o~ (B(re)+ikd(7.)) (1+0(r ), ke {+1}, (2.19)

u(7)

ﬁak(T) -

T—+o00ei™€1/2

where

R _ >t (k
(1) = e~ 2 ol (1 +n Yy (ul/g))m> ,
m=0 \Tx

with co i, defined by equation (2.2),

Ty 1= Te TEL/2 (2.20)
ae—ika/i’) a
wk)=—r=——% 2.21
(k) = tip(k) = tz(k) = ts(k) = ti7(k) = tig(k) = 0, (2.22)
a(a2 =+ 1) a’® (a2 + 1)6*12”'“/3 a(a2 + 1)ei2”k/3

uy(k) = ug(k) = ug(k) = — , (2.23)

34(eb) 35(eb)4/3 ’ 35(eb)5/3

where ay, is defined by equation (2.5), and, for m € Z,

. 1 rcor\2 | . . . . . R
u2(m+5)(k) = 97 ( (l); ) (mQ(m+3)(k) - 2U0(k)m2(m+2)(k) + 772(m+2)(k) - uO(k)UQ(erl)(k)

Y¥For 9 (él, &2, m(52)|2) = je(~ D 7 the exponentially small correction terms in the asymptotics (2.19), (2.28),
(2.29), (2.32), and (2.33) are absent.
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2m (m+4)
+ Zﬁp(k)tﬁz(mmp(k)) - % > (ip(k) + 10, (k) fiagmra)—p (k)

p=0 p=0
1 scopn\2 (2m+T\2.
~3 (T) < 3 > u2(m+3)(k)7 (2.24)
u (m+5)+1(k) 0, (225)
where
o (k) = —io(k), 1 (k) = 0, Wpt2(k) = —liny2(k) — > 10, (k)i p(k), (2.26)
p=0
n e Z+,
with
J
(k) = =205 + 3)ij2(k) + > (p+ 1D — p+ Dip(B)iy_»(k),  j€Zy, (2.27)
p=0

and V(1) = B3 (—1)2(eb) /3723 B(r) := $(—1)%2(eb)/372/3,

Let the auziliary function f_(7) (corresponding to u(t) above) defined by equation (1.41)
solve the ODE (1.14), and let the auziliary function f+( ) (correspondmg to u(t) above) defined
by equation (1.42) solve the ODE (1.15). Then, for §; (61,62, (62)\6) je(=1)2ma

. k(sb —nmq)l/ﬁ ink/4 Mk/3(50(61,82, (52)|g)__ie(_1f2wa)
2f(7) = 2fo,lc(T) - ik(—1)2a
T—+o0eime1/ V/72k/231/4(\/§l+-1) (2 +—\/§)
x TP B4k (1 4 O(r1/3)), ke {41}, (2.28)
where
. VR 1/3 i27k/3 -
Fiulr) = —i((-1) o2 —1/2) 4 U s (L oo g ) )
’ 2 m=o (7"")
and
LY —iméy)1/6 elmk/4ink/3 (9(k+1)/
4i(—1)= a~ gbe~Ime2 2 k(vV3+1
(Eb)f+(7') = /Qfo,k(T) + ( ) ( ik(—1) szg ) )
T—s+o0eiTE1 f2k/231/4(2_|_f)
X ( 8(51752, (62 ’ﬁ) ( 1)é2ﬂa) 1/3 —( B(74)+ikd (7))
x (L+0(r713), ke {+1}, (2.29)
where

for(m) =i((-1)"*2a +1/2)

. . 973 o (3t (k) + 210, (K
+i(=1)%(eb) e/l (1 sy (()Jz): ( ”) :
m=0 Tx

with

(a+i(—1)2/2)

2
3ag

to(k) = — (k) =0,
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ia((—1)1*%2 +ia)

&a(k) = L s =0, (2.30)
k
20in14(8) = 3 (02 msa-0) ~ Ga(RYion-(0) — 7 (= + D))
p=0
<y (k) + 107 4 (8) — o )i 1208)) — 2 (m o+ Ao (),
me Ly (2.31)

Let the Hamiltonian function H(r) (corresponding to u(t) above) be defined by equation (1.7).
Then, for 3) (él, &9, m(é2)’€) + je(-D2ma

H(r) = Hiul)

T—+o0el™é1/2
e—1ﬂ51/2(€be—17r52)1/6 irk/4 17rl~c/3( (51,52, (52)@ _ie(—l)ézm)
JA2R/233/4(\/3 4 1) (2+\/§)ik(—1)é2a
x 7 Mo BEIHRIED (14 O(r713)), ke {1}, (2.32)

Hp(r) = e771/2 (3(sb>2/ Se /313 1 (—1)%22(eb) P2 (—1)1 4220 — i/2)
((=1)"**2a —i/2)* —1/3) 7!

+(=1)Zad ()Y <—4(<—1>1+é2a —1/2) (k) + (=1)2 a0 ()

m=0

| =

+

D000 = 4 /)i 0o (1)) (7)),

p=0
with
. m—+2
O (k) = ) (8lp(k)itmso—p(k) + (dity () = t(k))Emra—p(k))
p=0
m p1
- Z Z Eml(k)fpl—ﬂh (k)ﬁm—pl(k)v m e Z-i—v
p1=0m1=0
and
. (—1)'%2(12a% + 1)ei™/3 - . s 2s
BK) = g B =0 Bhua(k) = (<) aldn (k)

Let the auziliary function 0( ) (correspondmg to u(t) above) defined by equation (1.10) solve
the ODE (1.11). Then, for 83(é1,22,7m(é2)|0) # ie(-D27a

o) _ s (Ebeﬂwag)l/G irk/4 17rk/3( (51 €9, 1M (52”5) ie(,l)ézﬂa)

ropoemiy/z VA3 (V3 4+ 1) TH (14 kVE) T (24 V)R
x 7P BEIHRIED (1 4 O(r713)), ke {1}, (2.33)
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where
& (7) = B(eb)/BeT 2RI (1)) e/ (1 4 i(—1)Ho2a) 7?
1 .
+3((1+ i(—1)"*%24)% +1/3)

+(-DFain Y (-4((—1)%@ —1/2)timya(k) + (—1)200m (k)

m=0

+ 3 (bp(k) — 4((=1) 20 — 1/2) i, (k) o (k) + iferQ(k)) (3™,

p=0
Remark 2.9. Define the simply-connected strip domain

B4 = {7 € C| Re(f(re ™1/2)) > & . [Tm(0} (re~™1/2))| < dg, ),

where 0% () = 33/2(—1)%2(eb)/372/3, and CZT*, cZg* > 0 are some (7-independent) constants. The
asymptotics of u(7), f+(7), H(7r), and o(7) stated in Theorem 2.8 are actually valid in D4.

3 Asymptotic solution of the direct problem
of monodromy theory

In this section, the monodromy data introduced in Section 1.4 is calculated as 7 — +o0o for eb > 0
(corresponding to (e1,e2,m(g2)|¢) = (0,0,0/0); cf. Section 2): this constitutes the first step
towards the proof of the results stated in Theorems 2.4, 2.8, E.3, and E.6.

The aforementioned calculation consists of three components: (i) the matrix WKB analysis
for the p-part of the system (1.32), that is,

O (1) = U(p, 7) (1), (3.1)

where W (p) = ¥(u, 7) (see Section 3.1); (ii) the approximation of () in the neighbourhoods of
the turning points (see Section 3.2); and (iii) the matching of these asymptotics (see Section 3.3).

Before commencing the asymptotic analysis, the notation used throughout this work is in-
troduced:

(1) I =diag(1,1) is the 2 x 2 identity matrix,

(01 (0 —i . (1 0
1=\1 0/ 27\ o) M 3= \o -1

are the Pauli matrices, o4 := 5(01 £io2), Ry :={z € R| 2 > 0}, and C1 :={z € C |
+Im(z) > 0};

(2) for (s1,52) € R x R, the function (z — ¢1)*2: C\ (—o00,¢1] — C, 2z + exp(isaIn(z — 1)),

with the branch cut taken along (—o0, ¢1] and the principal branch of the logarithm chosen

(that is, arg(z — ¢1) € (—m, 7);

for wy € C and T € My(C), w")Y 1= w23 Tw:o3;

(3)
(4) for Ma(C) = (), (3(2))i; or Jij(2), 4,5 € {1,2}, denotes the (ij)-element of J(z);
(5)
(6)

1
2

w(t) o(1) means there exists C; > 0 and €; > 0 such that |w(t)| < Cy ||~

for My(C) 3 9(2), V(2).5.,0) (resp., o()) means ;;(2). 5, O(*i;) (vesp., o(*i;)),
i,j € {1,2}

t%fkoo
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A~

(7) for Ma(C) > B(z),

1/2

2
IBE = { D Bi;(-)Bi;(-)
ij=1

denotes the Hilbert—Schmidt norm, where * denotes complex conjugation of %; and
(8) for some 0, > 0, O, (20) denotes the (open) d.-neighbourhood of the point zg, that is, for
20 € C, O5,(20) :={z € C | |z — 20| < d«}, and, for zp the point at infinity, Os, (c0) =
{zeC||z| >0}
3.1 Matrix WKB analysis

This subsection is devoted to the WKB analysis of equation (3.1) as 7 — +oo for ¢b > 0.

In order to transform equation (3.1) into a form amenable to WKB analysis, one uses the
result of [61, Proposition 4.1.1] (see also [57, Proposition 3.2.1]), which is summarised here for
the reader’s convenience.

Proposition 3.1 ([57, 61]). In the system (1.32), let
Alr) = a(r) 3, B =b(r)r O =), D) = d(r)r
fi=prl® () = (), (3.2)

where \Tl(ﬁ) = W(f1,7). Then, the p-part of the system (1.32) transforms as follows:

050 (1) = T/ A, 7) ¥ (), (3-3)
where
N . T b Lir(r)(eb)1/?
A, 7) := — 2ijios + (_ o) 1(7)( ) ) -5 5 o3
1 0 i(eb)
+ = (ib(f) ( )> ’ (3.4)
with
ir(7)(eb)/3 i(q — 1/9) =23 2a(T)d(T) 35
2 N ) (3:5)
As in [57, Section 3.2], define the functions ho(7), 7o(7), and Go(7) via the relations
—a(T)b(T c(t)d(r —a(T)d(T>T_2/3 — } a—i/2)2r 43
V=a(r)b(r) +e(r)d(r) + 5 (50 1@—1i/2)
— Z( b)?/3 — ho(r)72/3, (3.6)
r(1) = =2+ 7o(7), (3.7)
2/3
—a()b(r) = <5b; (1 + do(7)). (3.8)

As follows from the first integral (1.35) (cf. Remark 1.8), the functions a(7), b(7), ¢(7), and d(7)
are related via the formula

a(T)d(T) + b(7)e(r) + iaV—a(r)b(r)T72/3 = —ieb/2, e e {£1}. (3.9)
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It is worth noting that equations (3.6)—(3.9) are self-consistent; in fact, a calculation reveals that
they are equivalent to

tuﬂd@)z(f2w21+a47»(—“f2U3+i@w%?b“)—;@w-umfﬂﬁ>, (3.10)
Mﬂdﬂ::@2”%1+adﬂ)<—K%;B4d@wﬂ3<lﬁﬁgﬂ__%gﬁ>
_ ;(a-+i/2)7_2/3> , (3.11)
hryr2it = O (wO(T))fi éﬁi()%m . <fo<87>>2>
(65)12/?1(1—222/5));_2/3. (3.12)
moreover, via equations (3.8), (3.10), and (3.11), one shows that
—e(r)d(r) = (“562)1/3 ~ien) P (0 - ) 4 S i/2>7‘2/3>
. (“Eglm._i@bﬂZWO“j-+;(a—i/m7—%3). (3.13)

In this work, in lieu of the functions ho(7), 7o(7), and do(7), it is more convenient to work
with the functions ho(7), 7o(7), and vo(7), respectively, which are defined as follows: for k = +1,

ho(T) = (3(6?2/3 (1- e_i%k/‘g) + ﬁ0(7)> 723, (3.14)
—2 + fo(7) 1= e 2/3 (=2 4 7o ()7 3), (3.15)
1+ dig(7) := e 2™/3(1 4 v (1)771/3). (3.16)

The WKB analysis of equation (3.3) is predicated on the assumption that the functions ho (1),
7o(7), and vo(7) satisfy the (asymptotic) conditions

~ _9/3 . —~1/3 —-1/3

\mmhﬁmoh/y W@h;moﬁ/% |Wmhﬁmoﬁ/) (3.17)
Remark 3.2. Some solutions u(7) of the DP3E (1.1) may, and in fact do, have poles and zeros
located on the positive real line. In order to be able to study such solutions, one must consider
a slightly more general, complex domain 35u; however, since, a priori, one does not know the
solutions u(7) which possess such poles and zeros, nor their exact locations, it is necessary to
introduce a formal definition for BSU Denote by P, and Z,, respectively, the countable sets of
poles and zeros of the function u(7). As a consequence of the Painlevé property, these sets may
have accumulation points at the origin and at the point at infinity. Define neighbourhoods of P,
and Z,, respectively, as follows:?" for some e, > 0, let

Pules) :={r€C| ‘91(7') - Gi(Tp)‘ < Cylm| ™, 7 € Pu},
Zu(es) == {T € C| ‘91(7) — 91(73)‘ < Culr| ™, 13 € 2},

20There is a misprint in [57, Section 3.1]: in the definitions (3.2) and (3.3), the inequality > must be changed
to <.
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where 6%(7) is given in Remark 2.7, and C, > 0 is some (7-independent) constant. Now, de-
fine the Swiss-cheese-like, multiply-connected domain D, := DY \ (P, (€,) U Zy(€x)), where the
simply-connected strip domain @Y is defined by equation (2.18). Theoretically speaking, there-
fore, it is to be understood that the asymptotic analysis is undertaken in the sense that ©, > 7
and Re(7) — 400 (with eb > 0); however, due to the (asymptotic) conditions (3.17), which re-
flect the sought-after class(es) of functions analysed herein, it turns out that Py, (e.) = Zy(€x) = &
(see [57, Section 4]), in which case €, is vacuous and may be set equal to zero, and D, = Y.
Henceforth, in the asymptotics of all expressions, formulae, etc., depending on u(7), the ‘nota-
tion’ 7 — 400 means DY > 7 and Re(7) — +o00.

Remark 3.3. The function BO(T) defined by equation (3.14) plays a prominent role in the
asymptotic estimates of this work; for further reference, therefore, a compact expression for it,
which simplifies several of the ensuing estimates, is presented here: via equation (3.12) and the
definition (3.14), one shows that

- 2 (T a—1
ho(r) = a2r2/3 < oi ) 1 +(v0(7')/5z1/3> . k=1, (3.18)

where oy, is defined by equation (2.5), and the function sZ(7) has the following equivalent
representations:

w(r)\? 1 r(r) _ 2/3 i (r (eb)
(57) - (G o amy) (e acuo+ ()
+ (2% 4 ()

200

z (Bva(ﬂ + 470(r)vo(T) = (Fo(m))?)7 /% (fo(T))QUO(T)Tl>

- ?";‘5 1+ vo(r)r—1/3

= (20%— (b)'*r( ) < (eb)!/r(r ))
204,
( 2

1 2€b 2/3 r(r) >>
+ — 14+ + _— . 3.19
aj ( (7 1+ tg(7) (3.19)
It follows from the conditions (3.17) that ‘%g(r) T_jroo(’)(T*Q/?’).

From Proposition 1.5, the definitions (1.31), equations (3.2), equation (3.8), and the defini-
tion (3.16), one deduces that, in terms of the function vg(7), the solution of the DP3E (1.1) is
given by

u(r) = c07k71/3(1 + 771/31)0(7)), k=+1, (3.20)

where cg i, is defined by equation (2.2). As per the argument at the end of Section 1.1 regarding
the particular form of the asymptotics for u(7) as 7 — 400 with eb > 0 (cf. equation (1.3) and
Remark 1.1), it follows that, in conjunction with the representation (3.20), the function vg(7)
can be presented in the form

- Um k — )41 T _
vo(T) 1= vk (T) v Z (Tl/;g()rn)Jrl 1 Ay~ (B)+ikI( ))(1 + (9(7‘ 1/3))7
m=0

k= =+1, (3.21)
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where the sequence of C-valued expansion coefficients {u,,(k)}°_, are determined in Proposi-
tion 3.4 below, ¥(7) and 3(7) are defined in equations (2.10), and, in the course of the ensuing
analysis, it will be established that A depends on the Stokes multiplier 38 (see Section 4, equa-
tions (4.71) and (4.92)). From equation (3.20) and the expansion (3.21), it follows that the
associated solution of the DP3E (1.1) has asymptotics

o0

ik s )
u(r) = copr/? (1+ U, (k) 1 Apr B BRI (1 4 O 1/3))>’

k= +1. (3.22)

m=0

Proposition 3.4. For u(r) the corresponding solution of the DP3E (1.1), let the function
vo(7) = voi(T), k = £1, have the asymptotic expansion stated in equation (3.21); then, the
expansion coefficients uy,(k), m € Z, are given in equations (2.2)—(2.9).

Proof. See Appendix A. |

It follows from equations (1.44), (3.2), (3.5), and (3.7) that

u/(7-) —ib - 2 < 2(1(7')(1(7') + 7-_2/3(ia + 1/2)> _ i(eb)l/gT_l/?’(—Q + f’Q(T));

u(t)  71/3 —a(T)b(7)
thus, via the definition (3.15), it follows that
jo—i2mk/3.2/3 W/ () — ib
Fo(r) = 271/3 — k= +1. 3.23

Proposition 3.5. For u(r) the corresponding solution of the DP3E (1.1) having the differ-
entiable asymptotics (3.22), with u,(k), m € Z4, k = £1, given in Proposition 3.4, let the
function 7o(T) be given by equation (3.23); then, 7o(7) has the following asymptotic expansion:

r r N m k —(B(T)+ikd(T —
7o(7) = Tok(7) T Z (T:/g()rrzﬂ + 2(1 + k\/g)Ake (B(r)+ikd( ))(1 + O(T 1/3)>7

k=1, (3.24)
where the expansion coefficients ty,(k), m € Z4, are given in equations (2.13) and (2.14).

Proof. Substituting the differentiable asymptotics (3.22) for u(7) into equation (3.23) and using
the expressions for the coefficients cg , w, (k), and 1o,,(k), k = £1, m € Z, given in the proof of
Proposition 3.4 (cf. Appendix A), one arrives at, after a lengthy, but otherwise straightforward,
algebraic calculation, the asymptotics for 7(7) := 7 1(7) stated in the proposition. [

Remark 3.6. Hereafter, explicit k dependencies for the subscripts of the functions wvg(7)
and 7(7) (cf. equations (3.21) and (3.24), respectively) will be suppressed, except where abso-
lutely necessary and/or where confusion may arise.

In certain domains of the complex pi-plane (see the discussion below), the leading term of
asymptotics (as 7 — +oo for b > 0) of a fundamental solution of equation (3.3) is given by the
following matrix WKB formula (see, for example, [28, Chapter 5]),%!

T () exp (—03172/3 /Ml(i)di - /M diag ((T'(€)) ' 9T(€)) d§> = Wyien (1), (3.25)

21 Hereafter, for simplicity of notation, explicit 7 dependencies will be suppressed, except where absolutely
necessary.
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where

1(1) = /det(A()), (3.26)
and the matrix 7T'(7z1), which diagonalizes A(fz), that is, (T(2)) AT (n) = —il(p)os, is
given by

T(3) : (A ~ il(f)o3) o5, (327

VA (An () — (D)

Proposition 3.7 ([57]). Let T'(i) be given in equation (3.27), with A(x) and I(j1) defined by
equations (3.4) and (3.26), respectively. Then, det(T (i) = 1 and tr((T(1))"'0;T(1)) = 0;
moreover,

1 (A12(/7)8gA21(ﬁ) - A21(l7)3ﬁu412(l7)> o5,

2 20 (AL ) + (1)) (3.28)

diag (T(7) "' 05T (7)) = —

Corollary 3.8. Let \TIWKB(]I) be defined by equation (3.25), with I(j1) defined by equation (3.26)
and T(f1) given in equation (3.27); then, det(Wwyp () = 1.

The domains in the complex pi-plane where equation (3.25) gives the (leading) asymptotic
approximation of solutions to equation (3.3) are defined in terms of the Stokes graph (see, for
example, [28, 63, 80]). The vertices of the Stokes graph are the singular points of equation (3.3),
that is, i = 0 and [i = 0o, and the turning points, which are the roots of the equation (?(jz) = 0.
The edges of the Stokes graph are the Stokes curves, defined as Im( fﬁfTP (¢ )df) = 0, where firp
denotes a turning point. Canonical domains are those domains in the complex ji-plane containing
one, and only one, Stokes curve and bounded by two adjacent Stokes curves. (Note that the
restriction of any branch of I(zt) to a canonical domain is a single-valued function.) In each
canonical domain, for any choice of the branch of I(z), there exists a fundamental solution of
equation (3.3) which has asymptotics whose leading term is given by equation (3.25). From the
definition of (1) given by equation (3.26), one arrives at

() = () = ;((ﬁ —a}) (B + 203) + Bho(7) + ' (a — i/2)77?),

k=1, (3.29)

where «ay, is defined by equation (2.5). It follows from equation (3.29) that there are six turn-
ing points. For k = =£1, the conditions (3.17) imply that one pair of turning points coalesce
at oy with asymptotics (’)(7"1/3), another pair has asymptotics —ay, + (’)(7_1/3), and the two
remaining turning points have the asymptotic behaviour =iv/2ay + (’)(7*2/ 3). For simplic-
ity of notation, denote by p1(k) any one of the turning points coalescing at aj, and denote
by fi2(k) the turning point approaching ikv/2ay. Let Gs(k), k = £1, be the part of the Stokes
graph that consists of the vertices 0, oo, f1(k) and jia(k), and the union of the (oriented)
edges arc(ikoo, ia(k)), arc(pz(k),0) and arc(us(k), —o0), and arc(ikoo, i11(k)), arc(muy(k),0),
arc(0, fi1(k)) and arc(fi1(k), +00); the complete Stokes graph is given by Gs(k) U e"Gs(k) (see
Figure 1 (resp., Figure 2) for the case k = +1 (resp., k = —1)).

Proposition 3.9. Let I2(1), k = 1, be given in equation (3.29); then,

[ e = 1@ - Tilfios) + OEw®) + Olex(ion), (3.30)

~ T—+00
1o,k +
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Im (jz)

1[&1/
/ / 3

[
\ /f

Figure 1. The Stokes graph for k = +1.

Re(f)

where, for § >0, [, fior, € C\ (017516 (Fay) U O 273125 (£iv2a) U{0,00}) and the path of
integration lies in the corresponding canonical domain,

() = (€4 2026 ) (€2 +202) 7 + 772 (a —i/2) In(¢ + (£ +203) ')

—2/3 . 22/
+ Wi ((a —i/2) + oz,%ho(T))

1/2(¢2 2\1/2 _ _
i ((3 (€ +207) " 5+2ak) (5 ak)> (3.31)
31/2(¢2 4 202) / FE4 20 &+ oy
and
( ((aii/Q) c1 ez k2 3ho(T)+ez (T2 3ho (1) ’
192\/(5;% +O( Foan ( ) >, e},
(e )
P0384(6) = { e+ O(EF 1v3ag) (3.32)
X (cap + o pT /3h0(7) + co.k (T 2/3]10(7))2))7 ez,
() +7'2A/3i10(7')f2,k(§71) (T 2/3h0 T))2f3,k(571)7 § — o0,
fae(€) + 72/3ho(7)f5,6 () + (T23ho(r )) fo,k(£), §—0,

where Uy := O__1510, (Fay), U2 := 03125, (£iV204), the parameter 8, satisfies (see Corol-
lary 3.10) 0 < § < 0 < 1/9, d(;l%: 9 1/4eFidm/4y, 73 2/27 fik(2), 7 =1,2,...,6, are ana-
lytic functions of z in a neighbou}“hood of z =10 gzven in equations (3.38)~(3.43), and ¢,
m=1,2,...,6, are O(1).
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Im (jz)

\71\/5&1

—a_; (o)

Figure 2. The Stokes graph for k = —1.

Re(f)

Proof. Let [3(f1), k = +1, be given in equation (3.29), with ay defined by equation (2.5).

Recalling from the conditions (3.17) that ‘ho |T;+OO(9(7'_2/3), set
R oo()) = 47747 = a})” (7 + 207). (3:33)
Define
_ kB - B @) @Pho(r) + e —i/2)7 3
Ak,T(,U) = 2 (1 = —o N2 [~ 5 ) (3'34)

hence, presenting 11, (%7) as I (51) = lg.0o (1) (1 + A+ (11))/?, a straightforward calculation, via the
conditions (3.17), shows that, for k = +1,

() = oo () (14 Ak (7)/2 + O(=(Ak2(7))*/8))
3 - ho(r) + fi*(a — i/2)7—%/%
T%_+oo2(1 - OZ%/MQ) (M + 2a ) ((;72 _ ai) (/’12 + 20[%)1/2
(722 - ak> <u +2a )3/2

Integration of the two terms in the second line of equation (3.35) gives rise to the leading
term of asymptotics in equation (3.30), and integration of the error term in the third line of
equation (3.35) leads to an explicit expression for the error function, €x(-), whose asymptotics
at the turning and the singular points read: (i) for § € O_—1/345, (fag), 0 < < 0 < 1/9,

2y1/2

T4/3 _ ((a=i/2) + a7 Bho(r )Y doag(r) N n(é T a
ek(f) PEENTIOS 192\[(£$ak) + £T o +d07k( )l (f:F k:)
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+ 3 A s F )™, (3.36)

meZy

where

(1) 1= & + 88 7 Pho(r) + & (PPho(r))?, me (-1} UZy,

and ¢ 4, 7 € {b,t,4}, are O(1), and thus, retaining only the first two terms of the expan-
sion (3. 36) one arrives at the representation for £;(€) stated in the first line of equation (3.32);
(11) for { c 07—2/3+25k (ii\@@k),

2714 ((a —1/2) — 723ho(7) /202)*
Thoo 27042/2eii37f/4 (¢F i\@ak)l/2
+(EFiv20) Y dup(m) (€ FiV2er) ", (3.37)

mEZy

T43E4(€)

Jmk(T) = E?n’k 4+ 72/3%(7) + Eﬁn,k (72/350(7))2, m € Zy,

m,k

and ¢ ., r € {b,f, i}, are O(1), and thus, keeping only the first two terms of the expan-
sion (3.537), one arrives at the representation for € (§) stated in the second line of equation (3.32);
(iii) as £ — oo, one arrives at the representation for €x(&) stated in the third line of equa-
tion (3.32), where

—i/2)2 o
fLr(z) = ((181/)22 + (a —i/2)%2° Z cmlkzzm (3.38)
meEZy
—i/2 .
fon(z) = (“81/)Z4+ (a—i/2)2% Y &2 22, (3.39)
meEZy
fan(z) = 0N e (3.40)
mEZy
and ¢ cmk, =1,2,3, m € Zy, are O(1); and (iv) as & — 0, one arrives at the representation

for Sk(f stated in the fourth line of equation (3.32), where

(a — 1/2)2 2 9 F0,4 2

far(z) = 792 —i/2)%z Z A 2™ (3.41)
56\/§a meZy
(a—1/2) 5 P om

fs.n(z) = —1/2)2" Y dy (3.42)
20\/> m€Z+

o (2) = N d (3.43)
24fak il

and d7, r = 4,5,6, m € Zy, are O(1). [

Corollary 3.10. Set gy, = ap + 7 1/31\ k = +1, where A
then,

O(r%), 0 < 6 < &, < 1/9;

T—>+oo

/ " L©ds = T+ T+ 0@ + 0(r 1KY + 0(r k)
M

~ T—
0,k too
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1
+ O <TK(C1’k + C27k7—2/3h0(7-) + 3k (T2/3h0(7'))2)> s (3.44)

where 1 (1n) and Ex (1) are defined by equations (3.31) and (3.32), respectively,

Y= F3V3ai F2V3r PA% — 7723(a — i/2) In((V/3 £ 1) e ™IFV/2)

# (@ i/2) + 7 r %) (nh - F 7 (s (3.45)
——((a —1 QT T nA— -In7—In(3a , .
2v/3 S 3 ¢

with the upper (resp., lower) signs taken according to the branch of the square-root function
limgz_, o (€2 + 204%)1 R (resp., lime2_, o (€2 + 2a%)l/2 =—00), and ¢, m = 1,2,3,

are O(1).

Proof. Substituting fig, as given in the corollary, for the argument of the functions 1%(¢)
and €x(§) (cf. equation (3.31) and the first line of equation (3.32), respectively) and expanding
with respect to the “small parameter” 7—1/3A, one arrives at the following estimates:

~Yi(fios) = Y+ 0 A +o(rA)
+O(r7 A ((a — i/2) + a;. 272 ho(1))), (3.46)

where TIB is defined by equation (3.45),

~ 7'_2/3 2 92/3% 2
O(Ex(f0.1)) T_>:+ooo< e ((a =1/2) + @ 272 ho(7)) )
+ 0 <T[:{1 (Cl,k + 627k7'2/3ilo(7') + C3 (72/3ﬁ0(7))2)> ) (3'47)

and ¢k, m = 1,2,3, are O(1). From equations (3.12), (3.14), (3.15), and (3.16), one shows
that

N a?(a —1i
_7'2/3h0(7') = 1_‘_]{:1()0(7_)7_/_21)/3
N aﬁ (82}%(7’) + 47 (T)vo (T) — (Fo(T))? — UO(T)(fO(T))QT_l/?’)
4(1 + vo(r)7=1/3) ’

whence, via the conditions (3.17),

+2/3
(a—i/2) + a—zho(f)
a2
rtoo —Zk(SU(Q)(T) + 4oy (1)70(T) — (77()(7-))2) + (a — i/Q)U()(T)T*l/S
+0((26(7) + vo(m)o() o)) + 0w (r)7 /%), (3.49)

Note from the conditions (3.17) and the expansion (3.48) that

: 3 —-2/3
(6—1/2)+7zh0(7) T—>:+ooO(T ),
i+ canmPho(T) + C3,k(72/3ﬁo(7))2 = 0(1):

T—400
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from the expansions (3.46) and (3.47) and the latter two estimates, it follows that
~Ti(for) _=_ T+ O A% + O 1A) + O(r*F4), (3.49)

O(Exlfink) = O(r7 A + O(r72A72), (3.50)

whence, introducing the inequality 0 < § < J§; < 1/9 in order to guarantee that the error
estimates in the expansions (3.49) and (3.50) are o(1) after multiplication by the “large param-
eter” 72/3 (cf. equation (3.25)), retaining only leading-order contributions, one arrives at

~ ~ 1 A A
T (fok) + O(Ek(fok)) T_>:+OOT,§ +0 <7\ (cvk + conm®3ho(r) + cax (72/3h0(r)>2)>
+ O(T_IKS) + (’)(7_17&),
which, via equation (3.30), implies the result stated in the corollary. |

Corollary 3.11. Let the conditions stated in Corollary 3.10 be wvalid; then, for the branch
of l(§), k = %1, that is positive for large and small positive &,

_ir2/ / " e)de

10,k

= PR+ (a = 1/2) ) +33(V3 - 1)air?? +i2VEA% + OX
—00

— (= 1/2) + ag*Tho(n) (é - Ik 4 In (w;ﬂ)))

~1/3 ) .
+0 (T A (er + e247ho(r) + 30 (72/3}10(7))2))

FO(TVBR) + O(r7VBR) + O(r¥373), (3.51)
where
WEB i=1i(a —1/2) In((V3 + 1) oy /2), (3.52)
and
—ir?/3 /ﬁ ;k 1 (€)de 75(?0;12\/%272/3 —i3v3agr?/® —i2v3A% + 2\1/5 ((a—1i/2)
+ a,;%?/%o(r)) <:1)) InT —InA + ln(3ake‘i”’“)> + CYER
+0 (T];/g (ca + C5,k72/330(7) + C6,k(7'2/3ﬁ0(7_))2)>
+O(r7V3A3) + O(r3R) + O(r3 (ho(r)) '), (3.53)
where
CYRE = —i(a —1/2) In((V3 +1)/V2), (3.54)

and ¢y, m=1,2,...,6, are O(1).
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Proof. Consequence of Corollary 3.10, equation (3.44), upon choosing consistently the corre-
sponding branches in equations (3.31) and (3.45) and taking the limits g — oo and g — 0: the
error estimate O(Ex(§)) in equation (3.44) is given in equation (3.32); in particular, from the
last two lines of equation (3.32),

~ —9/3~_ ~ - 2
(9(72/38k(y)) e O(r 230 %) and 0(72/351@(/1)) e O(Tz/S(h()(T)) %),
p—o00 —0
which implies the results stated in the corollary. |

Proposition 3.12. Let T (i) be given in equation (3.27), with A(i) defined by equation (3.4)
and 12([), k = %1, given in equation (3.29); then,

[ ding ((T©)0T(©) de = Tpli) + OEr(@) + OEra(To)) s, (359)

1o,k -+

where, for 6 > 0, f1, fiox € C\ (O, —1/316(Fog) U O 23125 (iiﬂak) U {0,00}) and the path of
integration lies in the corresponding canonical domain,

Zr k(1) = pr(T) (F 7 k(1) — F 7 k(o)) (3.56)
with
(1) = Oé% (—2 + 770(7')7’1/3 +2(1+ UO(T)T’1/3)2) —(a— 1/2)7"2/3 (3.57)
Prl7) = 8(—2+ 7o (T)T=1/3) (1 + vo(r)7~1/3) ’ '
2 2 31/2(e2 4 202) 2 — ¢ 4204\ (€ —
FT,k(g)::€2_a2+3\/§ 21n 2\ 1/2
k g 31/2 (52 + Qak) + &+ 20 §+ag
2 4 942)1/?
_ izf(é;i——a,;)’ (3.58)
3ay §%—ay
and
¢ Fo(m)r B34S Fie(r) & Fo(r)rT/3
pi(7) (Cl’k e e ) . LU
2 Cz,k ¢ : 2
P L (et + el ivEa) ), e, .
’ pe(T)E4 (4 o ()73 + O((2 o (r) =173
re e ), o
Pr(T)To(m)T 133 (4 + O(9)), £—0,

where Uy, := O__1/s1s, (), Ui := O__2/312s, (ii\/iak), the parameter 0y satisfies (cf. Corol-
lary 3.10) 0 < § < 0 < 1/9, the functions f1(7) and §31(7) are given in equation (3.74),
and cfnk, m=1,2,...,9, are O(1).

Proof. From equations (3.4), (3.15), and (3.33)—(3.35), one shows that
20 (A1) + () = Pook() + Pra(€) A (§) + O(IF oo (§)AF 1 (6))

T—+
(Eb)1/3

2€

+0 (lk,oo(f)Ai,T(f) (25 + (—2+ fo(f))>> , (3.60)
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where
1/3
P (€)= 20 (€) + 2l ol (25 + 2 fom)) 7
1/3
PLK(E) = 28 e €) + ke (6) <2€ ek fom)) , (3.61)

and, via equations (3.4), (3.10), (3.15), and (3.16),

A(eb)*3 (2(1 + dp(7))? + (=2 + Fo(7))
& ( 2(1 + (7)) >
4(eb)3(a —i/2)r—2/3
G +iao(r)
Substituting equations (3.60) and (3.62) into equation (3.28) and expanding (2{x(£)(iA11(€) +
11(€)))~! into a series of powers of A -(€), one arrives at (cf. equation (3.25))

A12(8)0¢ A21(§) — A21(£)0: A12(§) = —

(3.62)

o . (" 1
/ﬁ  ding (€))7 (6)) H—m< A

Py (&) Ap,r ()
+O<”’“(T>/ﬁo,k EP s (0) df))"?” (363)

where

(1+ao())* + (=2 + fo(f))> 2t a2

,(T) = e
(r) = (D) < 1+ () 1+ (1)

Via equations (3.33) and (3.61), a calculation reveals that

D) () <§(f(4£2+<eb>1/3<—2+fo<f>>>—4(52—ai)(52+2ai)”2)> (3.64)
EPeoilt) (€ -ap)(@+20) P(@ 43 M) (@ +5:(0) )

where pi(7) is defined by equation (3.57), and

) o (eb)B —2+ 7o(7)\?
0= Ry (( )

— 3eI™/3 1 \/<<_2+2T°(T)>2 - Sei”k/3>2 +8(—2+ fo(r))> : (3.65)

One shows from equations (3.15) and (3.16), the conditions (3.17), and the definition (3.65) that

5 (1) M (1 + (1 * \/§> Fo(T)r ™3 4 (3\/§i 5) (fo(7)7*1/3)2

T oo 2 4 163
+ O((fo(T)T_l/?’)g)) ;

whence, via equation (3.64), the first term on the right-hand side of equation (3.63) can be
presented as follows:

z 1

- mdﬁ = Tk + Tag(i) + O(Zs i (),

25, (T)
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where
Zr k(1) (1) / " 1E( 4 207) % d¢ (3.66)
- = pr(7 — , .
R @ v @ o)’ (@ o)
N s [ [ 402€2(€2 4 202) " 202¢
Z, = 1/3 k k — k de, 3.67
W) = pe( () < @] @) (3.67)
il 4¢2(¢2 2\1/2 3
T i(p) == 2 —ym2 [ < € (6% +207) 4
k(1) == pi(7) (Fo(r)7~1/7) /ﬁo,k (@ +202) (€2 — oz%)4 (& ai)4
4(¢2 2\1/2
4E1(E +203) - de. (3.68)
(€2 +203) (€% = of)
A partial fraction decomposition shows that
£2 ot +a,;2 1 oyt
(£2+2a%)(£2_a%)2 36 - 12 (E—ar)? 36 £+
n akQ 1 2a,:2 1 (3.69)

2 (&4 ag)? ) £2+2ai;

substituting equation (3.69) into equation (3.66) and integrating, one arrives at equations (3.56)—
(3.58).

Equations (3.67) and (3.68) contribute to the error function, &£;,(-), in equation (3.55);
therefore, only its asymptotics at the turning and the singular points are requisite. Evaluating
the integrals in equations (3.67) and (3.68), one shows that

P (770 ()T Y3 (01 () — by p(fion))s JL € O _—1/sis, (£ar),
_ pie(T)Fo(T) 73 (ho o (70) — b2k (Fiog))s 7 € O, —2/aras, (£iv20),
T = I JO . T 3.70
#E) T=+o0 | py (7)o (1) 1/3 ({)3,k(#) - ?S,k(ﬂo,k)), p— 00, (3.70)
pi(T)Fo ()73 (Ba(72) — bak(Fog)), i — 0,
where
bi(€) == p(EF o) 2+ 5 Faw) "t + 3 In(E Fay) Z &, o (& F o)™,
meZy
boi(€) = (€Fiv2a) 2 Y A (€ FIV2a)™ + 3 & (€ F iv2ak)™,
m€Z+ m€Z+
bsi(€) =€ Y e hap() =62 Y cif,kgm,
meZy meZy
and c?}k, c;k, cg’k, d?mk, Con o> dfn,k, Eﬁk’ and ¢ k are O(1), and
(pk( )(7"0 1/3)2
x (bs, k( ) — 525 k(To,k)) fE O _—1/31s, (£ou),
. pi(7) (Fo(r)771/3)
Iy = - _ 3.71
) e (b6 k( ) — b6,k ,A(Mo k))  HE O ymtas, (£iv201), (371)

i (7) (7o 1/3) (? - [37,k(/70,k))a L — 00,
[P (7) (Fo(T)7 1/3)2(f) — b (fio k), p— 0,
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where
b5, (€) = &1 (€ F o) P + B p(€ F o) 2+ B¢ F o)™+ In(E F o)
+ Z d f:F Oék a
meZy
Bo(€) = (€ Fiv2ay) ' S EFV2)" + Y d (€ Fiv2a,)",
meZ4 meZy

bri(€) :=€0 Y e, be () =€ D hlem,

meZy meZ4

~b ~b ~b ~b b ”h AU ﬁv Aﬁ’
and & i, €y, E3 p Cpo Ay ks G s iy g €y and €y are O(1).

One now estimates the second term on the rlght hand side of equation (3.63). From equa-
tions (3.33)—(3.35), it follows, after simplification, that

/ﬁ EPLEO AL (E)
Ho,k (537300,14(5))2
-/ PoE(e(a€2 + (1) 3(=2 + fu(r)) +8(62 — o) (€2 + 203)*)
Fok (€(4€2 + (eb)1/3(=2 + 7o(7))) + 4(€2 — a2) (€2 + 202) /)
(&ho(1) + E4a — i/2)7~%/3)
X d
4(¢2 — a2)® (€2 + 202)?

Evaluating the integral in equation (3.72), a lengthy calculation shows that its asymptotics at
the turning and the singular points are given by

mEP (AR ()
7 /u (6P k()
bo.k(F) — bo(fiok), 1L €O _—1ses, (L),
_ th k( ) f)10 k(MO k)a RS (‘)7_—2/3+25,C (:i:i\/iak),
T—+00 {]11,]4( o) — ?11,k(uo,k), L — 00,
b2k (1) — br2x(fok), 1 — 0,

(3.72)

dg

(3.73)

where
Bo.k(€) == & ok (7)f1e(7) (€ F o) 2 + pi(7) (%ﬁzk(ﬂ
+ & o(r)r Ph(n) (€ F akr?’,
b1o(€) = éi,kpk( sk (T) (€ F lfak) + 05 WP ()3, (7) In (€ F iv20),
bui(€) == pk< ) 2/35 (& + €7@, + &, ho(r))
O (o 1/3( kTE (010k+6§1 kTZ/ShO( ))))
612,k( ) = pk( )T 2/354 (012 kT2/3h0( )+ 5013 k72/3h0( )"‘f (6§4k + 5?5,1672/%0(7))
( T3 (C 16, kT2/3h0(T> + 5017,1472/3;10( ) + ¢ (CIS k
+03 2/%0 (M)
), &

and @ m=1,2,...,19, are O(1

m,k’

2 . 25(5)ho(1)72/3 _ )
fin(r) = ((a—1/2>+ 5 f()_(}()jll)az> B o123 (574
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where §(1) = §(2) = +1 and §(3) = —1. Thus, assembling the error estimates (3.70), (3.71),
and (3.73), and retaining only leading-order terms, one arrives at the error function defined by
equation (3.59). [

Corollary 3.13. Set jig), = o + 7‘_1/3K, k = 1, where /N\Tﬁjoo(’)(r‘sk), 0<d < <1/9;
then,

Mo,k

[ dis(rentoT©)a = (pw) (F o) + 12 4()) + O(Enn(B)

Lo ((W—l/ﬁ” + eq(Fol7) + 4uo(7)))

-1/3 .
X (cl’“ T+ caTo(7) > > > o3, (3.75)
AQ

where p(7), F (&) and Erx(§) are defined by equations (3.57), (3.58), and (3.59), respectively,

FE.JC(T) = i <\/§:F 1) 2 (—;ln7+ln1~\> + (5i3\/§)

— — :F N 7
oA V3 3\/504% 6\/304%
2
+ —In(3ay), 3.76
with the upper (resp., lower) signs taken according to the branch of the square-root function
limgz 4 o (52 + 204%)1 2 4o (resp., limga_, | o (52 + 204%)1/2 = —00), and ¢y, m =1,2,3,4,
are O(1).

Proof. Substituting /i x, as given in the corollary, for the argument of the functions f , ;(¢)
and &r,. (&) (cf. equation (3.58) and the first line of equation (3.59), respectively) and expanding
with respect to the small parameter 7—/3A, one arrives at the following estimates:

—F 7 (Fo.k) v Fﬁﬂk(r) +O(r734), (3.77)

where f E 1 (7) is defined by equation (3.76), and

Oralfior) = O (‘“’“(7)”’(7)> +O (‘W““(T)> +O (*“’“(73{0(7)) . (37)

—+00 r—1/372 F—2/3 A2
From the conditions (3.17) and the definitions (3.57) and (3.74) (for j = 1), one shows that

pr(t) = p(r) + O((Folr) — 2v0(7))7 )

T—+00
+ O(((fo(r) — 200(7))(To(T) + 4vo(T)) + 41)8(7‘))7'_2/3), (3.79)
where
+—1/3
PE°(7) = e (—0k(fo(7) + dvo(7)) + (@ —i/2)7 1), (3.80)
fatr) | =7 (Gl =2 + Ol 7)

+ O(8v3(7) + 4vo(1)7o(7) — (fo(r))Q)); (3.81)
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thus, from the conditions (3.17) and the asymptotics (3.78)—(3.81), it follows that, for c,, s,
m=1,2,...,6, that are O(1),

Cl’kT_1/3 + CQJCFO(T)

O(Eri(10,k:)) =0 (( =~ > (ca V3 4 cypo(Fo(r) + 4110(7))))

—+00 A2

—1/3
+0 ( 3 (057kf0(7)7_1/3 + c6,170(7)(Fo(T) + 4110(7))))

_ —2/3% 2 —13-1
H_+00(9(T AT+ 0(r AT, (3.82)
From the conditions (3.17), equation (3.56), and the asymptotics (3.77) and (3.79), it follows
that

Tow(fi) = pi(r)(Fra(fi) + FE (7)) + O((Fo(r) + duo(r))m~2/3A) + O(r'A).  (3.83)

T—+00

Therefore, via the asymptotic estimates (3.82) and (3.83), and the fact that /N\T_;OOO(T‘S’“),

0 <0 < 0 < 1/9, the result stated in the corollary (cf. equation (3.75)) is a consequence of
Proposition 3.12 (cf. equation (3.55)), upon retaining only leading-order contributions. |

Corollary 3.14. Let the conditions stated in Corollary 3.13 be wvalid; then, for the branch
of l(§), k = 1, that is positive for large and small positive &,

/f diag ((T(¢))™'9:T(8)) d¢

Mo,k

Cl,kal/S -+ C27kfo(7'))

= (norizo o (T

T—r+00
—00

X (Cg’kal/g + C4’k(7:0(7') + 41)0(7'))))
+ O 2773 (es 17713+ o p(Fo(T) + 41;0(7))))> o3, (3.84)

where p(7) is defined by equation (3.57),

3—1)rl/3 2 1 < —
FE_’(ZO(T) = — (\[ )I — 3 <—1n7—|—lnA> + > \/2§
’ V3agA 3V3a2 \ 3 6v/3a2
2
+——In(3(2 - V3)ay), (3.85)

3\/§ak

and
[ " diag((T(€)) 10T (€))de

-1/3 ~
c7 kT 7+ e kTo(T)
T too <pk(T)F3’3€(7) * O<( : A2 e >

n—0

X (Cng_l/g + c10,%(To(7) + 47)0(7))))
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+ O(E2r Y3 (11 72 4 o i (Fo (1) + 400(7)))))03, (3.86)
where

3+1)71/3 ~ 5+ 9v3

FE’%(T) = — (\f—i_ )I + 2 5 <—1lnT+lnA> —7( + \2[)

’ V3 A 3v3a2 3 6v/302

2 .

+ 1 elkﬂ— 3 , 387
302 n (e /3ay) (3.87)

and ¢, m=1,2,...,12, are O(1).

Proof. Choosing consistently the corresponding branches in equations (3.58) and (3.76), and
via the third and fourth lines of equation (3.59), respectively, one shows, via the conditions (3.17)
and the asymptotics (3.79), that (cf. equation (3.75))

Frr(R) 750000 32% + 3\[;]% In(2 - V3) + 0 ?), (3.88)
Frr(i) 5000 _Oizg +3 \/éa% In(*7) + O (%), (3.89)
O(Ern(i) = O 7o(7)(Fo(7) + duo(r)r~*/%) + O(F 7o (r)r™"), (3.90)
O(Ers(i)) = O(*7o(r)(o(r) + 4o (T))T723) + O (7o (T)T7Y) . (3.91)

Via the conditions (3.17), equation (3.76), and the asymptotics (3.79) and (3.88)—(3.91), it
follows that (cf. equation (3.75))

P () (F k(@) + 15 4(T)) = pr(0)F 23 (1) + O (i (Fo(7) + dup(r))r %)

+O(E 223, (3.92)
p(r) (k) + F24(1) = pu()F24(7) + O (2 (7o (7) + dvo(r))r )

+O(u*r 23, (3.93)

where F EZO(T) and F 3%(7’) are defined by equations (3.85) and (3.87), respectively. The results
stated in the corollary are now a consequence of the conditions (3.17), equation (3.75), and the
asymptotic expansions (3.90)—(3.93), upon retaining only leading-order terms. |

Proposition 3.15. Let T (i) be given in equation (3.27), with A(i) defined by equation (3.4)
and 12(p), k = 1, given in equation (3.29), with the branches defined as in Corollary 3.11;
then,

W, 5.
— 00

L 1 0 P 4 o)
(b(T)) 5 ad(os3) (I + = (2(ai/2)7—_2/3(Eb)1/3(2+7ﬁ0(7_)) 2 .
. 4(b)2/3 (140 (1))

vo () ?)))) 320
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and

T(7) 5000% @Z—D_éadw (G D (D)

o (P (0 ) o

where ¢1(7), ¢2(T), ¢3(7), and c4(7), respectively, are defined by equations (3.99)—(3.102).

Proof. The proof is presented for the asymptotics (3.94). Let the conditions stated in the
proposition be valid. Then, via equations (3.10), (3.15), and (3.16), and the conditions (3.17),
one shows that

() = 20+ le(a —i/2) 773+ O3\ (7)), (3.96)
i(A(f) — il (1 = 4 0 44_1?((7'1)&(11 ¢ (7)1
i(A(r) — ilg(1)o3)os Tf}ofo + —i2d(r) 0 + =03,(7)
1 0 (Li) ~_33% k0
(0 B ol (L)
1 1 LD%O(T) 4k
V2ile(7) (A1 (R) — ilx(R)) rﬁmoo An <1 PR +O(n )\2(7'))> ) (3.98)
where

00, (1) = (6121/3 (=24 fo(m)) + (1) 2m + 1) (a —1/2)7723,  m,j e {0,1},

. o 1
Ai(r) = =30+ ho(r) = 7 (a —i/2)* 7%,
Ao (1) = 3 (1) + eage (09 o (1)) + cs 7 H308,o(7),

and ¢y, m = 1,2,...,5, are O(1); thus, via the conditions (3.17), equation (3.27), and the
expansions (3.96)—(3.98), one arrives at the asymptotics (3.94), where

¢ (1) =205 ,()/8. (3.99)
Proceeding analogously, one arrives at the asymptotics (3.95), where

(=2 + 7o(7))?

¢o(7) == — 320 (3.100)
—3ad + ho(r 3(=2+7o(T))%  2(1 + Gg(T

c3(7) = k4a2 o(m) _ 3 32(—;))0153» ( (;))1(}2 >), (3.101)
Bal—ho(r) | 3(=2+ #o(7))? 200 ,(7)

i(r) = g 2D @+ (D) 102

with 0871(7) defined above. [
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Proposition 3.16. Let T'(i1) be given in equation (3.27), with A(jz) defined by equation (3.4)
and 13(f1), k = %1, given in equation (3.29). Set figr = o + T “13N, where AT%JFOOO(T‘S’C),
0 <9< <1/9; then,

T (Fio i) (b(r) 2 [ (w3 (2e0)w
1o,k T—+00 (2\[(w + \f)) 7&1)?52 w+ V3
w _ (25b)1/2 (2w+\/§)w
3o 3(w+v3)ag ~1/37%
T V2(2w+v3)w ( e ) 1A
3(eb)1/2 (w+/3) e a
T11,k(w;7) T12kz(w;7)> 1 ((clk C2k> ~1/3% 2>
+ (. 7 ~to((MF M2, (3.103
(Tm,k(w; 7) Tor(w;T)) A Bk Clk (v ) ( )
where

2 3ak
1/2 ot o 7.—1/3A>k .
Tiok(w;7) := <Eb> (wakvo( )= — o) _ (1+23w) 9. ( )) 7

w arTo(T 7'_1/3A* T
Tr1k(w;7) = Toop(w; 7) := N ( kTo(7) 9(7) ,

(w—%—\[) 6(w+\/§)ak

(i) ) /3(Fo(r) + 2u0(7)) + 2(a — i/l ™/ 3718
o1 k(w5 T) 1= (2¢b) 1/2 23/2 eb) 1/60— 17rk/3( +Uo(7')7'*1/3)
w 7_—1/3 *(r
Oszo 7') + 1+2f 3ag ( )
4(@—1-\[) 7

with g; (1) := 72135, 1(7), where §1 4x(7) is given in equation (3.74) (for j = 1), (K2)1/2 = w\,
w = %1, and ¢, m=1,2,3, are O(1).

Proof. Set T'(i1) = (T'(jt))i j=1,2. From the formula for T'(fz) given in equation (3.27), with A(z)
defined by equation (3.4) and I3(1), k = %1, given in equation (3.29), one shows that

— e (A (p) — il (R)) ~ 1A12(12)
Tl = el = VA - 07 M S [P Wt o e oA
_ iAo (1t

) = R ) =) (3100

From equations (3.4), (3.10), (3.15), and (3.16), the conditions (3.17), and equation (3.74)
for 1 x(7) (with associated asymptotics (3.81)), one shows, upon taking fi; as stated in the
proposition, that

1

V2l (7o 1) (A1 (Fo.x) —Nilk(ﬁo,k))
AT S T

T—+00 4(2\/§(w+\/§))1/2 6(w +v3)ay
B arto(1) +2(1 4 2v3w) (Ba) “tag(r)TY/3 1
8w(w + \/3) A

+o<<~/3ﬂ>2>), 05
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1A11 (k) + Lk (Fo k)

— de(w 4 V3) VR (1 _VB(THVB®) g

6(w + \/g)ozk
LO((rPR)?) + (ak%(ﬂ +2w(\/§ak)_1gz(7)7_l/3> E) ’ (3.106)

T—+00

Ao (w + \/g) A
—iAw(for) = (b(1)) " (=2(eb)ai 377 3A + 3(eb)a (7 PA) + O((r/3R)?)

= 2(eb) e g (r)r 1), (3.107)
iAQl(,lNL(),k) T—>:+oo b(T) <2a’;37_1/37x _ 304,;4 (T—1/37\)2 + O((Tﬁl/?’]\)g)

elmk/37-1/3 ((Eb)l/g(fo(T) + 2vp(7)) + 2(a — i/2)ei”k/37'_1/3)

’ (£b)2/3(1 + wo(7)7-1/3) ) , (3.108)

where g7 (7) and w are defined in the proposition. Substituting the expansions (3.105)—(3.108)
into equations (3.104) (with g = fig ;), one arrives at the asymptotics for T'(fio ) stated in the
proposition. |

3.2 Parametrix near the double-turning points

The matrix WKB formula (cf. equation (3.25)) does not provide an approximation for solutions
of equation (3.3) in shrinking (as 7 — +o0o0 with b > 0) neighbourhoods of the turning points,
where a more refined approximation must be constructed. There are two simple turning points
approaching +iv/2ay, k = £1: the approximate solution of equation (3.3) in the neighbourhoods
of these turning points is representable in terms of Airy functions (see, for example, [29, 45],
Riemann—Hilbert Problem 4 in [11, 13], and [71, Sections 3.5 and 3.6]). There are, addition-
ally, two pairs of double-turning points, one pair coalescing at —aj, and another pair coalescing
at ag: in neighbourhoods of +ay, the approximate solution of equation (3.3) is expressed in
terms of parabolic-cylinder functions (see, for example, [28, 29, 41, 45, 80]). In order to obtain
asymptotics for u(7) and the associated, auxiliary functions fi(7), H(7), o(7), and @(7), it is
sufficient to study a subset of the complete set of the monodromy data, which can be calculated
via the approximation of the general solution of equation (3.3) in a neighbourhood of the double-
turning point ay, because the remaining monodromy data can be calculated via equations (1.51),
which define the monodromy manifold.?? For the asymptotic conditions (3.17) on the func-
tions ho(7), 7o(7), and vo(7), this parametrix (approximation) is given in Lemma 3.17 below.

Lemma 3.17. Set
 Di(7)ar(T)
2p(7)

where (1), pe(T), and q(7) are defined by equations (3.157), (3.160), and (3.161), respec-
tively,” and let i = fo i = o + 73N, where A__= O(Ték), 0 <6< <1/9. Concomitant

T—400

with equations (3.6)—(3.9), the definitions (3.14)—(3.16), and the conditions (3.17), impose the
following restrictions

v(k)+1:= . k=41, (3.109)

0 S Re(v(k)+1) < 1, Im(v(k)+1) < 0OQ),

T—>+00 T—+00

22More precisely, equations (1.52) (resp., equations (1.53)) for k = +1 (resp., k = —1).

23See, also, the corresponding definitions (3.121), (3.124)—(3.129), (3.130), (3.136)—(3.138), (3.143), (3.148),
(3.149), and (3.156).
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1
0 < 1) < )
7o ¥ r Yoo 6(3 + Re(v(k) + 1))

k=+1. (3.110)

Then, there exists a fundamental solution of equation (3.3), ¥(n) = \T/k(ﬁ, 7), k = +1, with
asymptotics

T o~ _ls. is 1 0 ~ ~
Pl ) | 5 () Goa B <(4L§f§’“ ~1)2 1) (2 20
~ 2 o~
" <I+ 0 <€k(7) (k) + 12\ T—(§—2(3+Re(u(k)+1))6k)>) Srp(R),  (3.111)
Pk (7)]
where
4i¢§z,€(m)qu £+k
Jan(r) = Xk(T ek (3.112)
, 432,92, \ 2 4iV3Z, AL ’ ’
( Xk:(;f) k) gatk‘ + eik + @:k Xk(T) o
1 0
Tpu(7) = Lo 4, (] + L34) <_4i\/?72k9lk 0) , (3.113)
xk(T)

with Go i, 2k, Ak, B, Kafk, ka, Xk(T), and Z;k defined by equations (3.120), (3.121), (3.124),
(3.125), (3.143), (3.148), (3.149), and (3.156), respectively,®* My(C) > €(7). = O(1), and

T—+00

Do (A) s a fundamental solution of

0P (A)

on (1x(T)Aos + pi()os + gr(T)o- ) Park (), (3.114)

Dk (/NX) has the explicit representation

— : 1/2% 1/2
wusl®) = (o P ) i Sy )) O

where D}, (1, A) := G (8% — uk(T)A), and Dy(-) is the parabolic-cylinder function [32).
Proof. The derivation of the parametrix (3.111) for a fundamental solution of equation (3.3)
consists of applying the sequence of invertible linear transformations §;, j = 1,2,...,11; for
k= +1,

(i) $1: SLa(C) 2 () = U (A) := U(ay, + 771/34)

(i) Fo: SLa(C) > Uy (A) — B4 (A) == (b(7))2 Uy (R),

(iii) §3: SLa(C) 3 Bk (A) = @ (A) == Gy @k (A),

(iv) Fa: SLa(C) 3 f (A) = &4 (A) := Gy 1@} (),

(v) §5: SLa(C) 3 &y (A) = By (A) := 775D (A)

(vi) §s: SLa(C) 3 Do (A) = B s (A) := (I +iwg o )Pox(A),

(vil) §7: SLa(C) 3 @op(A) > @, (A) := (I - LoxAoy)@or(A),
(viil) §s: SLa(C) 3 @, (R) > @, (8) = (1~ B0 )8, (R),

218ee, also, the corresponding definition (3.117).
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(%) §o: SL2(C) 3 ®f () = 5, (R) := G, 0F , (A),
(x) F10: SL2(C) > @E]’k(fx) — @5 (A) == (I - o Ao_) D], (A),
(xi) F11: SLa(C) 3 ®f(A) = @i (A) == %1 (A) @5 (A) € My(C),

where the My (C)-valued, 7-dependent functions Gy i, Gi &, I +iwg xo—, Ga ., and X (K), and the
T-dependent parameters €, {11, and fo j, are described in steps (iii), (iv), (vi), (ix), (xi), (vii),

—~

(viil), and (x), respectively, below, and Ma(C) > @y, (K) is given in equation (3.115).

(i) The gist of this step is to simplify the system (3.3) in a proper neighbourhood of the
(coalescing) double-turning point ay, k € {£1}. Let ¥(p) solve equation (3.3); then, using
equations (3.7), (3.8), (3.10), (3.15), and (3.16), the conditions (3.17), and applying the trans-
formation §1, one shows that, for k = +1,

3‘1’&“) = (b)) zedes
X (750,k(7') + 731k(7')/~& + 752,14:(7')7&2 + O(Ek(T)Kg))(I;k (K), (3.116)
where
Po (T ( (i(eb)/3ei™h/3 (7o (r ;rizg(]f(i(;)(gi(a—i/z)ei%k/ST—1/3) _Qi(Eb)_z/gejl%k/%o(T)>
(eb)273 (14vo(r)7—173) iay7o(7)
(@ %)
Co —Ao
Pri(r) = <l( j:fn;b 1/21/3) —i(—ﬁ\fg?}—;f_l/:”)) =t <?11 —lilil> , (3.117)
- (1@2”33 AT e
7 —12i(eb)~2/3eimk/3=1/3 —%(—2 + 7o ()T H3) 713
(& %)
Cy —Ay
and
Ty (7) = <1% 2(—2;;0:2;/1; e o (;3;217%’“(:;{31 J3),-2 /3> (3.118)

Observe that tr(ﬁo,k(T)) = tr(7517k(7')) = tl“(7527k(7')) = tr(fEk(T)) = 0.

(ii) This intermediate step removes the scalar-valued function b(r) from equation (3.116).
Let Wy (A) solve equation (3.116); then, applying the transformation §2, one shows that, for
k=41,

%gx(A) = (Poi(7) + Pri(T)A + Pop(1)A% + O(Ey(1)A%)) i (A). (3.119)

(iii) The essence of this step is to transform the coefficient matrix 2 k(7) (cf. definition
(3.117)) into diagonal form. Let & (A) be a solution of equation (3.119); then, applying the
transformation §3, where

¢\ (Am  A-xek
= ¢ ¢ k==l A2
gO,k 2)\>(£ (k‘) 11 11 Y ? (3 0)
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with A; and C; given in equation (3.117), and

N (k) :=14V32Z), = i4V/3 (1 - éfo(T)T_l/g + 418(7;0(7)7—1/3)2> , (3.121)
one shows that
8@2(7&) A A A A A2 —1m A3 LY
SR rodco (Pos() + PLu(T)A + Pyp(T)A% + O(Gp 1 Ex(1) G0k A°) ) @1 (A),  (3.122)
where
Pex() = Gy s Pok(7)Gok = Akos + Broy + o, (3.123)
PLL(T) = Go s PLi(T)Gok = i4f 3203,
P2A,k(7—) = goj]iﬁzk(T)gO k= k0'3 + % 0,k0+ + C 067>
with
1 iay, (eb)V/? _ _1/3 . _\2/3 . —i2mk/3
%= (eeb) 2z, < ay T (44 Fo()r ) = 2i(eb) e By ()
ey (GO () + 2un(r) + 2(a — i)k .12
14 vo(r)T~1/3 ’
5, - O ) (4 )~ 41BZ4) — B e )
68b UZZk
(Eb)1/3 (€b 1/3 17rk/3( ( )+2U0( )) +2(a_i/2)6127rk/37_—1/3
1+ vo(r)r—1/3
1
X (1 ﬁ( 44 7o(T)T 1/3) (—4+ o ()73 — 4\/§Zk))>, (3.125)
¢ = ) ) (44 )™+ 4VB2) + () ()
66b 1/2Zk
_i(eb)/3 (eb)'/3 lWk”/?’( o(T) + 2u0(7)) + 2(a — 1/2)e27k/37=1/3
1+ vo(r)r—1/3
1
X <1 + 6 (—4+ ’F()(T)Til/?)) (—4+ fo(r)r /3 + 4\/§Zk)>> ) (3.126)
g i(€b)1/3e_i7Tk/3T_1/3 R s B s
= g (8 (24 Ao () ) (a2)
i i(Eb)l/Se—iwk/i’)T—l/S ~ _1/3 1. 13
By = 2(620) 1122, (—4+7o(r)r 3 —4v32,) -4+ STo(m)T ), (3.128)
p i(gb)l/Se—iwk/ST—l/S ~ 13 1. s
Cop =~ 2(620) 1122, (4 +7o(r)r 2 +4v32;) (-4 + STo(m)T ). (3.129)

Observe that tr(Pg (7)) = tr(Pﬁk(T)) = tr(Pﬁk(T)) = tr(g&;fEk(T)gOk) =0.

(iv) The idea behind the transformation for equation (3.122) that is subsumed in this step is
to put the coefficient matrix Pg (1) (cf. definition (3.123)) into Jordan canonical form, namely,

to find a unimodular, 7-dependent function G ; such that

g;;P[ﬁk(T)ng = iwg ko3 + 7'1/30+, k=41,
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where (cf. equations (3.18), (3.19), and (3.124)—(3.126))

4(a —1/2)vg(r)r1/3
2 _ .2
Wi i= det (P@k(T)) = 5(7) + T o(r)r 178

. o2 (81)3(7‘) + 4U0(T)f0(7‘) — (fo(r))2 — UO(T)(fO(T))QT—l/Ii)

-k 1+ vo(r)r—1/3

=4((a —1/2) + o, > 7*/3ho(7))

4(a —i/2)vo(T)r /3

: 3.130
1+ vo(r)r—1/3 ( )
the following lower-triangular solution for G; j is chosen:
l(7

Gip = B2 5% (1+ (iwoy — Ae)r Vo), k==L (3.131)
Let <I>ﬁk (/NX) solve equation (3.122); then, applying the transformation §4, one shows that

%, (A - ~ L _

3}\ ) T—>:+oo(7)0v,k(7') + Pl(m)A + P;k(T)Az + O(91,1190,111[316(T)QO,kgl,kAg))
x &, (1), (3.132)

where

POv,k(T) = gl_,lip(]A,k(T)gl,k = lwg o3 + Tl/3a+,
Pﬁk(T) = giéPﬁk(T)ng = i4V3Z05 — 18\/§(in7]€ _ Qlk)ZkT_l/?’a,,
Py (1) = giépék(T)gl,k

ot (iwo,k—mk)%g’k %3,{71/3
_ 0k T By b
2(iwo,k—21k)(2lk%ﬁ,k—%kﬂg,k)ﬂ%mg,k—€k%ﬁ,k)%k

# (iwo,k — 25 ) BY .
=T —( W+ )
Note that, at this stage, the matrix Pf" (7) is not diagonal; instead, it now contains an additional,
lower off-diagonal contribution. B
(v) This step entails a straightforward 7-dependent scaling. Let @y, (A) solve equation (3.132);
then, applying the transformation §s, one shows that, for k = 41,

a‘i’o,k (‘7\) D B TR )
TR Tjoo(Po‘,k(T) + PLi(T)A + Pop(m)A
1 A 1 ~ ~ ~
+O(77 857G 1Go 4 Ex(7)G0xG1 k757 A%) ) B0 1 (A), (3.133)
where
Phi(r) = 7787 (1)70% = w0 + 0, (3.134)
751A,k(7') = T_%Ui”’PXk(T)Té”S = i4V3Z,03 — i8\/§(iw0,k — Ax) 2o,
Ph(r) i= 7767 PY (1)
i (iwo 5 —x) BY B
_ Q[o,k + TM (5?:
2(iwo k —Ak) (A BY , —Brf ) +(Br€h  —€,BY By, (iwo 5 —25) BE )

#
By —(Apx + Ty

(vi) The purpose of this step is to transform the coefficient matrix P&, (1) (cf. (3.134)) into

off-diagonal form. Let ®g (A) solve equation (3.133); then, applying the transformation g,
one shows that, for k = +£1,

0% 1, (A) 0 1 14v/32), 0 T (For Qok ) R2
—_— - 2 + (. . A + *’ :k A
O\ T—400 —Wo k 0 18\/§Zk91k *14\/§Zk %O,k _mo,k
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+ O(EL(1)A?) ) @0(R), (3.135)
where
Box = ng,k; - ‘Bg,kmk%_17 (3.136)
Qf =B B, (3.137)
Rip = — B AB " + 22,27 + Bref (3.138)
and
Ei(r) = (I +iworo—) 757G 1Gq MER(7)GoxGrums ™ (I — iwo o). (3.139)

(vii) This step, in conjunction with steps (viii) and (x) below, is precipitated by the fact
that, in order to derive a (canonical) model problem solvable in terms of parabolic-cylinder
functions (see step (xi) below), one must eliminate the coefficient matrix of the A2 term from
equation (3.135); in particular, this step focuses on the excision of the (12)-element. Let ®q (K)
solve equation (3.135); then, applying the transformation §7, with 7-dependent parameter ¢y j,
one shows, via the conditions (3.17), that, for k = +1,

M _ 0 —go,k +1 n 14\/§Zk + ngkgo,k 0 K
ox i\ \-wl, 0 i8V3ZpAr  —i4V3Z — wf plo
n —i8v/3 2 Alo i + Bk w(%,kgg,k +i8v3Z4lox + Dok A2
Ry 1 i8v/3 2110 1 — B
+ O(EZ(zo,k;ﬂK?’))@&k(K), (3.140)
where
—R* ¢ —i Zi .02 2 14
B (fosir) = Bi(r) + oot TISVEETMGL + 25 g
. 0 SRO sz k

with Ej(7) defined by equation (3.139). One now chooses £y so that the (12)-element of
the coefficient matrix of the A? term in equation (3.140) is equal to zero, that is, wy, k€8 i
18\ka€0 K+ Q) k = 0; the roots are given by

—i8v/32), £ 1/ (i8v32k)” — 402, O
¢ = V . )~ by O k=4 (3.142)
’ 2“’0,19

Noting from the conditions (3.17), the asymptotics (3.21) and (3.24), equations (3.125) and
(3.128), and the definitions (3.121), (3.130), and (3.137) that 2, 5. 1+ O(77 %), w3, =
0(7*2/ %), and Q5 130 O(1), it follows that, for the class of functions consistent with the
conditions (3.17), the ‘+-root’ in equation (3.142) is chosen

~i8V3Z; + 1/ (18V3Z1)” — 4wl

2
2w0,k

boj = L5} = (3.143)

Via the formula for the 7-dependent parameter £g ;. := Eg . given in equation (3.143), one rewrites
equation (3.140) as follows: for k = +1,

09) ;. (A) (( 0 i+ 1> . (14\/§zk +wd b

ok el e 0 i e

A
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—18\/§Zk9lkf6rk + ms i 0 ~9
+ x ’ : + * A
%M 18\/§Zk9[k£0’k — moJﬂ
+ O(EY (¢4 7)7\3)> o) 1. (A). (3.144)

(viii) This step focuses on the excision of the (21)-element from the coefficient matrix of
the A% term in equation (3.144). Let <I>|(’) ,(A) solve equation (3.144); then, under the action of
the transformation §g, with 7-dependent parameter ¢; ;,, one shows that, for £ = %1,

0% . (A) 0 S
N (G R (AT NN
+i8VBZp Ao ) A + (R 5, — 2(14V3 2k + wf 105 1) i
— (=05, + 1)) o — (18VBZR2AL] ), — Bix) o) A2
+ OB (8, 145 7)A%) )08, (R), (3.145)
where
EA (6 1 7) 1= B (605 7) + 200 (=B + 18VBZR2060, ) o (3.146)

One now chooses /1 ;, so that the (21)-element of the coefficient matrix of the A? term in equa-
tion (3.145) vanishes, that is, (—Egk + 1)6? et 2(14\/§Zk + Wg,k%rk)gl,k — Rjx = 0; the roots
are given by

(V32 + W ) £ (4VBE + wbd,)” + 90 (L + 1)
g +1
k= +1. (3.147)

)

+ _
G =

Noting from the conditions (3.17), the asymptotics (3.21) and (3.24), equations (3.124)—(3.129),
and the definition (3.138) that 9, Tjﬂo(’)(T*Q/?’), and, recalling (from step (vii) above) the
asymptotics Z = 1+ (’)(7_2/3), wg,k 5., O(7723), and Q0 30 O(1), it follows from the
definition (3.143) for E({ . that, for the class of functions consistent with the conditions (3.17),

the ‘4-root’ in equation (3.147) is taken

—(14V32, + w08, + xk(T)
b =0, = ( - +°7’“+ 017"? , (3.148)
0,k

where

xu(7) 1= £ (4VBZ4 + B b0,)” + 9 (6 + 1), (3.149)

Via the formula for the 7-dependent parameter ¢y ; := Efk defined by equations (3.148) and
(3.149), one rewrites equation (3.145) as follows: for k = +1,

00f  (A) 0 AT
*Wg,k - €1+k: 0

OA T—+00 ) + (Xk(T)U3 + 18\/§Zk91k0'—)7\

+ (Bor — iSﬁZlekEE{k)j\Qag + O(fé,g (Cg i Oy T)K?’)) q>g7,€(7\). (3.150)
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(ix) This step is necessitated by the fact that the coefficient matrix of the A term in equa-
tion (3.150) remains to be re-diagonalised. Let @g . (A) solve equation (3.150); then, under the
action of the transformation §9, where

Xk (7)
with Zj, 2, and xx(7) defined by equations (3.121), (3.124), and (3.149), respectively, one
shows that

1 0
gQ,k‘ = <i4\/§2kglk 1) Y k = :l:]" (315]‘)

0%, (A) A (6 + 1) 1
oh oo\ \= () (g, + 1) — )y — e R (D)

- 1 0\ ~
+ Xk(T)AU3 + (spak - i8\/§zk91k€8:k) (_i8\/§zk9‘k _1> A?
Xk (T)

+ o(gggﬁg (Cg 1 T)gzm)) cpg,k(x). (3.152)

(x) This penultimate step focuses on the annihilation of the nilpotent coefficient sub-matrix
of the A? term in equation (3.152). Let @g 4 (A) solve equation (3.152); then, under the action
of the transformation §19, with 7-dependent parameter /5, one shows that, for £ = 1,

925 (A)
oA
_ (( R (1) —lo 1 >
rpoo \\ - (MBEM)2 (_pr 1) = 0f, —log — B, OB (—gr, 11
Xk (T) 4+ Lo (L5, + 1) 0 x

—BYSEN g (1) — () + k(L + 1))

i8v/3 2, .
+ ((@k(qk + 1) — 209 x5 (T) — “;;(Tk)k(‘m,k — 18\@2@(%&))

xo_+ (B — 18\/§zkmqu)a3> A2
+O(E; (e;k,gfk,ez,k;f)ﬁ3)> o5 (A), (3.153)
where

B (Cg i O i Lo T) = Goh B (€8 1 €1 13 ) G — 202, (B 4 — 18VBZRAply ) o—.  (3.154)
One now chooses #3 i, so that the (21)-element of the nilpotent coefficient matrix of the A? terms
in equation (3.153) is equal to zero, that is,

(=65 + 165 1+ 2x0(7) ok + 18V 2,210, (1) (B 4 — 18VBZpAkl ) = 0;

the roots are given by
2 —xk(T) £ \/Xg(f) —18v3Z:Apx;, (1) (—lo ), + 1) (B — I8VBZR2AL )
2.k = )
g, +1
k= 41. (3.155)
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Arguing as in steps (vii) and (viii) above, for the class of functions consistent with the condi-
tions (3.17), the ‘+-root’ in equation (3.155) is taken

. =Xk (T) + o (7)
bog =Ly = 1 (3.156)
where
iy, (7) == \/Xg(T) —18V3Zpx;,  (7) (—l s + 1) (B — I8VBZR2AL L), (3.157)

with x4 (7) defined by equation (3.149). Via the formula for the 7-dependent parameter fo ), :=
(5, defined by equations (3.156) and (3.157), one simplifies equation (3.153) to read

0%;(A)

R i (T (r, A) + O3 (r, A)) @ (A), k=1, (3.158)
where
Tk (7, A) = (1) Aos + pr(r)og + qe(T)o_, (3.159)
with
pr(r) = =L, + Li(r) + 1, (3.160)
a(7) = (VB2 (1) (~€5, + 1) = 6, — 6, — wis (3.161)
and
2o(r &) = W(_egk 1) — La(r)eors — qu(_qk )R
+ (P — 18VBZRU ) A2y + B (00 0 (s T) AP, (3.162)

where the yet-to-be-determined scalar function ]Lk(T) is chosen in the proof of Lemma 4.1.2°

(xi) The rationale for this (final) step is to transform equation (3.158) into a ‘model” matrix
linear ODE describing the coalescence of turning points. Let ® 7 5 (Kl, k = %1, be a fundamental
solution of equation (3.114); then, changing variables according to A = A(z) = aj(7)b*z, where
ap(r) = (i4x/§/yk(7))1/2 and b* := 273/2371/4e71m/4 and defining ¢arx(2) == Pprp (K(z)), one
shows that ¢y () solves the canonical matrix ODE

O:0n1k(2) = (505 + Pulr)ow + Qu(r)o- ) bara(z), k=1,

where Pi(7) := aj(7)b*pr(7) and Q(7) := aj(7)b*qr(7), with fundamental solution expressed

-
in terms of the parabolic-cylinder function D,(),2¢

sz/ _ (IZ) v (Z)
(k)—1 Dy k
. 6 . z , 3.163
('bM’k( ) ( Pkl(T) (éaz i)D—lj(k)—l(lZ) 713;3(7')(882 E)Dy(k) (Z) ( )

where —(v(k) + 1) := Pi(7)Qk (7). Inverting the dependent- and independent-variable linear
transformations given above, one arrives at the formula for the parameter v(k) + 1 defined by

equation (3.109) and the representation for ® s (A) given in equation (3.115).

251t will be shown that ]I:k(T)
proof.

268ee, for example, [29, 41, 45].

O(772/3), k € {£1}: this fact will be used throughout the remainder of the

T—+00
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Finally, in order to establish the asymptotic representation (3.111), one has to estimate
the unimodular function Y (A) defined in the transformation §1;. Under the action of the
transformation §11, one rewrites equation (3.158) as follows:

%k (A . o~
%’“}\) et (T, A)e(A) + [Te(mA), xe(A)], k=41, (3.164)

where T (7, /NX) is defined by (3.159)—(3.161), and Jy(r, 1~\) is defined by equation (3.162). The
normalised solution of equation (3.164), that is, the one for which xx(0) =1, is given by

~ A ~ ~
Xi(A) =T+ /0 O (M) 3 (O Tk (T QXK Parp ()P, (A)dE, k= £1.

In order to prove the required estimate for x (K), one uses the method of successive approxi-
mations, namely,

A ~
WOE) =1+ [ 0B O 01 O 93, (R,
k=41, m € N,
with X(O) (A) = I, to construct a Neumann series solution for xx (/N\) ()“(k (A) = lim;, 0o X(m) (A));

in this instance, however, it suffices to estimate the matrix norm of the associated resolvent
kernel. Via the above iteration argument, a calculation shows that, for k = +1,

16 (&) 1]
Tﬁw‘”‘p</ 30 R [1034 O Ne(r 1 @ar( >r|H<1>;V,{k(K)H|ds|>—1, (3.165)

where |d¢| denotes integration with respect to arc length. Noting that (see Remark 3.20)
det(Pprr(2)) = —e_i’r("(k)ﬂ)n(2uk(7))1/2p,;1(T), it follows from the estimate (3.165) that, for
k=41,

| (A) = 1]]
[0
< exp( [P ()] ®ars( +1>/2 /H ()l ||:k<75>|||d£|>—1 (3.166)

Pt \ )\(eﬂm@

One now proceeds to estimate the respective norms in equation (3.166).

One commences with the estimation of the norm ||3x(7,&)||, & = £1, appearing in equa-
tion (3.166). Via equations (3.118), (3.122), (3.132), (3.133), (3.135), (3.139), (3.140), (3.141),
(3.144), (3.145), (3.146), (3.150), (3.152), (3.153), (3.154), and (3.162), one shows that, for
k = £1, in terms of the composition of the linear transformations §;, j = 1,2,...,11,

2(mA) == FrioFwoFooFsoFroFsodsodaodzodeod) (Wi, 7) — Ui(f, 7))
14v/3 2,2y, i8V3Z,y,

- 7(—63’,{ + 1)03 — Ek(7)0+ w0

o) (3o (—t5, + 1) Ao

+ (Bor — isﬁzkmqu)]\?gg + (—2€;k (Vo — igﬁzkmqu)a_

1 0\ _150 01,10 1, 1 0
+g2i};<< W0k 1) TS Sgl,ligo,/iEk(T)go,kgl,kT6 3( . 1>

—leVk
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+ _ms,kgg,k eak@mak - 18\/§Zk9lkfo+,k) Go i A3
_2£ik (‘Bak — i8\/§Zk2[k£3fk) %S,keak ’

)

whence, via the definitions (3.120), (3.131), (3.136)—(3.138), (3.143), and (3.151), and a matrix-
multiplication argument, one arrives at, for k = +1,

~ i4v/3 2,2}
T (T, A) = 7)@(7)

+ (Ql?),k + Qlkwg,k (ﬁb’:k)Q)/N\Qag

NE(T) + Mi(T) NoH(T) + Miy(t) \ ~3
i <N£(7) + M;(T) —(/\%(r) + /\/}%(7))) A%, (3.167)

i8v/3 2,2}

—0F, +1)o3 — L —
( 0,k )0-3 k(T)U+ Xk(T)

3 p(—t5, + 1) Ao

where

A, B! 432
N (r) = O 24 <%;k . 29[&16) (1 ERIVEES

Xk(T)

i4v/3 2, 2
A D A2 (1)), 3.168
0,k < AN Yi(7) k O,k( O,k) ( )

* + ﬁ 2 (4 )2 Qlk%gkz
N12(T) = go,k’ 2%‘07]{‘, + Q[ku)o’k (Eo,k‘) — %k 2 s (3169)

. § .
" 14\/§Zk2lk + QlkEBO k # 14ﬁ2k
[ . > 9 2 —
N (7) Xk(T) (507,{%« By, Ho Xk(T)

i4/3 2, 2
- g amc - Pt 7))
—2(2), + mkwg,k(qk)?) (6, +050). (3.170)

M7y (7) = 2)\*{5;)%1@ ((Ek(T))n (@11%k + 9122 (ixff)k - 1)

. i4v/32, R i4V/32,
+812 <%k + Ak ( X\igT)k - 1))) + (Ex(7)) 4, <%k + Ap, ( Xk(T)k - 1>>

_(Ek(T))Qlﬁm <§111%k + 912 <li\:(§f)k - 1))) , (3.171)
Mia(7) = ”\’{f%<2(1@k<7’)>11@12 + (Ek(T))n - (Ek(T))Ql(ﬁm)Q), (3.172)

Moy (1) = 2)\4{(6]{1)%’{ <_2(Ek(7))11 <%k + A (%;fjk - 1>>
X <@11%k + g12%Ap (11\:(372)’]6 - 1))
2
s i4v3Z
_ (Ek(T))m (%k + Ay ( X\k/(;_)k _ 1))

. 2
+ (Ek(T))Ql (@11’3k + g12%s (ifjk - 1)) ), (3.173)
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with
g1 =———— and g1 1= —————. (3.174)

In order to realise the 7 — 400 asymptotics for Jg (T, K), k = +1, via equation (3.167) (cf. def-
initions (3.168)—(3.174)), and subsequently estimate the norm ||3x(7,§)||, the 7 — +o00 asymp-
totics of the functions Zj, Gox, Ak, B, €k, Q[(ﬁ),w %g’k, Qﬁg,k, wak, Xk(7), and p(7), and the
T-dependent parameters Ea s ff’k, and Zik are required: for the reader’s convenience, they are
presented in Appendix B. Substituting the asymptotics (3.21), (3.24), and (B.1)—(B.19) into
the definitions (3.168)—(3.174), recalling the definitions (3.136) and (3.138), and using equa-
tion (3.167), one arrives at the estimate

13(r, Ol = O PEP), k==L (3.175)

T—r400
There remains the matter of estimating the norm of the unimodular function x (&), k = +1.
In order to do so, one has to derive a uniform approximation for xx(£) on R UiR. Towards this

goal, one uses the following integral representation for the parabolic-cylinder function (see, for
example, [27]); for k = £1,

272 e 1 +oo 22 u(k v(k)—1
D) = porg [, © T E T+
Re(v(k)) < 0, larg(z)| < 7/4, (3.176)

where I'(+) is the gamma function. As the integral representation (3.176) will be applied simul-
taneously to the entries of the My(C)-valued function (cf. equation (3.115)) ®p7x(§) in order
to arrive at a uniform approximation for xx(§) on the Stokes rays arg(§) = 0,+7/2,+m, ...,
0 < [§] < +o0, it implies the restrictions (3.110) on v(k) + 1; in fact, for the purposes of
this proof, it suffices to have a uniform approximation for Xk(€) on, say, the Stokes rays
S§:={£eC|0<L[{ <400, arg(§) =0,—7/2,—7,—37/2}. Using the following functional re-
lations and values for the gamma function (see, for example, [32])

[(z+1)=2I(2), T()I1-2)= $ VAT (22) = 22710 (2)T (2 + 1/2),
+o00 z—1 T
r(1/2) = v, /O i it)w — i(@)z(z)) Re(x), Re(y) > 0,

the linear relations relating any three of the four parabolic-cylinder functions (cf. (3.163))
D_y(k)-1(Fiz) and Dy (+2),

V21 Dy (2) = T(w(k) + 1) (™ P2 D_ 4y 1 (i2) + e ™ WD _ 4 4 (—i2)),
\/ﬂefiﬂ(u(k)Jrl)/Q )
F(—I/(k)) D—V(k:)—l(lz)v
27.[.ei7r(l/(k)+1)/2 )
F(—V(k)) D—l/(k:)—l(_lz)7

Dygy(2) = e ™H®D, g (—2) +

and the fact that (see the asymptotics (4.12) below) v(k) + 1 — 0 as 7 — +o00, one arrives at,
via the restrictions (3.110) on v(k)+1, equation (3.115), and the integral representation (3.176),
estimates for the moduli |(®arx(€))s5], £ = £1, 4,5 = 1,2, on the Stokes rays S: for the conve-
nience of the reader, they are stated in Appendix C. To eschew technical redundancies, consider,
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say, the case k = +1, and, without loss of generality, arg(]\) = 47/2:27 the case k = —1 is anal-
ogous. Using the asymptotic expansions for the parabolic-cylinder functions (see Remark 3.20),
one shows that: (a) for arg(A) GelT/24 O(7723),

(@01 (R) | = OGIATRCD) (@1 (R)),,| = O(@IA] D),
)| = ofmARee
‘(QMJ(A))QJ T—)_+oo o <p2 |p1( )’ )
~ B ‘A’Re v 1)
|(@01,1(A)) 5] foo <p3|1()y 7 (3.177)
where
po = 1+ e—37rIm(l/(1)—&-1)/27 b3 = 23/231/4/77+,

3/2
P 2 \/71T7+ o~ Im(r(1)+1) ‘cos(Z( (1) +1))|]sin (5(v(1) + 1)) [T (Re(v(1) + 1)),

831 ttm(1)+1) /2| cos(5(v(1) +1))|| sin (Z((1) +1))|T(~ Re(v(1))),

r2= ﬁn+ 2
with 1, := (2/231/4)7 Re@()FD) g3n Im(v(1)+1)/4; and (b) for arg(A), 5. —7/2+0(r%3),
‘(q)le (K))11| 100 O(ﬁO’K’_Re(V(l)H)),

(@), = 0[5 A0
el S O\TTRT )

‘K’, Re(u(l)Jrl))
pr(MIAL )
~ . K Re(v(1)+1)
[(@a1(A)) | = O (mH(),) : (3.178)

‘pl T

‘((I)le(x))ml rtoo o ([32

where

150 = n_eWIm(V(1)+1)/2, ﬁl — 2—3/23—1/4/7’_’
po = e UV RW) £, py = 2281

With - (23/231/4)71{6(”(1)“) —mIm(@()+1)/4 Hence, via the elementary inequalities |Re(v(1)
+1)] < | (1) + 1| and [Im(v(1) + 1)| < |v(1) + 1|, it follows from the estimates (3.177) and

(C.5)-(C.8) that, for arg(A) ©/2+ O(772/3),

T—>+oo
P 2|¢(2
2 _ - Clv(1) +117¢]
1 ®ar,1 (8] 7'—>—+ooO(cM)+O< ()2 ; (3.179)
Sui(R)|P = O Apreem (Mo v 3.180
e (M = (\ | TEIE NECOET , (3.180)

2"The pair of values arg(/NX) = &7/2 on the Stokes rays are chosen for illustrative purposes only, in order to
present the general scheme of the calculations: for any of the remaining (3) — 1 =15 pairs of values of arg(A)
on the Stokes rays, one arrives at the same estimate (see equation (3.183)) for |[xx(A) — I||, k = £1, but with
different O(1) constants.
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where ng = 2max;n—0,1,2,3 {(@m(l))2}, and ¢y := 2maxm=0,1,2,3 {ﬁ?n}’ and, from the estimates
(3.178) and (C.1)~(C.4), it follows that, for arg(A), =, — /2 + O(r=2/3),
A 2| ¢12
) ¢ v (D) + 1P
i 2 = o@F)+o| M ’ H
1@ O = (¢3r) lp1(7)[? | |

oo (A2 = ofFereewsn [ o Y 3.182
H M,l( )H oo <’ | |p1(7')|2+ | A |2 min{1,2Re(v(1)+1)} » )

where E%\/l ‘= 2maX;m=0,1,2,3 {(@m(l))2}, and ¢y 1= max,,—0,1,2,3 {[)%1} Assembling the asymp-

totics (3.179)—(3.182) and invoking the restriction (3.110) on d (for & = +1), one deduces from
the asymptotics (3.166) and (3.175) that, for arg(A), 5. +m/2+ 0(7_2/3),

T—+00

A~ g _ _ l_ v
[IXk (A) —I||HiooO(c;(r)|u(k)+1|2|pk(7)\ 27~ (523 +Re(v(k)+1)3k))
k=+1, (3.183)

where, for arg(K) ooy T 0(7*2/3), o (1) = E%\/[EM (23/231/4e“m(”(1)“)/2)72, and, for arg(K)
e — EHO(T73), (1) = ngﬁM (23/231/46“Im(l’(l)“)/2)_2 (see Remark 3.19). Via an anal-

ogous series of calculations, one arrives at a similar estimate (cf. asymptotics (3.183)) for the
case k = —1.

Forming the composition of the inverses of the linear transformations §;, j = 1,2,...,11,
that is,
Uil 7) = (817 08y 0B 08y 05 08 087 085 0y 01y o Fur) Park(A)

_ Y 1, (1 0\ (1 £5,A 10 10
= (b)) ¥ GG (4%$1)@ P es 1) o (i )

X)%k(A)(I)M,k(A), k::tl,
one arrives at the asymptotic representation for \Ilk(ﬁ, T) given in equation (3.111). |

Remark 3.18. Heretofore, it was assumed that (cf. Corollaries 3.10, 3.11, 3.13 and 3.14) 0 < 0 <
0k < 1/9, k = £1; however, the set of restrictions (3.110) implies the following, more stringent
restriction on 6%

0 < & < 1/24, k==l (3.184)

T—+00 T—+00

Since (0,1/24) C (0,1/9), the latter restriction (3.184) on dj implies, and is consistent with, the
earlier one; henceforth, the restriction (3.184) on d; will be enforced.

Remark 3.19. Using the fact that (see the asymptotics (4.12) below) v(k)+1 — 0 as 7 — +o0,
k = +£1, one shows, via the expansion for the gamma function [32]

1 o0
[ D*f j,
T(z+1) ;) i*

|z| < 1, where 9§ = 1 and

n

01 = CF) ;(—1)]8j+10n—j,

BNote: 18 __<_6(3+ Re(v(k) + 1)) __<_24.

T—+00 T—+00
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n € Zy, with s; = —1(1) the Euler-Mascheroni constant,? and s, = ¢(m), N > m > 2, where
((z) is the Riemann zeta function, and well-known inequalities for complex-valued trigonometric
functions, that the auxiliary parameters introduced in step (x1~) of the proof of Lemma 3.17 have
(for the case k = +1) the following asymptotics: (1) for arg(A) 5. 3 + O(72/3),

(20(1)* = (2+|secO)*(1+O(jv(1) + 1)),

~ 2 .

(@) = T (1+25ec20)*(1+ O(w(1) + 1)),

(22(1) = _192(2v/7 + |sec])*(1 4+ 1)+ 1)),

(23(1))° = _ 967 (14 2sec” 0)°(1+ O(|w(1) + 1)),

_ =2 _

= 10 1) R = 2mse@)(1+O(w(1) + 1)),

B = 16V +1PA+0(v() +1), A = 8V3(1+O0(u(1) + 1))

Pt

where ¢:=arg(v(1)+1), whence E%w 5.0 and ey, 5. O(1) = ¢ (1) ._5..O(1) (as claimed);
and (2) for arg( ) e — E+O(73),

@) = _se@1+0(wD)+1), @07 = T(1+0((1) +1)).
(@00 = 1025ecB)1+ O(v(1) + 1), (@s(1)? = _96m(1+O(lw(1) + 1)),
B2 1O+ A s (1 Ol 1))
B o= OO +1P). 3= 8VB1L+O(u(1) + 1))
whence ng 5. 0) and ¢y, = O(1) = ¢f(7),_5..0(1) (as claimed). The analysis for the
case k = —1 is analogous.

Remark 3.20. In Lemma 3.17 and hereafter, the function ®74(-) plays a crucial role; therefore,
its asymptotics are presented here: for m € {—1,0,1,2} and k = +1,

Darp(2) - 1+Zm 23 | ) ) ik () s g1
’ Coz—o0
arg(z)="5" mE f*** arg(py (1))
where
e im(v(k)+1)/2 0
R-1(k) := 0 a2 |
Pr(T)

e*lﬂ'(l/(k)+1)/2 0
Ro(k) = _im@uk(T))1/2e—i7r(u(k)+1)/2 _(QUk(T))1/2 s
pe(T)T(v(k)+1) Pr(T)

13 (v(k)+1)/2 w
Ralk) = (_im(zuk(ﬂ)l/zei"<”(’“)+1)/2 _(2(,:167(7))))1/2 ) )

pr(T)L(v(k)+1) Pr(T)
eidm(v(k)+1)/2 ZWei_’T(”(k)+1)
R2(k) = ( 0 (QMk(TI;)(1/ze(lj)2)7ri(u(k)+1>
N Pr(T)

20 _qp(1) = 0.577215664901532860606512 . . ..
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and IZJj’k(T), j € N, are off-diagonal (resp., diagonal) Mz (C)-valued functions for j odd (resp.,
j even); for example,

i) = =5 (Lo ).

o) \—anlr)
. (w(k)+1) (1+ (w(k)+1) 0
b =GP (Y )
A 1
0 S
x ( 0 <1—<v<k>+1>><2—<u<k>+1>>pk<7>>
(A ((R) + )2+ () + 1)) () 0 '

These asymptotics are derived from the asymptotics of the parabolic-cylinder functions [27].

3.3 Asymptotic matching

In this subsection, the connection matrix is calculated asymptotically (as 7 — +oo with b > 0)
in terms of the matrix elements of the function A(p,7) (cf. equation (3.4)) that are defined
in terms of the set of functions ho(7), 7o(7), vo(7), and b(r) concomitant with the condi-
tions (3.17).3Y Thus, the direct monodromy problem for equation (3.3) is solved asymptotically.

Lemma 3.21. Let \T/k(ﬁ, T), k = £1, be the fundamental solution of equation (3.3) with asymp-
totics given in Lemma 3.17, and let Y°(ji,7) be the canonical solution of equation (3.1).3!
Define’?

£2(7) = (Up(, 7)) e EBYR (v V0, 1), k=1 (3.185)

Assume that the parameters v(k)+1 and 0y satisfy the restrictions (3.110) and (3.184), respec-
tively, and, additionally, the following conditions are valid>

pi(7) By, exp(—ir%/33V/3(b)!/3ei27H/3) = 0w + 1)7), (3.186)
ia/3 . 2/3 1/3 i27k/3 _
b(T)7'? exp (it#/?3(eb) '/ Pe ) = 0(1), (3.187)

where pp(T) and By, are defined in Lemma 3.17.3* Then,

. DA(V3+1)*\” ]
eX(r) = iRy (k)1 [ (EV) (V3+1) orpe—B5k(T)as
T—+00 21/4'/%19\/%

30Equivalently, the set of functions (cf. equations (3.14), (3.15), and (3.16), respectively) ho(7), #o(7), and (7).

31See Proposition 1.15.

32Gince 77T12”3Y8° (7'71/6;7, 7) (cf. equations (3.2)) is also a fundamental solution of equation (3.3), it follows,
therefore, that £3°(7) is independent of .

33The conditions (3.17) and (3.184) are consistent with the conditions (3.186) and (3.187).
3%From the results subsumed in the proof of Lemma 4.1, it will be deduced a posteriori that (cf. defini-

tion (3.157)) ux(7) possesses the asymptotics

pe(r), 5 4VBE ST oy (k) (Fo (7)™ (vo (7)) ™2 (- /3™

my,mg,m3ELy
mi+mo+mz=2

oo (R)r V3= BRI (1 4 0(771/3)),

k = +£1, where ¢m;,ms,ms(k) € C, and ¥(7) and B(7) are defined in equations (2.10); via this fact, and the
definitions (3.109), (3.130), (3.160), and (3.161), a lengthy and circuitous calculation reveals that the asymptotic
expansion of v(k) + 1, k = £1, can be presented in the form

—(v(k) +1)
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‘ <B8.;)(T> ASOO(T)) ([+EFx(m) (14 O (B (7). (3.188)

where Ma(C) 3 Ry, (k), moo € {—1,0,1,2}, are defined in Remark 3.20,

0(r) = —%“ In7 +ir?23(v3 - 1)ad +1i(a —i/2) n((V3 + 1) ar/2), (3.189)

6\/504%
+ (v(k) + 1) In(6(v3+1) Zay), (3.190)

with pi(T) defined by equation (3.57), and pk(7) defined in Lemma 3.17,

Aju(r) = - (5 v ﬁ) u(r) + (v(E) + 1) In(2u(r)) 2 + 5 (v(8) + 1) lnr

Noor N 2V AGR(T)12
AF(r) == 5 ) (3.191)
A 1/4 1/2
Bee(r) = 1 - ) g‘ﬁf D)
x| (AGR(7))a1 — =& V32, (AGS* () |, (3.192)
‘Bk Xk(T)
with 2k, Ak, and x,(7) defined in Lemma 3.17, and
ol . 1 (AG(T)11 (AG(T))12
S o) (aGer (Ack(e) (319
with
(AGE ()11 = (V3 +1) (AGok),, + (2/eb)/*(AGo k) 1y
(AGE (M2 = = (VB +1)(AGo k)1, + (260) /2 (AGo k) 5y,
(AGR(T)21 = = (V3 + 1) (AGo)y, — (2/¢0)"/*(AGo),,.
(AGR(1))22 = (VB3 +1) (AGo ), — (2¢b) /2 (AGo 1) 5y

where (AGo ), are defined by equations (B.5)—(B.7),

i,j=1,2

pe oy (20N (VR (2B 1)) + 1)
VR Vb(T) Xk(T) V2pi(7) By, o

i (—ai (805 (7) + 4w ()70 (1) — (7o (7))* — wo(7) (Fo (7))~ /%) + 4(a — i/2)Uo(T)T_1/3>

400 8/3 1+ vo(r)r—1/3
20k(7) | o= o —1/3\m | . —1/3_—(B()+ikd(r)) ~1/3
+ + 5 ik ook 140 ,
T+ 3 i 8 ) (1+0()

where pj(7) is defined by equation (3.57). From the asymptotics (3.21) and (3.24), and Propositions 3.4 and 3.5,
in conjunction with the formulae for the monodromy-data-dependent expansion coefficients Ay, k = +1, derived
in the proof of Lemma 4.1 (see, in particular, equations (4.71) and (4.92)), the sum of the coefficients of each
term (7'71/3)], N 3 5 > 2, and of the term Tfl/sefw(ﬂﬂw(ﬂ) on the right—hand side of the latter asymp-
totic expansion for v(k) + 1 are equal to zero (e.g., fi5(k) = YW 2 ((a 1/2) —1/6)), resulting, finally, in the
asymptotics v(k) + 17%%0(9(7'72/3 —A( T)) k = +1. The condition§ (3.186) and (3.187) will be validated a pos-
teriori (see the proof of Lemma 4.1) using the asymptotics v(k) + 1Tﬁjw0(772/3 7’8(7)) k = 41. Hereafter,
whilst reading the text, the reader should be cognizant of the latter asymptotics for v(k) + 1, as all asymptotic
expansions, estimates, orderings, etc., rely on this fact.
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N Pi(7) Bt R DR S
\/i(&b)l/Q(\/g—l-l)/Lk(T) A 2\/5(\/§+1)

14V3Z L7 (eb)1/2(v/341) ((14\/§zkmk)2€8rk _ gka _ g;k)

< Xk (T) V2B, Xk (T)
V2BLLS i4V3Z Aty ),
(eb)1/2(v/3+1) T xk(D)
y ( V3+1 _(st)1/2> (Tu,k(l;T) TlQ,k(1?7)> (3.194)
(2/eb)/? /341 To1x(1;7) Toor(li7)) )’ .

with NE(—)i_,k’ E'l’:k, and f;k defined in Lemma 3.17, (Ti;1(1;7))s j=1,2 defined in Proposition 3.16,
and B (1) defined by equation (3.203), and
wy o [ 0GB opies)
O(Ek (T)) T=r+00 (O(Té(lgk)&c) O(T*%Jr?)ék) (3195)

Proof. Denote by \fIV/WKB’k(/j,T), k = +£1, the solution of equation (3.3) that has leading-order
asymptotics given by equations (3.25)—(3.27) in the canonical domain containing the Stokes
curve approaching, for k = +1 (resp., k = —1), the positive real p-axis from above (resp.,
below) as it — 4o00. Let £5°(7), kK = %1, be defined by equation (3.185); rewrite £3°(7) in the
following form

£y () = (({I}k‘(ﬁa T))_lilWKB,k(ﬁ? T)) ((‘TJWKB,k(ﬁ7 7')) T_ﬁag’YSO (7’_1/6;7, 7‘)) (3.196)
Taking note of the fact that \T/k(ﬁ, 7), \T/WKByk(ﬁ, 7), and T‘ﬁaBYgo (7'*1/6/7, 7‘) are all solutions
of equation (3.3), it follows that they differ on the right by non-degenerate, p-independent,
My (C)-valued factors: via this observation, one evaluates, asymptotically, each of the factors
appearing in equation (3.196) by considering separate limits, namely, @ — o and g — +o0,
respectively; more specifically, for k = £1,

() e s
= ((b(T))%U?’ go,k%%GSFk(T)Ek (75 A) X (A) @pr e (A)) TR (3.197)

T—+00

ﬁ:ﬁo,k,KTﬁmO (T‘Sk) 0<0<8),< 5 arg (7\) =m0 4 %L arg(ug (7)), Moo €{—1,0,1,2}

where (cf. Lemma 3.17)

1 0
Frp(r) = ((V;\l{(ggk _ 1)Qlk 1) ) (3.198)
Z(rA) = T+ 10 (1A + Tp, (A2, (3.199)
and
Re(A) = T+ O(@(n)p(k) + 1P |pi(r)| 2= ®), (3.200)

with v(k) + 1, pe(7), fok, Gok, Rks Brs Zk, daw(T), Ipu(7), pr(r), and xx(7) defined in
Lemma 3.17,

Wi (i) o= —osir®/? / " l©)de / " diag(T(©)) 10T (€)) ke,

1o,k
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erp(k) == 1 —2(3 4+ Re(v(k) +1))d; (> 0), and Ma(C) 5 €(7),_ 5., O(1), and
(\T/WKB,k(ﬁa T)) _lTifoSYSO (7'71/6!7, 7')
=  lim ((T(p)e™e @) oy (v /0, 7). (3.201)

T—+00 QF°3—00
arg(i)=0

One commences by considering the asymptotics subsumed in the definition (3.201). From
the asymptotics for Y§° (7%, ) stated in Proposition 1.15, equations (3.15), (3.16), (3.18),
(3.19), (3.51), (3.52), (3.57), (3.84), (3.85), (3.94), (3.130), and (B.14), one arrives at, via the
conditions (3.17) and the asymptotics (3.48) and (3.79),

. ~ =1 —L 1/6~ ~
nglalgl—}w((T(M)ewzc(u, N EYR (r 1/6M77)) T exp(Bk(T)o3),
arg(n)=0

k=+1, (3.202)

where

Bi(7) = %alnr —ir?33(V3 — 1)a? —i2v3A% —i(a —i/2) In((V3 + 1) ay,/2)

(5= V3)px(7) i
6Bz (wg

1 ~ 6o
X <3lnTlnA+ln <(\/§+1)2>>

B (V3 = 1)pr(7) o e 3+ e pFo(T)
V3apr1/3A - A2

. _ A 20 (T
(0= 1/2) + a7 %ho(r)) + 333(@))

X (cs,kr—1/3 + cq 1 (To(T) + 4v0(7-)))> + 0(7—1/37\3) + (’)(7‘1/3]&)

T 2/37 2/33 2
0| (es. + k72 3ho(7) + s (T¥2ho(7))?)
. 1 _
+ 0O (T_2/3d07k(7') (3 InT —1In A>> , (3.203)

Cmk, m=1,2,...,7, are O(1), and czo,k(T) is defined in the proof of Proposition 3.9.

One now derives the asymptotics defined by equation (3.197). From the asymptotics (3.103)
for w = +1, equation (3.115) for @ (/N\) (in conjunction with its large—]\ asymptotics stated in
Remark 3.20), the definitions (3.198) and (3.199) (concomitant with the fact that det(Z(7;A))
= 1), and the asymptotics (3.200), one shows, via the relation (Wy(fiox,7))ij=1,2 = 0 and the
definition (3.197), that, for k = £1,

({I}k(ﬁv T)) _I\T]WKB,k(ﬁv T)
= 0k (M) (A)E (s A)F (1) B, 27 Gy (b(r)) 27 T (o 1)

T—+00
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x (T4 O(Jv(k) + 1P [pe(r)| 2 r ="M (7)€ (T) Qoo k(7))
x T4+ AQ (DI (1) Qoo k(1) + A2Q L (ML (T) Qoo k(7))

x (1 + AT BPy (1) + %Ew,k(f) + 0((7—1/3K)21Eoo,k(r))) : (3.204)

where M2 (C) 5 Ry (k), moo € {—1,0, 1,2}, are defined in Remark 3.20,

Pg 1= s (r)K” — (k) + 1) & — (v(k) + 1) In(2pa ()2 (3.205)
Qoo (1) =T (7) <<(€2§5£;%/2>03 iy + %;5”3A0f(7)(b(7))503) . (3.206)
with AG$°(7) defined by equation (3.193),

EHOES 2%1(7) (_ qS(T) P ’“(()T)> : (3.207)
CHOES W (1 - (V(Ok) +1) - (V(Ok) N 1)) , (3.208)
Uik =~

X<(1+(V(k)+1))(20+(1/(k)+1))%(¢()1 _(V(k)ﬂ))(z_o(y(k)H))p’“(ﬂ)> (3.209)
Pog (1) = (b(7)) 724 ((d,)om é;f)/) , (3.210)

3v2ay,

T k(1;7) Tio k:(l%T))
(o1 : , 3.211

(Tm,k(l;T) To2,k(157) ( )
~ 1 V3+1  —(2eh)/?

) = - —1 ad(o3) ¢ .
Eoo,k( ) 2\/3(\/§+1) (b( )) d <(2/€b)1/2 \/§+1 >€2’ (3 212)

Ma(C) 3 (1), = 0(1), (Tijn(1;7))ij=12 defined in Proposition 3.16, and My(C) > ég
is O(1).

Recalling the definitions (3.197) and (3.201), and substituting the expansions (3.202), (3.203),
and (3.204) into equation (3.196), one shows, via the conditions (3.17), the definition (3.109),
the restrictions (3.110), the asymptotics (B.1), (B.16), and (B.18), and (cf. step (xi) in the proof
of Lemma 3.17) arg(ux (7)), 5.5 (1 + 0(7_2/3)), and the restriction (3.184), that

T—+o0 2

1/4 1/2\ 73
(R () teitros ((EAVBH D) TN T ey
21/4\/B.v/b(T)
A

X diag(ESO(T),ASO(T))Ejzo (1), k==, (3.213)

()

T—+00

where 30(7), A3x(7), Ag°(7), and B (r) are defined by equations (3.189)(3.192), respectively,
and

Ese(r) = (1+0(r*R0y))

T—+00
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DF(r) Ce(r)b(r)e?i™) ))
’ (I o (M(r)b(r)e?gi(ﬂ +> o ( Ag(r)

1._ 1 ._ 1 -_
< (14 20 + i) +0 (20340 )

k) +1/? —erp (k) _ B -

x (T+ AT, (1) + A2 (7)) (1 + AP () + XIEE)M(T)
L O((rBR)E, km)),

)

where B;(T) =Ynr 4 i3a272%/3,

C3(7) == (AGR (T, (3.214)
i e Ay, (1432 (D)4 (V3 + 1)/ .

D§°(7) == (AG(7))22 — %k< e 1) ( Ve + (AGS (T))m) (3.215)
f‘&;z,lkﬁ(T) — o Br(T) ad(US)Q;OI’k(T)JJ;:k(T)Qoo’k(T% m=1,2,3, (3.216)
T (r) = e A adlen g L (T (1) Qo k(r), (3.217)
() = o—Br(r) ad(03) Q. (7)1 (T) Qoo i (7), (3.218)
Pﬁoo,k(T) — e_Bk(T) ad(aa)poqk(T)’ I/E\:ﬁoo,k(T) - e—,ék(T) ad(UB)EOO,k(T)g (3.219)
Ef (1) = e DR (7). (3.220)

Via the conditions (3.17), the restrictions (3.110) and (3.184), the definitions (3.57), (3.80),
(3.109), (3.112), (3.113), (3.160), (3.161), (3.191)—(3.193), (3.198), (3.206)~(3.212), and (3.214)—
(3.220), and the asymptotics (3.21), (3.24), (3.79), (B.1), (B.5)—(B.9), (B.14)—(B.19), and
(3.203), upon imposing the conditions (3.186) and (3.187), and defining

Jo© .= 1 < \/§+ 1 _(2€b)1/2>
O Va(VER ) N VL
Tio,k = (Tijk(l;T))i,j:l,Z:
1 . a2
]D)io,k = %;503 < 91/4 21/ ) )
@A 0

one shows that, for k = +£1,

+
Dge(r) €2 (7)b(r)e?i (")
@) 0 —0 @ 01/ o_
X(” (Ba%r)b(r)e?ﬁw +>+ ( A () ))
< (14 ) + 2 +0 (00 )

2 —erp(k) ~ B
I+0 <|V(k) + 1 e Pr(7) ad(gs)ggol’k(T)Ck(T)Dm,k(T)))

|px(7)I?
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x (I+:£,k<fﬂ W)+ AEu o)+ AT (1) 4+ T ()

+zé<>A&k<>»+A% T () + Ta(7)
+O(r —2/3Eﬁ )) +A3( 1/3311 ]pﬂ &7
+0

o)
26,4 )0+>

= (1+0(rY3A%03)) <I (
0
Moo Qﬂk
+O<%<gw ) ( )+ 2 dsd)

T—>+00
I o~y > i o 1 1
oLy 143, (nE e
(A3¢3’k (1) )( + 2o (1) 00713(7')'*‘ A2\/§(\/§+1)
e 24 oot Y VEY I
Vb(T) : Xk (T)

v 2 —erp(k) e*Bk(T) ad(as) ~ -
ot 2 o )

= (14+0(rY3A%3)) (I+ @ ( D (7) = 0+>

7400 Bgo (1)b(r)e?%k (")

+O<@%pww@ma>>
Ag(7)

4V3Zp Aty ), -y

4 O( 2/3311

03

1+ 1 (- :
X ( + Taw(TES 1 (7) + e L (T)os
+Ki4\/§zkmk£({k 1 10 4 4V3Z, 500, 1)
B e— = (T _ *(T)o
k() Lk xk(r) R

1 Br(T) (03) Joo']['ﬁ
T0BE ) \ Vi b ook
ad(o3)
o1 S S S X e S0 oot
+ KQ wQ,k (7_) + 2\/§(\/§+ 1) 17/}1,]6 (7—) < \/@) Jk Too,k

v 2T—ETP(k) e—Bk (1) ad(e3) _
+O((@Ziﬂ2 <¢Rﬂ> Dﬁﬁ“)myml)

< ad(o3)
1 |1/( )+ 1|2 —erp (k) f1y e—ﬁk("')
o= ’
: <A e R Ve

Dgo,kékw)(u»gk)*)

~ d(o3)
1 |lu(k + 1 QT—ETP(k) R e_ﬂk(T) &
+ O <~ | ( ) | % ]1 ﬁ(T)

A2 [Pk (7)[?
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7 - 1 14V3Zp Akl -
]D)io,kc:k(T) (Dﬁoo,k) 1) + 0 <~ ngé’ﬁ(T)O'g))

A2 Xk(T)

14\/§Zk9lk£6rk ~ 1 1
) - 7ﬁ 7**‘1’35
et " ok —Xk(T) 1/117k (T)os + (9(7’ 3 k0'3)

0 O(r=2/3 (9(7'_%+5k) 0
( 72/3) ( 0 )) + < 0 O(T—§+6k)>
O (7% (v(k) + 1)12’“)>

(
“‘”w >+117) O(r 42 (u(k) >”k)>
2) O(r s (wk) +1)

(’)(7'_3 eTP 'f> (w(k)+ 1)) O(r2ere
O~ -S-err (k) + 1)) Or 2 B ®u(k) +1)'F)
(’)(7——2 Sk —eTp k)( (k) + 1)%) (’)(7-—1—5k—6TP(k)(V
(’)(7—*2 205, — GTP(k)( (k)_|_1)) (’)(7*1*251{*@13(19)( I)Tk)

OO 1) Ot 4 )

1 _ 1 CL(ltky
L0 O Y ot ), o)
O(r=23)  O(r~33%) O(r=302)7%)  O(r5+0%)

4V3Zp Aty -y

= I+ J&,k('r)f@ﬁoo o (T) + Lk (T)os

T—+00 ' Xk (T)
ZIEi%k(T)
O(r=3t30)  O(r303") %)
- —1zky s —1435
o(r s(3) B O(r73T%)
::O(EZO(T))

Tjoo(IJrEm(r))(H I+ E, () O( ,2%))) =
~—
=0(1)

E2o(r) = (I+EX,(n) [+ OER(r), (3.221)
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where E%°, (1) and O(E;°(7)) are defined by equations (3.194) and (3.195), respectively.*> Thus,
via the asymptotics (3.213) and (3.221), one arrives at the results stated in the lemma. [ |

Lemma 3.22. Let \T/k(ﬁ, T), k = £1, be the fundamental solution of equation (3.3) with asymp-
totics given in Lemma 3.17, and let X9_, (ji,7) be the canonical solution of equation (3.1).%
Define3”

() == (Ui (7, T))*lT—%vgngk(T—l/Gﬁ,T), k=41, (3.222)

Assume that the parameters v(k)+1 and 0y satisfy the restrictions (3.110) and (3.184), respec-
tively, and, additionally, the conditions (3.186) and (3.187) are valid. Then,

—1eir(T)e i21/4 " k(7)o AO T 0
Sg(T) - (Rmo(k)) 1632( )os /3 eAﬁk( )o3 ( 0( ) &0 >
T (V3-1)"*vB, 0 BY(r)

x (I+EQ (7)) Si (I+ O (ER(7))) (3.223)

where Ma(C) 3 Ry, (k), mo € {—1,0,1,2}, are defined in Remark 3.20,

50(1) == 1r%33v3ad +i(a —i/2) n(27V2(V3 + 1)), (3.224)
ANjp(T) == — <56+\/§;§> pe(T) + ((k) + 1) In(2u, (7)) Y? + %(V(k) +1)InT
—(v(k) + 1) In(e™™ /3ay,), (3.225)

with pr(7) defined by equation (3.57), and By, and uy(r) defined in Lemma 3.17,

A =14+ (5b)1/4(\/§ B 1)1/2 (AGg(T))U

i : (3.226)

21/4
+ 12
(eb)V4 (V3 —1)

. ((AG%))QQ 5 (imzk - 1) (AG%))w) , (3.227

Xk(T)

with 2k, Ak, and x(7) defined in Lemma 3.17, and

. 1 (AG(T)) (AGY(
AGY(T) : (2V3(v3—1))" <(AG2(T));

\1

))
(AGQ(T))Z> , (3.228)

with

% The asymptotics for the function E37 () is presented in the proof of Lemma 4.1 (see Section 4).
36See Proposition 1.15.

37Since (cf. equations (3.2)) T‘ﬁ”SX?,k(T_l/Gﬁ, 7), k = %1, is also a fundamental solution of equation (3.3),
it follows, therefore, that £2 () is independent of fi.
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where (AGo ), are defined by equations (B.5)—~(B.7),

1 —(1+k)sy/2
(a-naz ) (3229

D, (1) 1= o Ph(r) e
y <i4\/§2k2lk€5fk ((\/?: - 1)pk(7)€Bk V2(v(k) + 1) ) i

2,7=1,2

Sy =

ag o_
Xn(7) BPu(r) T (V3 1)pu(r) By,
4VBZALT, (VB-1)Bytf
. 1 G e
2v/3(v/3 =1 2 MVBZ W \2 )+ g+ gt ! kLo k
\[(‘[ ) (ﬁ—l)%k(( Xk(f) k) go,k gl,k 62 k) Xk(T)
v \/g -1 (25b)1/2 Tll,k(_l; T) T12,k<_1§ T) (3 230)
—(2/eb)"? V3-1) \Tarp(~1;7) Tar(-1;7)) ) ‘

with EO - Ef’k, and € i defined in Lemma 3.17, (T 1(—1;7)); j=1,2 defined in Proposition 3.16,
and Bk( ) defined by equatwn (3.236), and

O3y O(r i<2>—5k>> (3.231)

O(EQ(T)) T;i()o (O(T L(Lbky_ 5k) O( +36k)

Proof. Denote by \TJWKB’;C(/’I,T), k = +£1, the solution of equation (3.3) that has leading-order
asymptotics given by equations (3.25)—(3.27) in the canonical domain containing the Stokes curve
approaching, for k = +1 (resp., k = —1), the real pi-axis from above (resp., below) as g — 0.
Let £0(7), k = £1, be defined by equation (3.222); rewrite £2(7) in the following form:

'82(7—) = ((‘I’k(/jv T))_I\TJWKB,k(ﬁa 7')) ((\TJWKB,k(ﬁ, T))_IT_%USX? (T_1/6/7, T)) Z, (3.232)

where S is defined by equation (3.229). Since Uy (72, 7), Usyini(fL, 7), and T‘ﬁﬁxg (T_l/Gﬁ, 7)
are all solutions of equation (3.3), it follows that they differ on the right by non-degenerate,
p-independent, Mg (C)-valued factors: via this observation, one evaluates, asymptotically, each
of the factors appearing in equation (3.232) by considering separate limits, namely, g —
and  — 0, respectively; more precisely, for k = +1,

(Ur(fi, 7)) ™ Wrorcs 1 (7L, 7)
((b(7)) 27 Go kB2 Fro(1)Zk (75 M) 05 (A) @ar e (A))

ﬁ:ﬁo"“’xfﬁmo( ) 0<0<8, <2 5q ,arg(K) = 7rr;,0 +%—% arg(pg(7)),moe{—1,0,1,2}

“T(@)eVEED | (3.233)

T—+00

where (cf. Lemma 3.21) Fy(7) and Zj(7; /N\) are given in equations (3.198) and (3.199), re-
spectively, W, (i, 7) := —o3ir?/3 f” Ip(&)d f” diag((T'(£))~10:T(€))d¢, and X (A) has the
asymptotics (3.200), and

(Buvn (7)) 7m0 (9.7
=l (T(@e™ @) 7= 7x (70, 7)), (3.234)

T340 Q9255—0
arg(i)=m

One commences by considering the asymptotics subsumed in the definition (3.234). From the
asymptotics for X9(771/07, 7) stated in Proposition 1.15, equations (3.15), (3.16), (3.18), (3.19),
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(3.53), (3.54), (3.57), (3.86), (3.87), (3.95), and (3.130), one arrives at, via the conditions (3.17)
and the asymptotics (3.48), (3.79), and (B.14),

w1 _ TCORCA N
Q?lairﬁnﬁo((T(u)eWk(u,ﬂ) 17-’503X(1)(7-*1/6M,7-)) T ( %) exp(Bk(T)o3),
arg(p)=m
k=41, (3.235)

where
Bk(T) = i72/33\/§04i +i2v/3A% + i(a—1/2) ln((\/g + 1)/\/5) - (5 +69\/\/§§)§k(7)
A
a—i a—2:2/3], 2pi(7)
(et 19 ozt rPia) + 240 )
X <—; In7+InA+ ln(ei’”/3ak)> — (:/fgai:)?f;;\)
+0 ((El,lﬂ_l/g[; E2,szo(7)) (E37 3 4 Ty g (Fo(7) + 41}0(7')))>

+O(r 33 + O(r71/3A)

173 )
+0 (TA (Cs. + Co T 2B ho(r )+E77k(7'2/3h0(7))2)>

+0 (72/3cf0,k(7') <—; InT+1In ./~\>) , (3.236)

Cms m=1,2,...,7, are O(1), and cz(),k(T) is defined in the proof of Proposition 3.9.

One now derives the asymptotics defined by equation (3.233). From the asymptotics (3.103)
for w = —1, equation (3.115) for @ (K) (in conjunction with its large—]& asymptotics stated in
Remark 3.20), the definitions (3.198) and (3.199) (concomitant with the fact that det(Z(7;A))
= 1), and the asymptotics (3.200), one shows, via the relation (Wg(fok,7))ij=1,2 = 0 and the
definition (3.233), that, for k = +1,

(\I’k(ﬁv T))_lgleWKB K (2, 7)
= 0y (R) R (R) = (73 ) Fy ()8, 27 Gy L (0(r) 27 T (o x)

T—400

= (Ru (k)" te 707390 (1) (I * %%i(ﬂ%,é(ﬂaak(f)

T—r400

+ 205 )iy L) Q0(r) + O (Klgaa,,iw)zﬁ;,i(ﬂno,k(ﬂ))
% (1 O(Iw (k) + 1P[pe(r) 2P B 05 L (1) (r) Qo 4(7))
x (I+

(k) )
ADOk( )30 (1) Qo k(7 )+A2530k( )55 (1)Qo k(7))
X <1 + Ar7 VP () + %EO,,C(T) + o((r—1/3K)21E07k(T))> : (3.237)

where M (C) 3 Ry (k), mo € {-1,0,1,2}, are defined in Remark 3.20, Pg, @Z?l_,i(T), zﬁz_i(T),
and ngé(v') are defined by equations (3.205), (3.207), (3.208), and (3.209), respectively,

1/4./ - 03 g R
Qou(r) = F ' (7) (( (gb)w(zﬁ _bi)fn @) +98, AG%(ﬂ(bmw), (3.238)
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with AGY(7) defined by equation (3.228),

1 0 (eh)/?
PO,k(T) = (b(T))_§ad(U3) ((eb)1/2 3\850%) ) (3.239)
3v2ay,
B (7) = 1 1)~ % ad(os) V3—1  (2eb)'/?
Eox(7) := 2\[(\/5_1) (b(1)) ( (2/eb)1/2 \/§_1>
Tiik(=17) Tior(=1;7)

8 <T21,k(_1§7') To2 1(— LT)) (3.240)
P — 1 Cladon) [ V31 (2eh)'2
Boatr) = s = O (e G 1) &, (3.241)

My(C) > Ci(7) O(1), (Tsjk(—=1;7))ij=1,2 defined in Proposition 3.16, and My(C) > @2
is O(1).

Recalling the definitions (3.233) and (3.234), and substituting the expansions (3.235), (3.236),
and (3.237) into equation (3.232), one shows, via the conditions (3.17), the definition (3.109),
the restrictions (3.110), the asymptotics (B.1), (B.16), and (B.18), and (cf. step (xi) in the proof

of Lemma 3.17) arg(ux (7)), 5.5 (1 + O(7 *2/3)), and the restriction (3.184), that

T~>+<>o

i21/4

. 1)1/2 /7%14;
Y

xEy(r)S;, k=1, (3.242)

Si(r) = (Rmo(k))lezg(”"?’( 3 ) o217 diag (Af(7), BY(7))

T—+00

where 39(7), Ajx(7), AY(7), and BY(7) are defined by equations (3.224)-(3.227), respectively,
and
137 CO(7)+/b(7) DO (7)ePi (™)
IEQ = (I4+0(r73A3 I+0 22— 2 (O RS A—
Lk( )T*)+OO( +O(r 7)) ( * (AO( )eBi(T) )T BY(7) b(T)U
1. 1 - _
X <I+ qui’b(T) + ﬁ%’;’u( )+ < w Y h( )))
2 —erp(k) 5
’ (I e (Mk) e 9‘1<r>¢k<7>a*,k<f>)>

pr(7)? o
x (1+ AT, (r) + K235 (7))
% <I + KTfl/S]P;l(J)’k(T) + %IEE)JC(T) + O((Tl/3x)2]]::g7k(7'))> , (3.243)

where —BZ(T) = %‘1 InT +i3a37%/3,

CY(r) := —i(eb)~H/4 (AG%(T))H, (3.244)
DY(7) :=i(eb) /*(AG(T)),, — B (14{5’“ 1)
X (121/4 +i(eb) /1 (AGY(T)) > , (3.245)
(\/§_ 1)1/2 11
U (1) = Q) L (NQur(7), m=1,2,3, (3.246)

Q. (7) 1= Qo (1) (i(eb) /4) ™ (b(r)) "2 (s, (3.247)
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Ta(r) = QNI OQk(r),  Thu(r) = Q0 (NI (E)Qu (), (3.248)
PS . (7) = (i(eb) /) "4 (p(r)) 3 2dlon) g Bu(nadionlpy (1), (3.249)
B () 1= (i(eb)/4) ™24 (p(r)) 3 20 oA ey (7). (3.250)
E () 1= (i(eb)/4) =24 (b(r)) 3 2dln) =B ad(on) gy (7). (3.251)

The calculations for the asymptotics (as 7 — +o00 with b > 0), of the error function E ( )
(cf. definition (3.243)) are similar to those for the error function EL?( 7) presented in the proof
of Lemma 3.21; therefore, via the conditions (3.17), the restrictions (3.110) and (3.184), the
definitions (3.57), (3.80), (3.109), (3.112), (3.113), (3.160), (3.161), (3.198), (3.207)—(3.209),
(3.226)—(3.228), (3.238)~(3.241), and (3.244)~(3.251), and the asymptotics (3.21), (3.24), (3.79),
(B.1), (B.5)-(B.9), (B.14)—(B.19), and (3.236), upon imposing the conditions (3.186) and (3.187)
and proceeding as in the proof of Lemma 3.21, one shows that, for k = +1,

Y

Eo(r) = (I+EL.(m)(I+O(E(7)), (3.252)

k T—+00

where EY, , (1) and O(E{(7)) are defined by equations (3.230) and (3.231), respectively.*® Thus,
via the asymptotics (3.242) and (3.252), one arrives at the results stated in the lemma. |

Theorem 3.23. Assume that the conditions (3.17), (3.110), (3.184), (3.186), and (3.187) are
valid; then, the connection matriz has the following asymptotics:

Ge = G(k)S(k)(T+ OB (7)), k==l (3.253)
where

G(k) == (S5)~'G*(k), (3.254)

(k) = (G* (k) I+ EQ (1)) T G (k) (1 + EZ4(7)), (3.255)

with B (1), S, and E?Wk(T) defined by equations (3.194), (3.229), and (3.230), respectively,
and

G (B (1) o~ Af(r)-Adn(r)  Cr2WAF (1) AG(r)-Adi(r)

. —AY(n) —AY(r)

G (k) %efAzk(THAzk(ﬂ Gm(ij)AS"(T) A3k (T)+A3k(7) (3-256)
By (1) B§(7)
where
A iV 2y (7)B V(1) el (v (k)+1) . .
Gulk) = DB T) exp(—30(r) = 31(7), (3.257)
(eb)/4(2 + v/3) 77 (2 (1) V2T (v (K))

A i(eh)1/4 - N
Gia(k) :== — i/ﬁ exp(3p(7) — 50(7)), (3.258)
R ivVb(T e—27ri(u(k)+1) ~ .
Gaoi(k) == — ( )(55)1/4 exp(—3p(7) + 30(7)), (3.259)

38Note that

(CO 7')\/7> T_):+00 O(T72/3) and o ( 8(T)eﬁ’:(T) > _ 0(7_72/3)'

Ay(m)ePi) CIONCOVASTS

The asymptotics for the function EY; ,(7) is presented in the proof of Lemma 4.1 (see Section 4).
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\/%(gb)l/4(2+\/g)1/2<2Mk(7))1/26—2wi(u(k)+1)
pi(T)BpVb(T)T (v(k) + 1)

Gaa(k) := — exp(3p(7) +50(7)),  (3.260)

with 39(7), Ajk(7), Ag (1), B (1), 59(7), Adr(r), AY(7), and BY(7) defined by equations (3.189),
(3.190), (3.191), (3.192), (3.224), (3.225), (3.226), and (3.227), respectively, and

OEF (1) = O(EF(r)) + O((G(k)S(k) "EY(r)G(R)S(k)), (3.261)

T—+00

with the asymptotics O(E° (7)) and O(E)(7)) defined by equations (3.195) and (3.231), respec-
tively.

Proof. Mimicking the calculations subsumed in the proof of [57, Theorem 3.4.1], one shows
that

Gr=(£2r)'e2(r), k==l (3.262)
From equations (3.188)—(3.195), (3.223)—(3.231), and (3.262), one arrives at

Gr = (I+OEUN))SE) (1 +E 4 (1) e 2508 diag(AY(r)) ™, (BY(1)) )

T—+00

i91/4 03 y )
X (\/3 1)1/2\/%— e_ﬁk('r)oﬁnmo(k)(Rmoo(kx))—leak(q—)o—g’
N k

(‘Sb)l/4(\/§ + 1)1/2 " : —Aj(T)os 73 0O A 00 ()
" ( 21/43/B,.V/b(T) ipe” 8178 diag (B (1), A (7)) (1 + EF (7))
x (I+ O(EF (7)), (3.263)

taking (moo,mo) = (0,2), that is, Aarg(A) := 7(mo — mo)/2 = 7, and using the definitions
of Ro(k) and Ro(k) given in Remark 3.20, one arrives at, via equation (3.263) and the reflection
formula I'(2)I'(1 — z) = 7/ sin(7z), the result stated in the theorem. |

4 The inverse monodromy problem: Asymptotic solution

In Section 3.3, the corresponding connection matrices, Gy, k € {£1}, were calculated asymptot-
ically (as 7 — 400 with eb > 0) under the assumption of the validity of the conditions (3.17),
(3.110), (3.184), (3.186), and (3.187). Using these conditions, one can derive the 7-dependent
class(es) of functions Gy belongs to: this, most general, approach will not be adopted here;
rather, the isomonodromy condition will be evoked on Gy, that is, g;; := (Gk)ij, 4,5 € {1,2},
are O(1) constants, and then the formula for G will be inverted in order to derive the coefficient
functions of equation (3.3), after which, it will be verified that they satisfy all of the imposed
conditions for this isomonodromy case. The latter procedure gives rise to explicit asymptotic
formulae for the coefficient functions of equation (3.3), leading to asymptotics of the solution of
the system of isomonodromy deformations (1.36),% and, in turn, defines asymptotics of the so-
lution u(7) of the DP3E (1.1) and the related, auxiliary functions H(7), f+(7), o(7),** and ¢(7).

Lemma 4.1. Let gi; = (Gg)ij, i,j € {1,2}, k = £1, denote the matriz elements of the
corresponding connection matrices. Assume that all the conditions stated in Theorem 3.23 are

39Via the definitions (1.31), also the asymptotics of the solution of the (original) system of isomonodromy
deformations (1.22).

0See the definitions (1.7), (1.41), (1.42), and (1.10), respectively.
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valid. For k = +1, let g11912921 7 0 and goo = 0, and, for k = —1, let g12g21922 # 0 and g11 = 0.
Then, for 0 < 6 < 6 < 1/24, k = £1, the functions vo(1), 7o(7),** and b(r) have the following
asymptotics:

0 sLimk /4 —imk/3 k(0 _ s —ma
w(r) = volr) = 3 —mb) e Mem ™A (Pa) (s = 17™) _(s(ryimote)
’ Totoo £ (71/3)m+1 V/27131/4(eb)1/6
x (L+0(r713)), (4.1)
) o B oo 'Cm(k‘) lk‘(\/g—i- l)keiﬂk/4e7i7rk/3(g)a)k(88 _ iefﬂ'a)
7o(7) := Tok(T) 100 mz::O (7_1/3)m+1 + V/m2(k=2)/231/4(cp)1/6
» ef([z(f)ﬁwm)(l I 0(7*1/3)), (4.2)

and

Vi(r) = b(k)(eb) "/ exp (i(a —i/2) In(ay/V2) — %‘lmT + %(\/ng ik) (cb) /37213

T—+00
+ o(T—ék)) , (4.3)
where Y(1) and () are defined in equations (2.10),
Po = (2+V3)", (4.4)
b(k) = {g Lo (45)
—(g22¢™) ", k=-1,

and the expansion coefficients uy, (k) (resp., vy (k)), m € Z4., are given in equations (2.2)—(2.9)
(resp., (2.13) and (2.14)).2

Proof. The scheme of the proof is, mutatis mutandis, similar for both cases (k = 41); therefore,
without loss of generality, the proof for the case k = +1 is presented: the case k = —1 is proved
analogously.

It follows from the asymptotics (3.21), (3.24), and (B.9), the conditions (3.186) and (3.187),
and the definitions (3.189) and (3.224) that p;(7) Hj<>o(9(7'1/36_5(7)) and Vb(T) Tﬁij(Tf% X
exp(%ﬁ(sb)l/?’ﬁ/?’)), where ¥(7) and 3(7) are defined in equations (2.10). From the definitions
(3.109), (3.149), (3.157), (3.160), and (3.161), and the asymptotics (3.21), (3.24), (B.8), (B.14),
and (B.16)—(B.19), it follows, via a linearisation and inversion argument,*? in conjunction with

the latter asymptotics for p;(7), that, for k = +1,

o) 0() = \1/5 (2(a - \;gi)%T—l/S ) 48\/3(191;17()7)—7_1)1(/7;(1) +1)
B ipy (7)r~1/3
307 (pa(7) 1)) | (4.6)

uo(l)Tfl/?’ + 0(772/3)

1 4(a —1i/2)r~1/3
T—>_+oo 8\/3 \/301%

41See the asymptotics (3.21) and (3.24), respectively.
“2Trans-series asymptotics (as 7 — +oo with b > 0) for b(r) are given in the proof of Theorem E.3.

43That is, retaining only those terms that are 0(771/3).
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N 48v3(V3+ 1) (pi(7) — 1)(v(1) + 1)

pi(r)T= 13
ir1/3 (V3-1)
+ 307 <\/§+1—p1(7)_1>>, (4.7)
where
M) +1) _ alr)
BEGEEG e
with
a(r) = o), (4.9)
2u(r) = i8V3(1+ o(r=43)), (4.10)

where cg (1) is some to-be-determined coefficient. Recalling from Propositions 3.4 and 3.5, respec-
tively, that ug(1) = a/6a? and tvo(1) = (a—i/2)/3a2, it follows via the asymptotic relations (4.6)
and (4.7), equation (4.8), the asymptotics (4.9) and (4.10), and the asymptotics for p;(7) stated
above that

(a —i/2)r /3 —2/3 T8 (2a=i/2) . —2/3
MEVET L o(r - +i6ei(1) | + 0723,
303 ) S v ez 0 ) O
ar~1/3 713 4a
+0O(r 723 = —i6(V3+1)c(1) | + O(r %3,
O o T (i 1)) ) + 0 )
whence
ci(1) = 0. (4.11)
Thus, from equation (4.8), the asymptotics (4.9) and (4.10), the relation (4.11), and the asymp-
totics (see above) p; (T)TerOO(Tl/Se_B(T)), one deduces that, for k = +1,%
_ —2/3_—B(r)
v +1 = O(r—2Pe™P17)). (4.12)

From the corresponding (kK = +1) asymptotics (3.21) and (3.24), the definitions (3.57),
(3.190), and (3.225), the expansion e* = > °°_ 2. and the leading-order asymptotics (4.10)
and (4.12), one shows that, for k = 41,

ENO o LS G () 0 e ), (4.13)
S S TS G 0 e ), (114)

“Even though this realisation is not exploited in this work, it turns out that v(k) + 1 has the asymptotic
trans-series expansion

)11 = 3 S ) (Y (OO g
JEZy meN

for certain coefficients 5; 1(m): Z4+ x {£1} x N — C, where, in particular, §0,x(1) = §1,%(1) = 0.
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for O(1) coefficients ¢(1) and ¢E(1). From the corresponding (k = +1) asymptotics (3.21),
(3.24), (B.1), (B.14), (B.16), and (B.18), the definition (3.160), and p; (1) O(r/3e=8),
it follows that, for k = +1,

1 e—17r/4 a3 g s e
(21 (1))1/2 5100 23723171 (HT / Za YT 4 O(r7 Ve ) | | (4.15)

m=0

T~>+oo

for O(1) coefficients af,(1). From the corresponding (k = +1) asymptotics (3.21), (3.24), (B.1),
(B.5)—(B.9), (B.14), and (B.16), and the definitions (3.160), (3.191)—(3.193), and (3.226)—(3.228),
one shows that (cf. Lemmata 3.21 and 3.22), for k = +1, to leading order,

0 (1) = O(772/%) O(r/3(eP0) ) (4.16)
MR o 0(771/3 (efﬂ(T))%) @(772/3) ’ '
B ( O(r2/3) . 0(7—1/3(6—/3(7))1?))’ (417)

, 7400 0(7—1/3 (e—ﬂ(T))T) 0(7-—2/3)

whence, via the asymptotics (4.12), (4.16), and (4.17), and the above asymptotics for p;(7), it
follows via the relation det(I4+J) = 1+tr(J) +det(J), J € Ma(C), that, for k = +1, to all orders,

_ Fo1/3)m ~1/3,—B(r)
1+EY +OOI+Z¢m )"+ O(r e Mg, (4.18)

(I+ES (1) ng (T V)" O (B3P, (4.19)

T*)+OO

for My(C)-valued, O(1) coefficients ¢”,(1) and Cfn(l). It now follows from the corresponding
(k = +1) conditions (3.186) and (3.187), that is,
pi(M)B1. = 0 and V(7). = O(eé?(f)*é?(f)%

T—+00

respectively, where 37 (7) and 39(7) are defined by equations (3.189) and (3.224), respectively, the
expansion e* = Y.%°_ 2= the reflection formula I'(2)I'(1—z) = 7/ sin 7z, the definitions (3.257)—

m Om"

(3.260), and the asymptotics (4.12) and (4.15), that, for k = +1,
vy (Gu) Gr()) _ (o) o)
S0 = () enn) -7 (o) o0 rn) (420

and, from equation (3.256), the definitions (3.191), (3.192), (3.226), and (3.227), and the asymp-
totics (4.13), (4.14), and (4.20),

. (o) o(1)
w0 2. (6 ot hn).

whence, via the definitions (3.229), (3.254), and (3.255), and the asymptotics (4.18) and (4.19),

=~ _ (0 O(1)

G0, 5w <(9(1) (9(,,(1)+1)>» (4.21)
. 0(1) o)

S 5. <0(1) 0(1))' (422)

From the asymptotics (3.195) and (3.231), the definition (3.261), the asymptotics (4.21) and
(4.22), and the relations max{z1, 2o} = (21 +22+|21 —22|)/2, min{zy, 20} = (21 + 22— |21 —22])/2,
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z1, 29 € R, and maxk:il{?)(Sk — 1/3, —0p — (1 + k’)/6, —0p — (1 - k)/G} = —0;, it follows that, for
k= +1,
ET (1) = O(r ™). (4.23)

T—+00

Finally, from the asymptotics (3.253) and (4.21)—(4.23), one arrives at (G1)ij=1,2, 5., O(1)
(for k = +1), which is, in fact, the isomonodromy condition for the corresponding connection
matrix.

From the definition (3.229), the asymptotics (3.253), the definitions (3.254) and (3.255),
equation (3.256), the definitions (3.257)—(3.260), the asymptotics (4.18), (4.19), and (4.23),
and the isomonodromy condition for the corresponding connection matrix Gy, it follows that,
for k = +1, upon setting g;; := (G1)4j, 4,j € {1,2},

g gi2\ 1 s) 1) GL(MW)YN (T+nu(r)  ma(r)
(o) = (o ¥) (G ct) (ol L)
x (I+0(r™)), (4.24)
where

nig(r) = > Ea(D)y ()" +O(r PO, e (1,2}, (4.25)

m=1

for O(1) coefficients (H.,,(1));;. It follows from the asymptotics (4.24) that

g2gm = (GH ()1 +m11(7) + Gla(1ar (7)) (Gla(1) + s8G55(1) + (Gia()
+ 58G(1))ma(7) + (G4 (1) + s8G51 (1) (7)) (1 + O (). (4.26)

From the corresponding (k = +1) conditions (3.186) and (3.187), that is, p1(7)B1 T_jroo(’)(e%(f(ﬂ)
and Vb(7) Tﬂij(egg(T)_g(l)(T)), respectively, where 3{(7) and 3{(7) are defined by equations
(3.189) and (3 224) respectively, equation (3.256), the definitions (3.257)—(3.260), the expansion
e = > 45, the asymptotics (4.12)-(4.15), and the definitions (3.191), (3.192), (3.226),
and (3.227), one shows that, for k = +1,

Gar (DB (1) ; -
G, (1 7) = T - e~ AN(M+An(T)  — o 1/3 ’
21(D)m1(7) = ma(7) B0(7) =00
Goa(DAP(T) a1(r)+45 —1 -
G5 (1 ) — - 5 AHMHAN() = O(rle B,
22(1)721(7) = n21(7) B0(7) =0l )

(Gia(1) + 50G32(1)) 122(7)
(

= O3 (0 +0(r P FM)) = o1,

T—+00

(GT1(1) + 0G5 (1)) ma(7)

= 71a(7) (Gll(}O)BSO(T)e_Agl(r)_Agl(T) 4 80621(}0)18%80( ) A ()4 A ( ))
Ag(7) BY(7)
— -1/3 o —-1/3
= 0@ om+on) = o),

whence (cf. asymptotics (4.26))

G292 = ( 51(1) + 0(7—1/3) + O(T—le—ﬂ(r))) (1 + (9(7-_51))
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X ( Ta(1) 4+ (’)(771/3) + 0(772/3e75(7)))

L= GG +0(r™) = Gr1)Ga )W(l +O(r )
= e OO (14 0() = (14 0w(1) +1)
x (1+0(r7%)) = — (14 O(r 2B BD)) (1 + O(r)) N
—g12g21 = 1+ O(r™); (427)
analogously,
g = (Gu()(1+ma(r) + Gh(na (7)) (1+0(r™))
Hzm(G;l(n +O(F ) + O(r e PO (1 4+ O(r )
= Gua )(1+0(r7%)) = ((}21(1)1%8:;((:)) AR (1 L O(701))
= i(;/b@ —3‘?(r)+z§?(r)e—2ﬂi(u(1)+1)(1 + 0(7—2/3)) (1+ 0(7—2/3)) (1+ 0(7_51))
ivb(7)

= — 6—5?(7)+5?(T)(1 +0((1) + 1))(1 + 0(7—51))

- o3 (M+31(7) (14 0(r 2B PN (1 + O(r~)) .

e OO (14 O(r)). (4.28)

g1 T—>:+oo - (5[))1/4

It follows, upon inversion, from the asymptotics (4.27) and (4.28) that, for k = +1,
V = i 1/4.38(m) =37 (7) —01
b(r) = igar(eb) et (14 O (7))

= —igy (5b)1/4e51(7) 30 )(1+(’)(77‘51)), (4.29)

T—+00
whence, via equations (1.52) and the definitions (3.189) and (3.224), one arrives at the corre-
sponding (k = +1) asymptotics for V(1) stated in equation (4.3) of the lemma.?®
Recall the following formula (cf. equations (1.51)), which is one of the defining relations for
the manifold of the monodromy data M,
921922 — 911912 + SQg11922 = i (4.30)
Let
V2rpy (7)B1e” B el D) As(HBE (1) a5, (n
— A ~ e
(24 v3)"2(@u (7)) V20 (—1(1)) AS(TAG()
X (14 ma(7)(1 4 n22(7)), (4.31)

substituting equation (3.256), the definitions (3.257)—(3.260), and the asymptotics (4.24) into
equation (4.30), an algebraic exercise reveals that, in terms of the newly-defined variable z, it
can be recast in the form

T™a

y1272 4+ (ya +y3 +ya)z "+ (14 ys + y6)x + yrz® + ys + yo + y1o + y11 — ie”

“Note that the asymptotics (4.29) is consistent with the corresponding (k = +1) condition (3.187).
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+0(r™) =0 (4.32)
where
hrmirm\ (Arm)
— [90=" sin(n (v —ir(v(1)41) B0 (7)o" (T 0 \T) ) Q2(851(m)=Adu(r))
Y1 = (2921 (m(v(1) +1))e * AB(T)AS(T) ) ( A8(7)> 3 3
< (L+m1(7)* (14 m22(7)) a1 (7) (L + O (7)), (4.33)
N N 2
2 sin(n(y o—isr()+1) [ AF(T)BG(7) . .
Y2 :=i2sin(m(v(1) + 1)) (Ag(T)Eg(T) (1 +711(7)) (1 + n22( ))) , o (4.34)
N 3 A
196002 sin(n (v omin+1) [ AF(T) ) BE(T) o(a5,(r)-25:(n)
Y3 1= 12509y, sin(m(v(1) + 1)) N A8(7)> 1@8(7) 3 3
X (14 m1(7)) (1 + n22(7))*n21 (1), (4.35)
N ~ 2
9 sin((y o—isrw()+1) (AT (T)BG(7)
o B+ DT ( AS(HBY(r) )
x (1+ma(r ))(1 + na2(7))ma(T)n21(7), (4.36)
,_ o AY(T)BE(1) 2851 (1) —251(r)_M2(T) 1
Ys = —S0931 Foo( TBI(7) 5 3 T ma () 192 (7) (1 + O( )), (4.37)
_ M2 (7)n21(7)
= T () (1 + maa()) (459
2 AS(T) ZefQ(A](T)fAAl(T)) m2(7) =61
S (fw >> N ) e O (439)
ys i= sl “2”(”(1)+1)W(1+m( )+ ma(r)), (4.40)
~ 2
Yo = g1 <I%00((T))> e 2ARM=AHEN (1 yy (7))ma(r) (14 O(7)), (4.41)
0 T
~ 2
Y10 == _9512 (‘2)0((7))> e2(A51(7')—A§1(7'))(1 +7722(7-))7721(7.)(1 + 0(7—61))’ (4.42)
0 T
Y11 = —i2s)sin(w(v(1) + 1))e*iﬂ<y<1>+1>wmg( V121 (7). (4.43)

AJ(T)B(7)

Via the asymptotics (4.12)—(4.15) and (4.25), the definitions (3.191), (3.192), (3.226), and
(3.227), and the expansion e* = Y > _ %, it follows from the definitions (4.33)—(4.43) that

m=0
1= 00 3e=2BT) = O(r73e7A), (4.44)
s = O BNy = O(r= 48P s = O(r1/3), (4.45)
6= o2,  y = o(r13),  us o= s+ O(r=1/3)), (4.46)
o = O 3, o = o3, yn = O(r= 43678, (4.47)

One notes that the asymptotic equation (4.32) is a quartic equation for the indeterminate z,
which can be solved explicitly: via a study of the four solutions of the quartic equation (see,
for example, [48]), in conjunction with the asymptotics (4.44)—(4.47), it can be shown that the
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sought-after solution, that is, the one for which x O(1), can be extracted as one of the two

T—>+oo
solutions of the quadratic equation
*\ .2 * s —Ta —01 * —
(I+vD)a” + (ys+vs —ie ™+ O(77%) )z + v3 et 0, (4.48)
where
* _ —1/3 * _ —1/3
v = Ys + Y e o(r / ) Vg =Yg + Y10 + Y11 et o(r / ) (4.49)
g — —2/3,—B(7)
vsiE Y2ty tys = O(r7*%e ). (4.50)
The roots of the quadratic equation (4.48) are
_ (v i+ O())
. T—+00 2(1+07)
. 2
\/ ys +vi —ie ™ + O(7791))" — 4(1 + v})v
Vst ) s -

2(1+07) ’

of the two solutions given by equation (4.51), the one that is consistent with the correspond-
ing (k = +1) condition (3.186) reads

. —tu i+ O())
T—400 2(1+07)

V(s + 03 — e+ O(r=3))* — 41+ vj)os 4.52
a 2(14v7) ' (4:52)

via the definition (4.31), and the asymptotics (4.44), (4.49), and (4.50), it follows from equa-

tion (4.52) and an application of the binomial theorem that, for s # ie™™,

V2mp1 (1) B e~ BT ein(()+1) ASO(T)BSO(T)&QA@(T) . .
(2+V3)"2(2p1 (7)) /20 (—(1)) AY(T)AY() (14 71 (7)) (1 + 122(7))
= —(s3—ie™) +O(r ). (4.53)

T—+00
From the asymptotics (3.21), (3.24), (4.12), (4.14), and (4.25), the definitions (3.191), (3.192),
(3.226), and (3.227), the reflection formula I'(2)['(1 — z) = =n/sin7wz, the expansion e* =
S, 2, and the asymptotics e 1( 0y S 1H0W()+1), 5. 1+0(77 Y3 B), one shows

m= Om"

that, for k = +1,

T AG (1) B (7) >
TRy = 1+ 2N an()(r )"+ O(r e PD), (454
L(=v(1)) AY(r)AY(r) +oo ’ mzo W) (7 ) (4.54)
—2051(1) . +—2/3 1/3 ~1/3 _—B(7)
¢ ' T—'H-oo Z Oé + O(T e )7 (455>
(L4 71 (7)) (1 + n22(7)) e T 1/3 Z oy, _1/3 + 0(7_1/38_5(7—)), (4.56)

for O(1) coefficients ay, (1), aEn(l), and of (1). Via the asymptotics (4.15) and (4.54)(4.56),
upon defining

> a?nll _1/3 —B(r - O, (1 —1/3 —B(r
<1+Z(7_1/3)En1)+1+0(7_ 1/36 ﬂ()>> <1+Z(7—1/3)7(n£+2+0(7_ 1/36 A ))>

m1=0 mo=0
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X (1 + i M + (’)(7-1/3e6(7))>

= (Tl/g)m3+2

X <1 + i M + (9(7——1/36—5(T))>

= (T1/3)m4+2

o
= 1+ ) O(r713e P, (4.57)

=00 — (T1/3)m+1

it follows from the corresponding (kK = +1) definition (3.224) and the asymptotics (4.53)
and (4.57) that, for s) # ie™ ™,

S
em(1 _1/3 —B(r
pl(T)%1 1+ Z 7(72_’_1 +O(T 1/36 A ))

m=0 (T1/3)

3/2q91/4 im/4 0_ :,—7a

_ _2 3% (2 + \/g)j)a(so 1€ )e—(5(7)+iz9(r))(1 + (9(7'_51)), (4.58)
T—+00 \/%

where P, is defined by equation (4.4).%6 Via the asymptotics (B.15) and the definition (3.160),
a multiplication argument shows that

%g N if01(T)T_1/3 1/3\2 i
n(MBr = —ooe B+ La(n) - — e (14 O((Foa (1) %)) %5,

.92 - ~1/3 3 %ﬁ 2
W0 1 o1 (7)T 8 ~1/3\3 0,1
El 1 ) )
o (1B et ) () =
5 3
- -1/3 Do}
+0 | wi, (1+r°’1(71)27 +0((f0,1(7)r—1/3)3)> (SBO11> B |;(4.59)

from the corresponding (k = +1) asymptotics (3.21), (3.24), (B.9), (B.12), and (B.14), the
various terms appearing in the asymptotics (4.59) can be presented as follows*”

i%g,l (\f"‘ nrlB & —2/3_—B(r)
S +Z 3+(9( e M),

_ o i
i, 19(6\)[ 1/3 (s O((fo,l(T)T_l/g)Q))%g L=y b (1) 4 O3B,

. 9 B _1/3 3 # 2
g1 To(T)T / - ~1/3\3 %0,1
(8\/3)3 (1 + 12 + O((Tovl(T)T ) ) iBl %1

5 3
; ~1/3 B
v [ty (1429 o) (32 =
1

12

> b (1) s
= _—m L0 /3e=B(T)Y,
T—+400 ZO (7_1/3)m+3 (T € )

m=
4From the leading term of asymptotics for B, given in equation (B.9), that is, B c e — é;{:—l) +0(r 1),
and the asymptotics (4.58), it follows that pi (T )Tﬁngl’rl/?) 7(/3(7”“9”))(1 + O( 51)) where D1 := 6(v/3 +
1)31/4ei ™/, P, (38 — ie”“l)/\/%7 whence p1(7)B1 T%ij(efﬁ(T)), which is consistent with the corresponding

(k = 41) condition (3.186).
4"Note, in particular, that ‘B 1/

—i8v/3(1 + o(1)).

T~>+oo
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for O(1) coefficients b2, (1), bin(l), and bgn(l), whence (cf. asymptotics (4.59))

(f+1 -8 &

pi(r)B1 = Bi(1+Li(r)) + +y 1/3 m+3 +O(r723eF) (4.60)
m:0

T—+00

for O(1) coefficients bin(l); for example,

i(V3+1), . .
bl (1) = (7)(6%(1) + 4(a —i/2)up(1) — of (Suf(1) + dug(L)ro(1) — v5(1))).
48\/30(1
One shows from the corresponding (k = +1) asymptotics (3.21), (3.24), and (B.9) that
i(v3+1 .
B = B+ W@Al + (VB +1)By)e OO (1 + 0(r71/3)),  (4.61)
where
By == 2(1+ V3)Ay, (4.62)
and
(VB+1)7713 & b,(1)
o 4,
181 Y Z: /) (4.63)

m=0

for O(1) coefficients by, (1); for example,

bo(1) = 1(‘/3;1) <a1t2(1) + 2\1/3 <—O;1(r§(1) +2(V3 + 1)vo(1)uo(1) + 8ud(1))
+ m(;.jl/?)(lzuo(l) + (2v3 - 1)1‘0(1))>>, (4.64)
bi(1) = 0. (4.65)

From the expansions (4.60) and (4.61), and the definition (4.63), it follows that

PO = Y B LI o)

i W@Al (VB4 1)By)e BN (1L 0(13)), (4.66)

for O(1) coefficients d%,(1) := bl (1) + b (1), m € Zy; for example,

di(1) = m(ﬁlm(l) +4(a —i/2)ug(1) — of (Suf(1) + dug(1)ro(1) — t3(1)))
i(\/g; ) <a1t2(1)+2\1/§<—();1( (1) 4+ 2(V3 + 1)ro(1)up(1) + 8ud(1))
(a6_ai1/2) (12u(1) (2\/3— 1o ( )))>

Thus, via the asymptotics (4.58) and (4.66), one arrives at

(iW+11(T>(u%lﬂ+o(e—ﬂ<f>)) LB G (v )y

m=0 (71/3)m+
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Xe*(ﬁ(THiﬁ(T))(l+@(T*1/3 ) ( Z_: o) m+1 @(71/365(7))>
= —Q e~ BM+d(T) (1+ @(7—51)) (4.67)
where
93/231/44im/4 (9 u 0_ :,—7a
0~ 3% ( +\/§)ﬂ’ (30 ie ) (4.68)

V2r

One now chooses 11(7') so that the (divergent) power series on the left-hand side of equa-
tion (4.67) is identically equal to zero

( lff‘?' 4wq<M%m><1+'%“§: e ) (4.69)

m=0

via the definition (4.63), one solves equation (4.69) for L;(7) to arrive at

Li(r)=r2%%" bn2(1) (4.70)

where the coefficients im/(l), m’ € Z4, are determined according to the recursion relation

(1) =Ti(1)=0, ©(1)= m\/gii(?,

im+3(1):\/ga+11 :‘n+1(1)+id;;(1)é2n_p(1)+gij(1)dm+4_j(1) : m e Z,,
with
do(1) =0, &mz—“ﬁ:W @m:_“@;?%Q

ds(1) = bo(1) —

60&1

é u
dpya(1) = bpy1(1) — (\/§+éilm+2(1) + pr(l)éi%p(l), m € Zy.

From the condition (4.69), equation (4.70), and the asymptotics (4.67), it follows that
i(V3+1)ay
2
whence, via the definitions (4.4), (4.62), and (4.68), one arrives at
B jeim/4a—in/3 (2 + \/g)ia (58 _ ie—mz)
1= V2314 (cb)1/6 '

Alternatively, one may proceed as follows. Substituting the asymptotics (4.60) and (4.61) into
equation (4.58), one shows, via the definition (4.63) and the definition d}, (1) := b;rn(l) + b (1),
m € Z+, that

(VB+ 17 1§:

6041

(11 + (VB + 1)By)e B0 — 0 B (14 (1)),

(4.71)

By +

m=0
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- 0(7’1/3eﬁm)> +O(r 3Py = — Qe MM (14 O(r7)), (4.72)

where Q; is defined by equation (4.68),

m

do(1) = bf(1),  dmir(1) =6l (1) + D di(D)éh, (1), meZy. (4.73)
p=0

From the condition (4.69), equation (4.70), the asymptotics (4.72), the definition d}, (1) :=
b1, (1) + by (1), m € Z,, and equations (4.73), it follows that

T—+00 (e %1

(\/§+1)7_71/3 -1 - bm(l) —(B(T)+iv (7 -6
B et X - Qe OO o).

It follows from the corresponding (k = +1) asymptotics (3.21), (3.24), and (B.9) that the
function 87 can also be presented in the form

B = i(V3+1) (O;l(élvo,l(T) + (V34 1)1 (7)) — (V3 + 1)(@—1/2)>

T—400 2\&0&17’1/3

+ZO 1/3 m+3 +O(r72BeP0), (4.75)

for O(1) coefficients b%,(1) (see, for example, equations (4.90) and (4.91)); hence, from the
asymptotics (4.74) and (4.75), one deduces that

(BD(VEa-i/2) | $~ )
1/3\™

41)071(7') + (\/§ + 1)7:071(7')

7400 30(%7‘1/3 —
21Q e~ (B(T)+i0(7) s
1+ 0(r %)), 4.76
10l ) (476)
where
i2(b,, (1) — b (1
(1) = o (bm (1) = b7,(1)) meZy. (4.77)

(\/3 + 1)01

Combining the corresponding (k = +1) equations (3.20) and (3.23), it follows that, in terms of
the corresponding (k = +1) solution of the DP3E (1.1),

8627ri/3u(7') 1(\/§ + 1)e—i27r/37_2/3 ’LL/(T) —ib
e(eb)23 (eb)1/3 < u() )
+2(V3 - 1)73, (4.78)

41)071(7') + (\/§ + 1)71071(7') =

finally, from the asymptotics (4.76) and equation (4.78), one arrives at the (asymptotic) Riccati
differential equation

(1) = a(r) 4+ b(r)u(r) + (1) (u(r))?, (4.79)

18\/§£a17_2/3
(V3 +1)(eb) /2’
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. 8ia2r~ 13 2i(V3a —1i/2) 202 o~ (1)
b(r) :=— ! + + 1 b
T 2 Gy
4a1 Q e~ (B(T)+i9(7))

(V3+ 1) T2/3

(1 + (9(7_51)).

Incidentally, changing the dependent variable according to w(r) = %5(7’) + lEI((TT)) + ¢(T)u(r),®®
it follows that the Riccati differential equation (4.79) transforms into

w'(r) = Z(1)+ (w(r))? (4.80)

T—+00

- 1 Lb(n)E(r) 1¥(r) 3 (T(n))

b(7))* — b’ — = (= :

b)) =3+ 3= "3 1\

Substituting the corresponding (k = +1) differentiable asymptotics (3.22) into either the Riccati
differential equation (4.79) or its dependent-variable-transformed variant (4.80), and recalling
that o1 = 2e(eb)?/3e7127/3, one shows that

Beel2r/3 2 _2/3 2 = U (1) —2/3 —1/3ym
()23 \ 017 +200712(71/3) +eT Z Z“ml Y=y (1) (7777)

m=0m1=0

1(\/3_’_ 1)6—1277/37_2/3
(6b)1/3

_ G Z (7:/;;:121) Jri2\/g(gb)1/36127r/3lp>7_—1/36—(5(7)+119(7))(1+O(7_—1/3))>

€01 _-2/3
( ib+ —— 3

o0

+2(\/§ — 1)7’1/3 (CO71T1/3 + 0071 Lll;;}n)ﬂ + Pei(ﬁ(ﬂ+m(7—)) (1 + O(T1/3))>
m=0 \T

V3+1)(vV3a—1i/2 e
:m(( F)(E=i/2) | S )

30&%7’1/3 (7_1/3)m+

m=0

2iQ e~ (B(M)+I(7)) 3
o)

X (co 173 e Z 1/3 m+1 + IF’e_(B(T)JFW(T))(l + (9(7'_1/3))> , (4.81)

where
P .= 0071A1. (482)

Equating the coefficients of terms of order (’)(T%e—(ﬁ(ﬂﬁﬂ(ﬂ)), O(T%), O(1), (’)(7’7%), O(r73),
and (9(7“1), respectively, in equation (4.81), one arrives at, in the indicated order,

16e127/3¢g 4 2iQ1¢c0,1
— = +2vV3(V3+1) +2(V3-1) |P= 4.83
( e(eb)?/3 ( ) +2( ) (V3+ 1)y (453)
8612#/363 1 (\/§+ 1)be—127r/3
L 2(v/3 -1 =0 4.84
NENEE (eb)1/ + (\[ )6071 : (4.84)

*8See [40, Section 4.6]; see also [74, Chapter 5].
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(V3 +1)(v3a—i/2)

16627 /3¢ 1ug(1) (V3 + 1)e27/3

pr sy AR wm = g Y
(w +2(v3 - 1)) ui(1) =0, (4.86)
85(2;/)3;/%1 (2u1) + w3(1)) + Y3 +31();;2/7;/3“0(1) +2(V3 - 1))

_ (V3+ 1)35;2%-1/2) L), (4.87)
16:;;;;?1 (5(1) + uo (L (1)) + 203 2(12;_;/2;/3“1(1) +2(V3 - 1us(1)

_ (B (VBa-i/2u@) (). (4.88)

2
a7

Using the corresponding (k = +1) coefficients (2.3), in particular, up(1) = a/6a? and u;(1) =
uz(1) = ug(1) = 0, one analyses equations (4.83)—(4.88), in the indicated order, in order to arrive
at the following conclusions: (i) solving equation (4.83) for IP, one gets that

ie(eb)'/2eim/4p, (s —ie™™)
o \/7723/231 /4 )

whence, from the definition (4.82), one arrives, again, at equation (4.71); (ii) equations (4.84)—
(4.86) are identically true; and (iii) solving equations (4.87) and (4.88) for ¢;j(1) and ¢j(1),
respectively, one concludes that

da(l+ia)(v341)

1p(1) = 18al and 1(1) =0; (4.89)

moreover, from equations (4.64) and (4.65), the definition (4.77), and equations (4.89), it also
follows that
- 1(\/3 + 1)2 < aq

bo(1) = RV 3(%(1) +2(V3 4+ 1)ro(L)uo(1) + 8uj (1))

+ M(12u0(1) +(2v3 - 1)1‘0(1))), (4.90)

60&1
bi(1) = 0. (4.91)

Finally, from the asymptotics (3.21) and (3.24) (for £ = +1) and equation (4.71), one arrives at
the corresponding asymptotics for vo(7) := vp,1(7) and 7o(7) := 7 1(7) stated in equations (4.1)
and (4.2), respectively, of the lemma.

Similarly, proceeding as delineated above, one shows that, for k = —1,
A, = (24 VB) (s i) (4.92)
V2314 (eb)1/6

thus, from the asymptotics (3.21) and (3.24) (for £ = —1) and equation (4.92), one arrives at the
corresponding asymptotics for vg(7) := vg —1(7) and 7o(7) := 7o,—1(7) stated in equations (4.1)
and (4.2), respectively, of the lemma. |

From equation (3.20), the asymptotics (4.1), the definition (4.4), and recalling that (cf. equa-
tion (2.2)) cor = %5(56)2/%_12”'“/3, k = +£1, one arrives at the corresponding (e1,e2, m(e2)|f) =
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(0,0,0]0) asymptotics (as 7 — 400 with €b > 0) for the solution u(7) of the DP3E (1.1) stated
in Theorem 2.4.

Via the definitions (1.41) and (1.42) and equations (1.43) and (3.23), one deduces that,
for k = +1,

i /3gi2mk/
2f (1) = —ila —1/2) + (d’)lzwr2/3(—2 + ()T 3, (4.93)
i i(eb)1/3ei2mk/3 ibr
%h(r) =i(a+1/2)+ (Eb);TQ/?’(—z + i (T)T3) + UE’T); (4.94)

thus, from the asymptotics (4.1) and (4.2), the definition (4.4), and equations (4.93) and
(4.94), one arrives at the corresponding (e1,e2, m(e2)[¢) = (0,0,0|0) asymptotics (as 7 — +00
with eb > 0) for the principal auxiliary functions fi(7) (corresponding to u(7)) stated in Theo-
rem 2.4.

It was shown in [57, equation (4.25)] that, in terms of the function ho(7), the Hamiltonian
function #H(7) (corresponding to u(7)) defined by equation (1.7) is given by

H(r) = 3T + (0~ i/ — 47 ho(r), (4.95)

via the definition (3.14), and equation (4.95), it follows that, in terms of the function ho(T) :=
h()Jc(T)?

. 1 .
H(r) = 3(eb)? e 2T 4 (0 —i/2)? — 4r'Phoi(r), k==L (4.96)
T
consequently, from equation (3.18), the third relation of equations (3.19), and equation (4.96),

upon recalling that vo(7) := vox(7) and 7o(7) := 7o x(7), one shows that the Hamiltonian
function is given by

; aZr1/3
H(T) _ 3(€b)2/3e—127r/€/37'1/3 + %(a — 1/2)2 + = Tk1/3vo7k(7-) (Oé’%. (81}8*/,(7') + (4U07k(7')
— o k(T)Fok(T) = 77 Pugp(7) (Fox(7))?) + 4(a —1/2)), k=1 (4.97)

Finally, from the asymptotics (4.1) and (4.2), the definition (4.4), and equation (4.97), one
arrives at, after a lengthy calculation, the corresponding (g1, €2, m(g2)|¢) = (0,0,0|0) asymptotics
(as 7 — 400 with b > 0) for the Hamiltonian function, #(7), stated in Theorem 2.4.

Via the definition (1.10) and the asymptotics (as 7 — 400 with b > 0) for f_(7) and H(7)
stated above, one arrives at the corresponding (e1, €2, m(e2)|¢) = (0,0,0]|0) asymptotics for the
function o(7) stated in Theorem 2.4.

Proposition 4.2. Under the conditions of Lemma 4.1, the functions a(7), b(7), ¢(7), and d(T),
defining, via equations (3.2), the solution of the corresponding system of isomonodromy defor-
mations (1.36), have the following asymptotic representations, for k = +1:

cb 2/367i27rk/3

- i(gb)l/Zei”k/4(?a)k(38_le ”“) o~ BDHRIM) (1 4 O(771/3)), (4.98)

JT23/231/471/3
a(T)d(r e a4 1 (a —1i/3)T + T(tl(k) —2uy (k)T
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b)Y (i(?’) (Fn2(0) = 22 (4)

m=0
i 2/3efi27rk/3 i m m
P () + 1) Zupw)rm_p(m) (1)

p=0

- k(gb)5/631/4eiﬂk/4(j)a)k(88 _ iefﬂ'a) e—(B(T)+ik19(T)) (1 + 0(7—1/3))7 (4‘99)

4\/2meimh/3,1/3
. c(1\2/3 —i27k/3 ‘
brretr) | =~ - M gy = X ) — 2 )
_ > i(eb
S (1 i) — 20 (h)
m=0
i(eb 2/367i27rk/3 ) il(eb m B m
_ ()4((1—1—1/2)um(k)— (8 ) Zup(k)tmp(k)> (r1/3)
p=0
k(55)5/631/‘ij”7k/4(9’/a)k(/88 —ie”™) o~ (BOHIM) (1 4 O(771/3)),(4.100)
A/ Ireimk/371/3 ’
B (eb)2/3eimk/3 g (eb)l/3ei2Th/3 o3 (cb)?/3eimh/3 »
e(r)d(T) v 1 3 T — uy (k)T

(gb)Z/SGiﬂk/S

- (é(aQ +1/6) + 2u2(l<:)> (r 13!

00 i . i
B (5b)2/3e‘“k/3 1(6b)1/3612ﬂ-k/3
+ (Y (—um+2<k) + R (k)
2 8
m=1
(eb)1/3ei2mk/3

S (@ —i/2)mn (k) -

(Eb)2/3ei7rk/3
2

x i ({00 + 350 ) oot + ;w)tmp(k))) ()"

i(é_b)l/Qeiﬂk/éL(j)a)k (88 — je—Ta

) —(B(7)+ikI (T _
N TE e~ (B(r)+ikd( ))(1+O(r 1/3))’ (4.101)

where the expansion coefficients w,, (k) (resp., tm(k)), m € Z., are given in equations (2.2)—(2.9)
(resp., (2.13) and (2.14)).

Proof. If, for k = %1, g5, 4,5 € {1,2}, are 7 dependent, then, functions whose asymptotics
(as 7 — +oo with eb > 0) are given by equations (4.1)—(4.3) satisfy the conditions (3.17), (3.110),
(3.184), (3.186), and (3.187); therefore, one can use the justification scheme suggested in [54]
(see also [42]). From equations (3.8), (3.10), (3.11), and (3.13), respectively, one shows, via the
definitions (3.15) and (3.16), that, for k = +1,%

(Eb)2/3e—127rk/3

—a(r)b(r) = 5 (1+7Pugk(r)), (4.102)
a(r)d(r) = I(‘Z’) (14 77 Bug (1)) (=2 + 7737 4 (7))
B i(Eb)2/32—127rk/3 a- 1/2)(1 n 7‘1/3vo,k(7))7_2/3, (4.103)

“Recall that (cf. Lemma 4.1) vo(7) := vo,x(7) and 7o(7) := 7o (1), k = £1.
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() i(eh)

b(r)e(r) = — 5 3 (1+ T_l/gvo,k:(T)) (—2+ 7_1/37’0,1@(7))
_iley? Sj_mk/g (a+1/2)(1+7 Yo r(r) 723, (4.104)
cb)2/3eimk/3 [ _ =35 (1 cb)2/3eimk/3
—el(r)d(r) = — 4 ( 12++7—1/3uook’z())) = 16 (~2+ 7 Y37 u(r))”
p)1/3i2mk/3
- i(a —i/2)(a+1/2)77Y3 + (eb) T 5 <i(—2 + 735 (1)) /4
a—1i/2 _
- 1+(T—1/3{)0?k(7)>7 " (4.105)

Via the asymptotics (4.1) and (4.2), and equations (4.102)—(4.105), one arrives at the asymp-
totics (as 7 — +oo with €b > 0) for the functions v —a(7)b(7), a(7)d(7), b(7)e(T), and —e(7)d(T)
stated in equations (4.98)-(4.101), respectively. [

Remark 4.3. It is important to note that the asymptotics (4.98)—(4.101) are consistent with
equation (3.9); moreover, via the definitions (1.31), equations (3.2), and the asymptotics (4.3)
and (4.98)—(4.101), one arrives at the asymptotics (as 7 — +oo with €b > 0) for the solution of
the (original) system of isomonodromy deformations (1.22).

A Proof of Proposition 3.4

Proof. As the exponentially small correction term does not contribute to the algebraic deter-
mination of the coefficients u,,(k), m € Z4, k = %1, hereafter, only the following ‘truncated’
(and differentiable) asymptotics of u(7) will be considered (with abuse of notation, also denoted

as u(T))

u(T) v CO’kT (1 47723 Z 1/3 ) 7 k= +1. (A1)

Via the asymptotics (A.1), one shows that

1 /3 —2/3
u(r) T—>_+oo o,k (1 T Z 1/3 ’ k==l (A-2)

where to,,,(k), m € Z,, are determined iteratively from equations (2.8); in particular (this will
be required for the ensuing proof), for k = +1,

o (k) = —uo(k), (A.3)
(k) = —ui(k),  wa(k) = —ug(k) +ud(k),  r3(k) = —uz(k) + 2up(k)ui(k), (A.4)
(k) = —ug(k) 4 2up(k)uz (k) + 13 (k) — ud (k), (A.5)
5 (k) = —us(k) 4 2up(k)uz(k) + 2uy (k)ua (k) — 3ud(k)uy (k), (A.6)
g (k) = —ug(k) + 2ug(k)ug(k) + 2us (k)uz(k) + us(k) — 3ud(k)ug(k) — 3up(k)ui(k)
+ud(k), (A7)

7 (k) = —ur(k) 4 2up(k)us (k) + 2uy (k)ug(k) + 2us(k)us(k) — 3uz(k)ud (k)
— 6ug (k) (k)uz(k) + 4ug (k)ud (k) — wi (k). (A.8)
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From equations (2.8) and the asymptotics (A.1) and (A.2), one shows that (cf. DP3E (1.1)), for
k=41,

b2 p2r—1/3

u(T) =400 co i

X (1 —ug(k)r 23 —wy (k) (7 13)? — (71/3)! )5 Am(k) (7713 ) . (A9)
m=0

where \;(k) := —wj (k) j € Zy,

%(—85u2(7) + 2ab)

= —856%7k7'71/3 + (2ab o 1650(2)’]6’40(]{5)) (7_*1/3)3 o 1650(2)’]6111(]{5) (7_71/3)4

T—+00
— 8ecg (7'_1/3)5 i (2um+2(/~c) + iup(k:)ump(k)> (r=13)™, (A.10)
m=0 p=0
U’f) = ;COk(T 13y (1 —2/3 Z m+ D 1/3)m> , (A.11)
Wr? 1

= gCQJC (T_1/3)5 <1 — 311()(]{2)7'_2/3 — 5u1 (k) (T_1/3)3

u(T) To+oo
+ (203(k) — Ao(k) + m0(k)) (7 3) " + (6uo (k) (k) — A1 (k)
+ o (R) (7713)° + (4ud (k) — Aa(k) + 2uo (k)Xo (k) + n2(k)

— up(k)no(k)) (7—1/3)6 + (=A3(k) 4+ 2ug (k)M (k) + 4ug (k)No(k) + n3(k)

e}

—ug(k)m (k) — wi(k)mo (k) (= /3)T 4 (7732 Y (—)\m+4(k)

m=0

+ 2 (k) A2 (k) + 4u1 (k) A1 (k) + Nta(k) — uo(k)mmq2(k)

— 1wy (k) pmsr (B) = np<k>Am_p(k>> (rY 3)’”) 7 (A.12)

p=0

where 1, (k) is defined by equation (2.9), and

'LL”(T) _ _gco,k (7_—1/3)5 (1 . 7_—2/3 i (m + 1)2(m + 4) um(k) (7__1/3)m> . (A13>

T—+00
m=0

Substituting, now, the expansions (A.9)—(A.13) into the DP3E (1.1), and equating coefficients
of like powers of (7'_1/ 3)m, m € N, one arrives at, for £ = +1, the following system of recurrence
relations for the expansion coefficients u,, (k), m’ € Z,.:

(’)(7_1/3) 0= —8660 e+ b200 P (A.14)
(9((7'_1/3)3) 1 0= —16ecj yuo(k) + 2ab — bcy o (k), (A.15)
O((r7V3) ") 0= 162k jur (k) — b2cy i (k), (A.16)
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o)) 0=12.0),  O((r7)%): 0=u(1), (A7)
O((=13)7): gco,ku[)(k) —4(42),  O((FV3)%): copun(k) = 4(5,3), (A.18)
O((r19)"): copaalk) = seon(ud(K) — do(k) +mo(k) + £4(6,4), (A.19)
O((r13)1). @)2 copuz(k) = %co,k (6uo(k)ur(k) — M (k) +m (k) + 4(7,5),  (A.20)
(1)) @2 coaa(k) = o (1E0K) — Ma() + 200 (k) Aol

+ a2 (k) = uo(k)mo(k)) + t4(8,6). (A.21)
O((r113)12). <g> i copuis (k) = éco,k(—Ag(k:) + 2ug (k) A1 (k) + du1 (k) Ao(k) + m3(k)

—ug(k)ym (k) — w1 (k)no(k)) + (9, 7), (A.22)
O((71/3)™ 13, (T)Qco,kum%(k) = %co,k (—Am+4(k) + 2u9 (k) Am+-2(k)

+ du1 (k) At 1 (k) + 1ma(k) — uo(K)nm-2(k)

—w (B)mga (k) = np(k)Am—p(k)>

p=0

+ tx(m + 10, m + 8), me Ly, (A.23)

where

l

tr(j,1) == —8ech 4 (2uj(k) + Zup(k:)ulp(k)> — b2cq (k).

p=0

Noting that (cf. definition (2.2)) equation (A.14) is identically true, the algorithm, hereafter, is as
follows: (i) one solves equation (A.15) for up(k) in order to arrive at the first of equations (2.3);
(ii) via the formula for ug(k), the definitions of co, Ai(k), and 7, (k) given heretofore, and
equations (A.3)—(A.8), one solves equations (A.16)—(A.22), in the indicated order, to arrive at
the expressions for the coefficients u;(k), j =1,2,...,9, given in equations (2.3) and (2.4); and
(iii) using the fact that uy(k) = 0 (cf. equations (2.3)), and the definition of \;(k), one solves
equation (A.23) for upm410(k), m € Zy, and, after a lengthy induction argument, arrives at
equations (2.6) and (2.7). [

B Asymptotics as 7 = +oo for Zi, Go, Ak, B, €k, Ql(ﬁ)’k, %g’k,
Q:g,ka w(2),k7 E(-)i:ka Xk(T)v Eii_,ka Nk(T)a and E;:ka k=+1

For the requisite estimates in step Exi) of the proof of Lemma 3.17, the 7 — +00 asymptotics
for Zk7 gO,kv Qlky %lm ka ng,kv %07]@ ng,kv wakv gg:ka Xk(T)u EI[@ Mk(T)7 and Eg:k) k= j:]-a
are necessary. From the conditions (3.17), the asymptotics (3.21) and (3.24), the definitions
(3.117), (3.120), (3.121), (3.124), (3.130), (3.136), (3.137), (3.138), (3.143), (3.148), (3.149),
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(3.156), and (3.157), and equations (3.124)-(3.129), a lengthy, but otherwise straightforward,
algebraic calculation shows that, in the indicated order,

Fo(r)r— Y Fo(r)r= Y ?
gO,k T—>:+oo ggvok + Ag()’k, k= :tl’ (BQ)
where
b/ _ (sb)l/i/(%/gq) _(sb)l/i}%/ngl) .
(6eb) gOJc_( | h ) (B.3)
and
._ o (Ag()’k) (Agovk)
Ago,k: = gO,kz gO,k - <(Ag0,k)i (Ago,k);§> s (B.4)
with
(6c)'/* (AGok),
()RR e 1 (L (D)
B 42 6 otT)T 123 8v/3
X (fo(T)T’l/:”)2 + O((fo(T)Tl/3)3)> , (B.5)
(6cb)/4 (AGok) s
LR (WA= 1 (L (B
T 42 6 T 12v/3 83
X (f0(7)7_1/3)2 + O((fo(T)T_I/?’)?’)) , (B.6)
(6cb)/4 (AGok)y,
= (620) /(A0 ) gy = gyfolr)T Y 2(214)2 (Fo(r)r11%)?
+O((Fo(r)r %)), (B.7)
i(a—1/2)r~ /3  ir—1/3
2y e ( \//;a)k + W <ak (4vo(7)(Fo(T) + 200(7)) — (fg(T))z)

(e —i/2)(1209(r) - ”0“))7_1/3> +0 ((&b)” : <_i<eb>1/3(<eb>1/3

3o
x /3 (7o () + 200(7)) + 2(a — i/2)e2™3771/3) (yo ()7 1/3)?

i(sb)1/3 (_(gb)l/?;eiﬂk/?;

(Fo(7))27 713 4 ((eb) /3™ /3 (7 (1) + 200())

12 4
I 2(@ . i/2)ei27rk/37'1/3)7)()(7')7'1/3> 7:0(7_)7_1/3>> , (B.8)
| . ] V3+1)(a—i/2)r1/3
By = i(V3+1) (2’“(4110(7) + (V3 +1)io(r)) — (V3+ )2(\/3%/ ) )
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i 2_-1/3 o

+ V8 z\l/)g <—2k ((Fo(7))? +2(V3 + 1)vo (7)o (T) + 83 (7))
(a —i/2)(12v9(7) + (2v/3 — 1)7o (7)) 7~ /3

- 60ék

12

3 1(\/§+ 1)(€b)2/3ei7rk/3
X (UO(T) +r0(7)/2\/§) - 83

x 7o(T) (773) 2 (7o (1))? + (VB + 1) (Fo(7) + 2V/300 (7)) (Fo(7) + 2v0(7)))
(1(5b)1/3(\/§+ 1)?

. 2 . .
+0 ((65b)1/2 (_1(\/3 1) (a = i/2)(eb) P2 Fo(r) (r1/3)°

i /
+ I;Ef% i (770(7'))3(771/3)2 +

i(b)/3(3v/3 + 4)
48+/3

X ((5b)1/3ei”k/3(770(7) +2v9(7)) + 2(a — i/2)ei2”k/37_1/3)) ) , (B.9)

(V3—1)(a— 1/2)7—1/3>

L oty

i(e 1/3 5
(7:0(7_)7_71/3)24_ (eb) 25/2§+ \/5)7)0(7)7;0(7)(771/3) )

2\/30%
((Fo(1))? = 2(V/3 = 1) vo(7)7o(7) + 80 (7))

T—+00 2

1(\/3 - 1)27'_1/3 (ak

& = Li(v3o1) (‘“’f(zwo(f) (VB 1)l)) -

_l’_

44/3 2
(a—i/2)(1200(r) — (2VB + 1)%0(7))7—1/3>

604k

i 2 3 27
+0O ((ng)—l/Z (1(\/§ - 1) (a _11é2)(2€b)1/3e 2 k/gfo(,r) (7_—1/3)3

i _ 2/36i7rk/3
.
iak (€b)1/2

X ((fo(T))Q + (\/§ - 1) (2\/§U0(7) — fo(T))(fo(T) + 21}0(7))) + 245

i(eb)!/3 ~1)° i(eb)/ —
x(fom)?’(f”?’)z—((gb) I = LR

i(eb)1/3(2 — V/3)

x (vo(T) — 7o(7)/2V/3) +

vo (7)o (T) (7—1/3)2)

X (fo(7)7_1/3)2 —

2V/3
x ((eb)3e™*/3 (7 () + 2v0(7)) + 2(a — i/2)ei2”k/37_1/3)> ) , (B.10)
ir=l/3 iy (r) (r1/3)?
A, et M:/gak - 0(4)\53% ) <—§ + %fo(f)f‘l/?’ - O((f0(7)7‘1/3)2)> , (B.11)
S (VER ) e io(r) (771/3)?

mio =
O 7400 V3ay 43Bay,
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9 <_2(3f33”> + O((f0(7)71/3)2)> , (B.12)
g A(WB-1)rB
0k ritoo  3ay
N ifo(z)\gal/?’)z (_2(3\/;»— 7) i O((fo(7)7—1/3)2)> 7 (B.13)
Wiy = —ai (8u3() + dug(T)io(r) — (Fo(7))?) +4(a — i/2)v(r)r /3

7 T—+00

+ (4advo (1) (Fo(T) + 200(7)) — 4(a — 1/2)ve ()7~ Y/3) v (1)771/3

+ (’)((—404%@0(7)(7:0(7) + 2v9(7)) + 4(a — 1/2)00(7)771/3)

x (vo(r)r"/3)?), (B.14)
. ) _ y
i Fo(T)T1/3 - “13v3y | Bok
lo s S 875 (1 + OT +O((fo(m)r1/3)") %70;
w2 =~ -1/3 3 ‘Bﬂ 2
- (1 B o) (B
4 Fo(r)T=1/3 _ 1/3\3 ’ SB(ﬁ)le ’
+ 0O | wyy (1 + =15 +O((7o(r)T71/3) )) (m) : (B.15)
_ R (05, + 1) (Re (0 +1))?
Xk(T) = VBZk + w3, + 2(.4\0/23 O 7 - 0k —tok A
T 1 ktWo g O,k) 8(i4v32y, + Wo,kgo,k)
. 3
O (%O,k(_g({k + 1)) (B 16)
(4v32Zr +w2,05)° )
= R0,k B (%é,k)2(—€§k +1)
Mmoo 2(14VBZy + 0 ll))  8(14v3BZ + w2, )]
R )3~ +1)°
—|—(’)<(. 0.) ( 0,1;; +)5>7 (B.17)
(i4v32, + wO,kEO,k)
) = (r) - iSﬁZlek(—ga_’k + 1) (‘Bak — 18\/531491145&)
PEAT) | oo XE 2)(%(7)
~ (iSﬁZlek(—Eafk + 1) (‘»B(’S,k - 18\/§2le1€€3",€))2
8xi(7)
o (iSﬁZkﬂk(—Eafk +1) (Box — 18\/§Zk9lkf6fk))3 (B.18)
8 ’ ’
Xk(T)
and
P 1432425 (5 1. — 18V3 212kl )
2k o

700 Xi(7)
(=055 + 1) (18v3 2,24 (B, — 18V32:2kL5,))°
8k (7)
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o ((zofk + 1) (i8v/3 2, (B, — igﬁzkmqu)ﬁ)

X(7)

(B.19)

C Asymptotic estimates as 7 — +o0
for [(®rk(§))i;l, k= =£1, 4,5 = 1,2, on the Stokes rays

Asym,Ptotic estimates as 7 — +oo for the moduli |(®arx(£))sj], k = £1, 7,5 = 1,2, on the Stokes
rays S are: (a) for arg(§), 5.0+ (f)( 72/3)750

T—+00

[(Park(€))n] < (

2
\/7?671— Im(v(k)+1)9— Re(v(k)+1)/2 |Slﬂ(g (V(k

r(l+ W) sin(Z Re(v(k) +

Vm2Re@k)/2 cogh (T Im (v (k) + 1)) 273
|(¢M,k‘(£))12| Ti}ioo F(% o Re(g(k))> Sil’l(—g Re(y(k))) (1 + O( ))?

r(l— w) sin(—% Re(v(k
1

[(®ar,k(§))21]
4v/3[¢| Re(v(k) + 1)
7400 (7))

e7rIm(u(k)+1)2Re(V(k)+1)/2’Sin(%(y(k) + 1)) ’F(RG(V(QIC)+1))
X
sin(Z Re(v(k) 4+ 1))T'(Re(v(k) + 1))
23/2€7r1m(1/(k)+1)/22— Re(v(k))/2 COSh3(% Im(V(kJ) + 1))F(_Re(l;(k)))
Vsin(—% Re(v(k)))

+
% (1+0(r2%)),

(@ p(©)as] < 4\/§|‘f‘ Re(v(k) +1)2~ Re(v(k))/2 cosh(g Im(v(k) + 1)){‘(_@)
; oo |k (7)) sin(—g Re(V(k)))F(—Re(y(kz)))
x (1+0(r723));

(b) for arg(§), .. —7/2+ (9(7"2/3)’

\F2 Re(v(k)+1) /2|51n( + )’ Yy
[(@ k()11 Tﬁioor(i Re(v (2k)+1)) sin(Z R ( (k) 1) (1+0(r77)
=: 0o(k) (1 +O(r7%/%)), (C.1)

- Vm2ReWk)/2 cogh (2 Im(v(k) + 1))
rrtoo T(4 — B giny (— 2 Re(u(k)))
= o1(k) (1 + 0(7—2/3)) , (C.2)

(@ a)at] < 4/31¢| Re(v (k) + 1)2Re@®+D)/2p (ReWW+Dy g, (7.1 (1) 4 1))
M, 7+to0 p(7) T (Re(v(k) + 1)) sin(Z Re(v(k) + 1))

|(@ark(€))12] (1+0(r%7))

59The asymptotic estimate (9(7'72/3) appears on the Stokes rays because of the factor (2;%(7'))”2 in the
arguments of the various parabolic-cylinder functions in equation (3.115) and the fact that (cf. expansions (B.1),
(B.16), and (B.18)) arg(ux(7)), = 3(1+O(r -2/ 3))

7400 2
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< (140 23)) = o (k)R B T () o2y (o)

[Pk (7)]
4V/3¢| Re(v(k) + 1)27 Relv(h)/2 cosh(g Tm(v (k) + 1))T(— Rkl
|(¢M,k(£))22| Tﬁioo ‘pk( )]sm(—ﬁ Re )F( Re(y(k)))
x (L+O(r27)) =: o3k )|€‘Re(,p(‘)+1) (1+0(r 7)), (C4)
k

(c) for arg(€), 5. — 7 +O(17/%),

V2 Re(R+D/2 | gin (T (v (k) +

o < 2
|( M,k(f))lﬂ oo F(% N Re(y(zk;)Jrl)) Sin(%R (Z/(k) + 1))
(a7 (€))12]
_ 23/267 (M +1)/2| cos(Z (k) + 1)) || sin(Z ((k) + 1)) |*T(Re(v (k) + 1))
oo gRe(v(k)+1)/21 (1 4 Rel(k)+1)) sm( ( (k) + ))
Jmer (k) +1) oRe(w(k))/2 cosh (T Tm (v (k) + 1) _
i T (2 ) (1 +(9(T 2/3))’
I (3 — =25"2) sin(—% Re(v(k)))

AVBJE Re(v (k) + D252 sin (5 (u(k) + 1) 1 (F5H2)
|((I>M,k(§))21|7—§+oo |pk( )|Sln( Re( (k) ))F(Re(u(k)+1))
x (L+0(r7?%),

[(Park(€))22]
4/3l¢| Re(v(k) + 1) e m@®+D) cosh (T 1 ) + 1)) (—Belel))y
S 7)) ( oRe( >>/2sm<—ﬂRe ) "R (k)
2/2em I HD/2 cos (5 (v(k) + >)\|sm( + 1) Pr (R
J/m2- Re(w(R)+1)/2in (T R ) )

X (1 + 0(7_2/3)),

and (d) for arg(¢) —3/24 O(r 2/3)7

7‘—>+oo

93/2—m Im(v(k)+1)/29Re(v(k))/2 cosh? (T Tm (v V(- Re(y
[(@ sk (€))11 Tﬁioo < e Re(g(’“)))Sin((ig}:e((f()k—;)))) (—Re(v(k)))
— Im(v(k)+1) 9 — Re(v(k)+1)/2| gin (T (1
" = INCES Re(”zk)ﬂ)) sin(% R’e( ((/j)(-k(lii; . ’) (+ o)
=: oo(k) (1L +O(17%/%)), (C.5)
[(@ar,k(8))12]
_ (23/263”1“‘(”( D72 cos(Z(v(k) + 1)) || sin(3 (v (k) + 1)) |2F(Re(y(k) +1))
—— oRe(v(k)+1)/20 (1 4 Be@BIFL) iy (T Re(u (k) + 1))

_l’_

\/776_”Im("(”“)“)QRB(”(”“))/2 cosh(% Im(v(k) + 1)) ) (
F(% — L(g(k))) sin(—% Re(u(kz)))
=: o1 (k) (1+ O(r2%)), (C.6)
[(@ark(€))21]
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1V3IE| Re(v(k) +1) [ e ™R 250 (T ((k) + 1)) |1 (R
2~ Re(w(B+1/2in (% Re(v(k) + 1)) T (Re(v(k) + 1))
)

<
oo [Pk (7)]

28/2e=m ImW(k)+1)/2 cosh3 (T Im(v(k) + 1))T'(— Re(v ( ) ) ~
+ oRe(v(k))/2 SiDQ(_g Re(v(k))) (1+0(r 2/3))
_ €| Re(v(k) +1) 23
=: 0o(k) o) (1+0( ), (C.7)
[(@ark(€))22]
_ AVBI¢|Re(v(k) +1) e~ M@+ cosh (2 Tm (v (k) +1))T ( Relv(k))
e () 2R /2 sin (— § Re(w (k) ) T(— Re(v(k)))

22 I D/2] cos (5 (v(k) + 1) || sin(§ (v(k) + 1)) [T (FHD)
V2 Rew(B)+1)/25in (2 Re(v (k) + 1))
€| Re(v (k) + 1)
|pw(7)]

(
x (1+0(r=2/%)) =: g3(k) (1+0(r23)). (C.8)

D Symmetries and transformations

It was shown in Proposition 1.5 that (cf. system (1.23)), given any solution 4(7) of the DP3E
(1.1), the function $(7) is defined as the general solution of the ODE ¢'(7) = 2a7 ! +b(a(7)) L.
From the latter ODE, it is clear that, given 4(7), the function ¢(7) is defined up to a 7-
independent “additive parameter”, that is, ¢(7) — @(7) + @o, where g € C.5' As the principal
focus of the symmetry transformations derived in [61, Section 6] was on the function ()
and not the function ¢(7), it must be noted that the additive parameter, ¢, appears non-
uniformly (though correctly!) in those symmetries; for example, for the transformation 6.2.1
changing 7 — —7, @9 = —me}, €] € {£1}, whilst for the transformation 6.2.3 changing 7 — ir,
po = 0. In order to, with abuse of nomenclature, “uniformize” the presentation of the final
asymptotic results of the present work, this appendix considers the concomitant actions (see
the brief discussion below) of the Lie-point symmetries for the DP3E (1.1) and the systems of
isomonodromy deformations (1.22) and (1.36) on the fundamental solutions of the systems (1.18)
and (1.32) and the manifold of the monodromy data M,%? under the strict caveat that, for
every symmetry, the additive parameter is equal to zero; en route, novel sets of symmetry
transformations not identified in [61] are obtained.

Before proceeding, however, some preamble regarding group actions on sets is necessary
(see, for example, [12]). The terms ‘function’ and ‘transformation’ will be used interchangeably
throughout the following discussion. Let G be a group and X denote a set. An action of G on X
is a function from G x X to X if, for every pair (g,r) € G x X, there is an element gr € X such
that (g1g2)r = g1(g2r) and ex = ¢ (e is the identity in G). For fixed g € G, there is a function
(transformation) Rg: X — gr for ¢ € X, that is, Act(G)x: G x X = X, (g,r) — Ng(x) := gr.
As Ny o Ny, =Ry, and X, = idx (the identity mapping on X), it follows that ¥ is a bijection
on X, since NgoN;1 = N1 =N, = V1, = V1 0Ny, where X1 denotes the inverse function
of Ng. All bijective functions X: X — X form a group under composition of functions (the
composition of functions is associative, the identity is the identity function id(r) = r for ¢ € X,

510f course, it also follows from the definitions (1.24) and (1.25) that ¢(7) is defined mod(27): similar statements
apply, mutatis mutandis, for the pair of functions (u(7), »(7)) that solve the system (1.37), where, in particular,
(1) is also defined mod(27) (cf. definitions (1.38) and (1.39)).

52The group of symmetries derived in this section preserve, in particular, the invariance of the system (1.51)
defining M.
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and the inverse of N is the inverse function R~1). Denoting by B(x) the group of all bijections
on X, one defines a transformation group of X as any subgroup of B(x).>® Any action of a group G
on a set X defines a homomorphism from G to the transformation group B(r) such that g € G
maps onto the transformation Xy. Denoting such a homomorphism by 1: G — B(), it follows
that 71(g) = Ry; conversely, any homomorphlsm T1: G — B(r) defines an action of G on X if one
defines gr := T1(g)(x).>* For a group G acting on a set X, the orbit of r € X, denoted by Gr, is
defined as Gy := {gr, Vg € G} (the set of all images of ¢ under the elements of G).

Remark D.1. In this work (see Appendix D.5 below for complete details), the group G of all
(Lie-point) symmetries of interest is written as the disjoint union of two subgroups, G = WU W,
where the elements of the subgroup W are denoted by 9’;}52 m(eg)s With
0, Eg = 0,
e1 €40,£1}, g9 € {0,£1}, m(eq) =
et ; 2 €4 ; (€2) {jzsg, g9 € {£1},

and £ € {0,1}, and the elements of the subgroup W are denoted by F, with

£1,69,m(€2)?

0, €y € {£1},

él € {i1}7 é? € {07:':1}7 m(éQ) - {:l:é 2 0
1 2 =Y,

’}

s€

and £ € {0,1}, and the action of the group elements 3"; yom(ep) O M,

‘r‘jr*{é’}

{£} 0 g} {£} {£}
1,62, m(sz)M (EF e1,e0,m(e0) D ?51 e2,m(2)500 Y ey e, m(62)80 1 1 e0,m(e2) 51 7951,52,m(52)9117

{¢ {e} {¢}
EF c1.e2.m(e2) 9125 9’51’62,"%52)921’ 9:51,52,m(52)922)7

is given in equations (D.47)-(D.61) and (D.71)-(D.85) below, whilst the action of the group

{6}
elements 3'"51 ey i(ey) O M,
{6} {4} {0} {2} A0}
9751 €9, m(52)M (3:5 €92, Th(ég)a gjsl éo, m(52)807 9751 g9,m(€2) 30 73751 £, m(52)81 73:5”1,&52,7%(52)9117

{} {£} {8}
EF 1,69, (29) 9125 ffél,ég,m(@)gﬂa 9751,52,7%(52)922)7

is given in equations (D.62)—(D.70) and (D.86)—(D.93) below. The orbit of G on M considered
in this work reads

GM = U U gr = U U a{f}EQ m(sz)x} U U U a{f}sg m(EQ)?}'

geGeM €1,62,m(e2),L teM £1,89,Mm(é2), LreM

Remark D.2. Throughout this appendix, let o denote “old” (or original) variables and let n
denote “new” (or transformed) variables, respectively.

D.1 The transformation = — —7

Let (@o(7o), Po(To)) solve the system (1.23) for 7 = 7,, € = g, € {£1}, a = a,, and b = by,
and let the 4-tuple of functions (A (7o), Bo(70), Co(70), D o(To)), defined via equations (1.24)
for 4(1) = Uo(70), P(T) = @o(10), T = Tp, and € = &,, solve the system of isomonodromy

53In this work, the transformation group is a disjoint union of two subgroups of Lie-point symmetries for the
DP3E (1.1) and the systems of isomonodromy deformations (1.22) and (1.36), and, in particular, the actions
(symmetry transformations) of these subgroups on M is studied.

5For g1,92 € G and ¢ € X, the properties T(g1g2) = Tg1)T(g2) and TI(e) = id imply that (gig2)r = g1(gor)
and er = .
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deformations (1.22) for 7 = 7, and a = a,. Set U,(7,) = (7, —imer

— iy, n)a 950(7—0) = @n(Tn)’ To = Tn€
e1 € {£1}, ap = an, €o = €n, bo = by, (that is, g,b, = epby, ), and

(1210(7_0)7 BO(TO)7 CO(TO)) Do(To)) = (An(Tn)y Bn(Tn)a _Cn(Tn)) _Dn(Tn));

then, (i, (7n), Pn(7s)) solves the system (1.23) for 7 = 7, € = &,, € {£1}, a = ap, and b = by,
and the 4-tuple of functions (A (1), Bn(Tn), Cn(Tn), Dn(7y)), defined via equations (1.24) for
UW(T) = Un(7h), &(7) = én(mh), T = Tn, and & = &y, solve the system (1.22) for 7 = 7,,, a = ay,
and

\/_AO(TO)BO(TO) = \/_An(Tn)Bn (Tn)

Furthermore, let the functions A,(7,), Bo(7,), Co(7,), and Dy(7,) be the ones appearing in
the definition (1.21) of &(7) for 7 = 7, and a = a,, and in the first integral (cf. Remark 1.3)
fore = ¢, € {£1} and b = b,; then, under the above symmetry transformations, &,(7,) = G, (),
where

() = =2(Ba(70)) " (100 V = An(70) Bu(7) + T (An (1) D (1) + B (70) (7)),
and —idn(Tn)Bn(Tn) = epbp, €n, € {£1}. On the corresponding fundamental solution of the
system (1.18) (cf. equations (1.19) and (1.20)), the aforementioned transformations act as
follows 1o = pne™/2, 1 € {£1}, and \TIO(MO,TO) = e_%"i‘\f/n(un,rn).

Let (uo(To), 9o(T0)) solve the system (1.37) for 7 = 7,, € = &, € {1}, a = a,, and b = b,,
and let the 4-tuple of functions (A, (7o), Bo(To), Co(T0), Do(70)), defined via equations (1.38)
for w(1) = uo(70), ©(7) = @o(To), T = T, and € = &,, solve the corresponding system of
isomonodromy deformations (1.36) for 7 = 7, and a = a,. Set uo(7,) = —un(Tn), olTo) =
On(Th), To = The ™1 g1 € {£1}, ap = an, €0 = €n, by = by, (that is, e,b, = €,by,), and

(Ao(70), Bo(75), Co(To), Do(70)) = (An(Tn), Bu(n), —Cn(Tn), —Dn(7n));

then, (un(7h), ¢n(m)) solves the system (1.37) for 7 = 7,,, € = &, € {£1}, a = ap, and b = by,
and the 4-tuple of functions (A, (1), Bn(7h), Cn(m), Dn(m)), defined via equations (1.38) for
u(T) = un(m), (1) = ©n(m), T = T, and € = &, solve the system (1.36) for 7 = 7,,, @ = an,
and

V=Au(70)Bo(70) = V= A0 (70) Bu ().

Furthermore, let the functions A,(7,), Bo(7o), Co(To), and D,(7,) be the ones appearing in the
definition (1.35) of «(7) for 7 = 7, and a = a,, and in the first integral (cf. Remark 1.8) for
e =¢, € {1} and b = b,; then, under the above transformations, a,(7,) = (7)), where

(1) = _2(Bn(7'n))71 (ian\/_AN<TN)Bn(Tn) + T (An(70) D (T0) + Bn(Tn)Cn(Tn)))a

and —iay, (7,)Bn(1h) = €nbn, €n € {£1}. On the corresponding fundamental solution of the
system (1.32) (cf. equations (1.33) and (1.34)), the aforementioned symmetry transformations
act as follows

iml

Lo = pne ™2, [ € {£1}, and Uo(pho, o) =€ 4 73U, (fin, Tn)- (D.1)

In terms of the canonical solutions of the system (1.32), the actions (D.1) read, for k € Z
and 1,1 € {£1},

il wlan

Yg?k(:“t)) =e 1 GBY?Sk—l-&-sl(ﬂn)e 2

o, (D.2)
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and
iml
e 193X0 , 1= —lI,
X2, (10) = { oy ) ! (0.3)
ile” 4 ka_l(un)al, e1 =1L

The transformations (D.2) and (D.3) for the canonical solutions of the system (1.32) imply
the following action on M, for k € Z and 1,1 € {£1},

wlan mlan

0 - 03 QOO o
ok —€ 2 ° nk—l+e € ? ° (D4>
S g1 =1
0o n,k’ 1 )
S _, (D.5)
019 k—191, €1 =1,
- a0 man _
— _ISn,Oo-lGne 2 78, e1=1, (D 6)
o . -1 __man .
10’1(5270) Gne 2 03, g1 = —1.

The actions (D.4)—(D.6) on M can be expressed in terms of an intermediate auxiliary map-
ping F5i(e1): C8 — C8, e1 € {£1}, which is an isomorphism on M

Fo(e1): M — M, (a, s, s, 85°, 911, 912, 921, 922)

= (aa58(51)7580(51)>5?0(51),911(51),912(51),921(61),922(51)),

where, for 1 = —1,

RN =5, sF1) =sFe™, sP(-1) = s

g (1) = ~i(g21 + sggur)e™”?, g12(—1) = —i(ga2 + s9g12)e ™2,

g21(=1) = —igne™/?,  ga(—1) = —igroe ™/, (D.7)
and, for g1 =1,

Q) =88 s2(1) = s ™, s20(1) = 5%, gri(1) = igare ™/,

Ta/2 —7a/2
) )

g12(1) = igaze g21(1) = i(g11 — spogz1)e
ggg(l) = i(g12 — Sgggg)eﬂa/Q. (D8)
One uses this transformation in order to arrive at asymptotics for 7 < 0 by using those for
T >0
D.2 The transformation 7 — T

Let (@o(7o), Po(To)) solve the system (1.23) for 7 = 75, € = &, € {£1}, a = a,, and b = by,

A ~ N

and let the 4-tuple of functions (Ao(7o0), Bo(7o), Co(To0), Do(75)), defined via equations (1.24)

for 4(1) = Uo(70), P(T) = @o(10), T = Tp, and € = &,, solve the system of isomonodromy
deformations (1.22) for 7 = 7, and a = a,. Set Uo(75) = —Un(Th), Po(T0) = Gn(Tn), To = Tn,
Ao = Ap, €0 = —Ep, by = —by, (that is, e,b, = e,by,), and

(AO(TO)a BO(TO)7 CAfo(To)-; DO(TO)) = (_An(Tn)a _Bn<7—n)7 _Cn(Tn); _Dn(Tn));

5%In [56, Section 7, p. 45], it is stated that the Lie-point symmetry 7 — —7 in [61, Section 6.2.1] requires
correction. Keeping in mind the mod(27) arbitrariness inherent in the definition of the function @(7) discussed
in the Introduction to this appendix, the Lie-point symmetry 7 — —7 alluded to in [56, Section 7, p. 45] is the
one for which the “additive parameter”, denoted by ¢o, is equal to zero: the transformation changing 7 — —7 for
which @¢o = 0 is presented here, in Appendix D.1, and not in [61, Section 6.2.1] wherein the Transformation 6.2.1
changing 7 — —7 was derived under the condition ¢o(70) = @o(70) — wel =: Pn(Tn), €1 € {£1}, that is, the
additive parameter is equal to —me] (unfortunately, the action of the symmetry 7 — —7 on the function ¢(7) was
not emphasized in [61]).
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then, (U, (7y), Pn(m)) solves the system (1.23) for 7 = 7,,, € = &, € {£1}, a = ap, and b = by,
and the 4-tuple of functions (Ay(7,), Bn(7s), Cn(Tn), Dn (7)), defined via equations (1.24) for
W(T) = Un(Tn), &(T) = &n(Tn), T = Tn, and € = €y, solve the system (1.22) for 7 = 7,,, a = ay,
and

V= Ay (1) Bo (7o) = V — Ay (1) Bu (7).

Moreover, let the functions A,(7,), Bo(7o), Co(7o), and D,(7,) be the ones appearing in the
definition (1.21) of &(7) for 7 = 7, and a = a,, and in the first integral (cf. Remark 1.3) for
€ =¢, € {£1} and b = b,; then, under the above transformations, &,(7,) = —é&y,(7,), where

OAén(Tn) = —Q(Bn(Tn))_l (ian\/_An(Tn)Bn(Tn) + Tn(An(Tn)bn(Tn) + Bn(Tn)CH(Tn)))v

and —idy, (1) Bn(Tn) = enbpn, e, € {£1}. On the corresponding fundamental solution of the
system (1.18) (cf. equations (1.19) and (1.20)), the aforementioned symmetry transformations
act as follows:

Lo = [ine™™, m € {0, 1}, and \Tlo(,uo, To) = e%(m_l)‘m\fln(un, Tn)-

Let (uo(7o), ¢o(To)) solve the system (1.37) for 7 = 7,, ¢ = &, € {£1}, a = a,, and b = by,
and let the 4-tuple of functions (Ay(7o), Bo(To), Co(Ts), Do(70)), defined via equations (1.38)
for u(7) = uo(10), (1) = po(7o), T = 70, and € = &, solve the corresponding system of isomon-
odromy deformations (1.36) for 7 = 7, and a = a,. Set uo(7o) = —un(mh), Yo(T0) = ©n(Thn),
To = Tny Qo = Gn, Eg = —En, by = —by, (that is, e,b, = €,by,), and

(Ao(75), Bo(70), Co(To), Do(T0)) = (—An(Tn), —=Bn(7n), =Cn(Tn), —Dn(7n));

then, (un(Th), ¢n(m)) solves the system (1.37) for 7 = 7, € = ¢, € {£1}, a = ap, and b = by,
and the 4-tuple of functions (A, (1), Bn(mn), Cn(m), Dn (7)), defined via equations (1.38) for
u(T) = un(m), (1) = pn(mh), T = T, and € = &5, solve the system (1.36) for 7 = 7,,, a = an,
and

V=A,(76)Bo(10) = V= Ay (70) Bu (7).

Furthermore, let the functions A,(7,), Bo(7o), Co(To), and D,(7,) be the ones appearing in the
definition (1.35) of «(7) for 7 = 7, and a = a,, and in the first integral (cf. Remark 1.8) for
e =¢, € {1} and b = b,; then, under the above transformations, a,(7,) = —a,(7,), where

an(m) == 72(Bn(7'n))_1(ian\/fAn(Tn)Bn(Tn) + Tn(An(10) Dy (10) + Bn(Tn)Cn(’Tn))),

and —iay, (7,)Bn(mh) = €nbn, €n € {£1}. On the corresponding fundamental solution of the
system (1.32) (cf. equations (1.33) and (1.34)), the aforementioned symmetry transformations
act as follows:

fho = pine ™™, m € {0, 1}, and Uy (hos To) = e%(mfl)"‘"’\lln(un, Tn)- (D.9)
In terms of the canonical solutions of the system (1.32), the actions (D.9) read, for k € Z,
m € {0,1}, and | € {£1},%6

_im

Yg,ok(ﬂo) _ e%"(m—l)agyoo (un)e 5 (m—l)ogewm(an—i/Z)Ug, (Dl(])

n,k—2m

56 As discussed in Remarks 1.16 and 1.17, since the canonical solutions Xg(,u), k € Z, are defined uniquely
provided the branch of (B(7))/? is fixed, it follows that, since the branch of (B(7))*/? is not fixed, the canonical
solutions Xg(u), k € Z, are defined up to a sign (plus or minus), thus the appearance of the ‘sign parameter’ l:
this comment applies, mutatis mutandis, throughout the remaining sub-appendices.
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and
_[e—igagxo (:u )a m =0,
ok(Ho) = { = kA (D.11)
X0, 1 (tn)o, m = 1.

The transformations (D.10) and (D.11) for the canonical solutions of the system (1.32) imply
the following action on M: for k € Z, m € {0,1}, and [ € {1},

003€ —e = I (m— 1)05e ﬂm(an—i/Z)JgS;fk72me7rm(an—i/2)age—%7(m—1)03’ (D12>

Sox = e m=0 (D.13)
’ 0152 k—191, M= 17

Gy = —1Gne 3. (D.14)

The actions (D.12)—~(D.14) on M can be expressed in terms of an intermediate auxiliary
mapping F (i) : C® — C8®, [ € {£1}, which is an isomorphism on M,

?;)n(l) M — M, (a 30730 » 81 79117912,921,922)
= (a,80(1),55°(1), 53° (1), 911 (1), 12(1), 921 (1), 922 (1)),

where

DO =50 )=, sl =—s® () =il

g12(1) = —ilgra, go1(1) = ilgor, 922 (1) = —ilgao. (D.15)
One uses this transformation in order to define an analogue of the identity map; see, in particular,
Appendix D.5, definitions (D.43) and (D.44).
D.3 The transformation a — —a

Let (@o(7o), Po(To)) solve the system (1.23) for 7 = 75, € = &, € {£1}, a = a,, and b = b,,
and let the 4-tuple of functions (Ay(7), Bo(To), C, 20(10), D o(To)), defined via equations (1.24)

for w(7) = Uo(15), ¢(T) = @o(T0), T = 7o, and € = &,, solve the system of isomonodromy
deformations (1.22) for 7 = 7, and a = a,. Set Uo(75) = —Un(Tn), Po(To) = —Pn(Thn)s To = Tn,
Qo = —Qn, €0 = En€ 72 g9 € {£1}, b, = b, (that is, e,b, = €,b,e7™2), and

(1210(7—0), Bo(To)y CO(TO)7 DO(TO)) = (Bn(Tn)y An(Tn)a _ZA)n(Tn)a _én(Tn));

then, (in(75), Pn(7s)) solves the system (1.23) for 7 = 7, € = €, € {£1}, a = apn, and b = by,
and the 4-tuple of functions (A (1), Bn(74), Cn(n), Dn (7)), defined via equations (1.24) for
(1) = tn (1), &(1) = @n(m), T = T, and € = g, solve the system (1.22) for 7 = 7,,, a = ay,
and

V= A4(70) Bo(ro) = V= An(r) Ba (7).

Furthermore, let the functions Ay(7,), Bo(7,), Co(7o), and Dy(7,) be the ones appearing in the
definition (1.21) of &(7) for 7 = 7, and a = a,, and in the first integral (cf. Remark 1.3) for
e =¢, € {£1} and b = b,; then, under the above symmetry transformations,

N ~

OA‘o(To) = _Bn(Tn) (An(Tn))

where

dn(Tn)7

b (1) = —2(Bn(7-n))_1 (iax, Vv —An(702) Ba(Tn) + T (An(70) D (T0) + B (70)Cu(12))),
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and —i&n(Tn)Bn(Tn) = epbn, €, € {£1}. On the corresponding fundamental solution of the
system (1.18) (cf. equations (1.19) and (1.20)), the aforementioned transformations act as follows:

Lo = ,unei”m/Q, m € {il}, and (I}o(/«‘mTo) = /Q\(/anTn)\i}n(uan)v

where

R B —imrm/4 I3 )
Q(Hn,Tn) — ( n(Tn)e > _i_'unemm/4o__'
)
m (1.3

\/_An (Tn)Bn (Tn

Let (uo(7o), ¢o(To)) solve the syste 7) for T =1, € = ¢, € {£1}, a = a,, and b = by,
and let the 4-tuple of functions (A,(70), Bo(To), Co(To), Do(70)), defined via equations (1.38)

for u(r) = uo(70), ©(7) = @o(70), T = Tp, and € = ¢&,, solve the corresponding system of
isomonodromy deformations (1.36) for 7 = 7, and a = a,. Set uy(75) = —un(Thn), PolT0) =
—0n(Tn), To = Tn, o = —Qp, €0 = Epe 72 g9 € {£1}, b, = by, (that is, eobo = €nbne_i“52), and

(Ao(70); Bo(70), Co(T0)s Do(To)) = (Bn(Tn), An(Tn), —Dn(7n), —=Cn(Tn));

then, (un(Ty), @n(m)) solves the system (1.37) for 7 = 7,,, € = &, € {£1}, a = ay, and b = by,
and the 4-tuple of functions (A, (7), Bn(mn), Cn(Tn), Dn (7)), defined via equations (1.38) for
w(T) = un(7h), (T7) = ©n(m), T = Tn, and € = &,, solve the system (1.36) for 7 = 7,,, a = an,
and

V=Au(70)Bo(70) = V= A0 () Bu (7).

Furthermore, let the functions A,(7,), Bo(75), Co(Ts), and D,(7,) be the ones appearing in the
definition (1.35) of a(7) for 7 = 7, and a = a,, and in the first integral (cf. Remark 1.8) for
e =¢, € {£1} and b = b,; then, under the above transformations,

(7o) = —Bn(n)(An (Tn))_lan (Tn),
where

an(m) == —2(Bn(7'n))_1(ian\/—An(Tn)Bn(Tn) + Tn(An(10) Dy (10) + Bn(Tn)Cn(Tn))),

and —iay, (7,)Bn(mh) = €nbn, €n € {£1}. On the corresponding fundamental solution of the
system (1.32) (cf. equations (1.33) and (1.34)), the aforementioned symmetry transformations
act as follows:

o= pn@™2  me {1},  and  Uu(te, 7o) = Q(ttns ) Wi (tins ), (D.16)

where

- Bn(7—n)e_i7rm/4 " 17rm/4
) (V—Anm)Bn(m)) e

In terms of the canonical solutions of the system (1.32), the actions (D.16) read, for k € Z
and m,eq,l € {£1},

man

Vo5 (t0) = QUttns ) Yook _im(pn)e ™ 2 P30, (D.17)

and

l ny Tn X0 n)s = &2,
0 4 (p10) = 4 [ Slptm ) "(;’“(M ) me e (D.18)
; llQ(Man)ka_m(Mn)Ulv m = 9.
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The transformations (D.17) and (D.18) for the canonical solutions of the system (1.32) imply
the following action on M, for k € Z and m,eq,1 € {£1},

Oo7ok _ O_lo_se_ er;an o3 ,rolf)kimeﬂ’rr;ana'go_go_:b (Dlg)

S0 1 .

S0, = me e (D.20)

’ Ulsn bemO m = gg,
—ilSO OUIGneﬂ(anfi/Q)agog(57201)710_3ef7r(an7i/2)0'3
Xe%g‘”’o'?)o'l, (m,e2) = (1,1),

G, = lGne”(a"_i/2)0303(Sg?l)_lage_”(a"_i/2)‘73e%‘730301, ( 2) = ( R —1), (D.21)
1GrSSe™ 2" o301, (m,e2) = (—1,1),
—iloy (5270)7161”55?06_%030301, (m,e2) = (—1,-1).

The actions (D.19)-(D.21) on M can be expressed in terms of an intermediate auxiliary
mapping F3 (m, e2): C8 — C8, m, ey € {£1}, which is an isomorphism on M, for I € {£1},

Fri(m,e2): M — M, (‘1 50780 , 8705 911, 912>921,922)
= (7017 Sg(m,@),so (m, e2),s7°(m, €2), g11(M, €2), g12(m, €2),

g21(m, £2), g22(m, £2)),

where, for (m,e2) = (1,1),

sO1,1) =8, sP(L,1) = —se™,  s°(1,1) = —s%™, gi1(1,1) = ilgope™?,
g12(1,1) = —il(ga1 + 53°ga2)e ™2, 921(1a 1) = il(g12 — s0gaz)e™/?,
922(1,1) = il(—g11 — s g12 + 50 (g21 + 55°g22))e ™2, (D.22)

for (m,e2) = (1,-1),

s9(1,—1) = s, so(1, —1) = —s7%e™, s7°(1,—1) = —sg%e™,

g11(1, —1) = lg1ae™/?, g12(1, —1) = —l(g11 + s gr2)e ™2,

g21(1, —1) = lgope™/?, g22(1, —1) = —(ga1 + s g22)e ™2, (D.23)
for (m,e2) = (—1,1),

s9(—1,1) = s, sgo(—1,1) = —s7%e™, s7°(—1,1) = —sg%e™,

g11(—1,1) = I(g12 — 55°g11€*™)e "2, g12(—1,1) = —lg1e™/?,

g21(=1,1) = U(g22 — 57°g21€”™)e ™2, gan(=1,1) = —lgn ™, (D.24)
and, for (m,e92) = (—1,—1),

s9(—1,-1) = s, s (=1, —1) = —s7%e™, s7°(—1,—-1) = —sg°e™,

g1 (=1, —1) = il(g22 — 57°g21€°™ + 5 (912 — 5°g11€>™) ) ™2,

g12(—1,—1) = —il (g1 + 58911)67"1/27 gn(—=1,-1) =il(g12 — s°g11e
g22(—1,—1) = —ilgy ™/, (D.25)

—ma/2
’

271'(1)e

One uses this transformation in order to arrive at asymptotics for eéb < 0 by using those
for b > 0.
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D.4 The transformation = — +ir

Let (Uo(70), $o(To)) solve the system (1.23) for 7 = 7,, e = ¢, € {£1}, a = a,, and b = b,, and let
the 4-tuple of functions (AO(TO), Bo(70), Co(To), bO(TO)), defined via equations (1.24) for 4(7) =
Uo(To), P(T) = Go(T0), T = To, and € = &,, solve the system of isomonodromy deformations (1.22)
for 7 =7, and a = a,. Set U,(7,) = ﬂn(Tn)eiﬂél/Q, €1 € {1}, Po(10) = Pn(mn), 7o = Te imEL/2,
QAo = Qnp, Eo = Ep, and b, = bne*i“"??, g9 € {£1} (that is, €obp = 6nbne*i”§2), and

(Ao(To)a BO(TO)7 CO(TO)) ﬁo(To)) = (An (Tn)eiﬂgl ) Bn (Tn)eiﬂgl ) CA'n (Tn)eiﬂgl/zv Dn(Tn)eiﬂ-gl/Q);

then, (U, (7y), Pn (7)) solves the system (1.23) for 7 = 7,,, € = &, € {£1}, a = ap, and b = by,
and the 4-tuple of functions (An(7y), Bn(Tn), Cn(7n), Dn(7y)), defined via equations (1.24) for
W(T) = Un(n), ¢(T7) = &n(Th), T = T, and € = &y, solve the system (1.22) for 7 = 7,,, a = ap,

and
V= Ay(70) Bo(7) = €71V = Ay (1) B (7).

Moreover, let the functions Ay(7), Bo(7o), Co(7o), and Dy(7,) be the ones appearing in the
definition (1.21) of &(7) for 7 = 7, and a = a,, and in the first integral (cf. Remark 1.3) for
e =g, € {£1} and b = b,; then, under the above symmetry transformations, &,(7,) = G (™),
where

b (1) = —Q(Bn(Tn))‘l (iax, Vv —An(72) Bn(Tn) + T (An(70) D (70) + B (70)Cu(12))),

and —idn(Tn)Bn(Tn) = epbp, en, € {£1}. On the corresponding fundamental solution of the
system (1.18) (cf. equations (1.19) and (1.20)), the aforementioned transformations act as follows

Mo = Nneiﬂgl/4a €1 € {:l:l}, and {I}o(,ulo; To) = ei%asi\]n(ﬂnv Tn)'

Let (uo(7o), ¢o(70)) solve the system (1.37) for 7 = 7,, € = &, € {£1}, a = a,, and b = by,
and let the 4-tuple of functions (A, (7), Bo(To), Co(Ts), Do(70)), defined via equations (1.38)
for u(7) = uo(70), ©(T7) = @o(70), T = 7o, and € = &,, solve the corresponding system of
isomonodromy deformations (1.36) for 7 = 7, and a = a,. Set uo(7,) = up(7,)e™1/2, & € {£1},
©o(T0) = ©n(Th), To = 7 e ImE2 g = q e, = e, and b, = bye ™2, &y € {1} (that is,
€obo = €nby e_”rg?), and

(Ao(70), Bo(75), Co(To), Do(T0)) = (An(Tn)eim;laBn(Tn)eiWélaCn(Tn)eim:l/Q?Dn(Tn)eiﬂél/z);

then, (un(Tn), @n(m)) solves the system (1.37) for 7 = 7,,, € = &, € {£1}, a = ay, and b = by,
and the 4-tuple of functions (A, (1), Bn(mn), Cn(m), Dn (7)), defined via equations (1.38) for
u(T) = un(7h), ©(7) = on(mh), T = Tn, and & = &, solve the system (1.36) for 7 = 7,, a = ay,
and

—Ao(76)Bo(To) = €™V — Ay (1) B (1)

Furthermore, let the functions A,(7,), Bo(70), Co(Ts), and D,(7,) be the ones appearing in the
definition (1.35) of «a(7) for 7 = 7, and a = a,, and in the first integral (cf. Remark 1.8) for
e =¢, € {£1} and b = b,; then, under the above transformations, a,(7,) = an(7y), where

an(m) == —2(Bn(7'n))71(ian\/—An(Tn)Bn(Tn) + Tn(Ap (10) Dy (T0) + Bn(Tn)Cn(Tn))),

and —iay, (7,)Bn(mh) = €nbn, €n € {£1}. On the corresponding fundamental solution of the
system (1.32) (cf. equations (1.33) and (1.34)), the aforementioned symmetry transformations
act as follows:

imé

o = pne™ V4 E e {1}, and  Uu(po,To) =€ 5 T3, (i, T)- (D.26)
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In terms of the canonical solutions of the system (1.32), the actions (D.26) read: for k € Z
and £1,é9 € {:l:l},

Yz?k(uo) = ei%agyﬁk(ﬂn)eanfla?ﬂ (D27)
and
_70—3X0 ~ _ _ =
X0 (ko) = 3 ki), T (D.28)
’ —1<§1e 8 03X2k &1 (,un)al, &:1 = 52.

The transformations (D.27) and (D.28) for the canonical solutions of the system (1.32) imply
the following action on M: for k € Z and &, € {£1},

anméy anméy

ok =€ 1 TS T, (D.29)
SO ) ] = —€ )
Sor =19 "k e (D.30)
’ 0'157%]4;_510'17 El - 827
18901 Gre 173, (€1,82) = (1,1),
Gpe i o8, =1,82) = (1, -1),
Go = neim (61 6~2) ( ) (D31)
Gpe 1 73, (1,62) = (—1,1),

—i01(890) " Gre T, (51,8) = (~1,-1).
The actions (D.29)—-(D.31) on M can be expressed in terms of an intermediate auxiliary
mapping F5” (£1,&2): C® — C8, &1,&9 € {#1}, which is an isomorphism on M
F5 (81, 82): M — M, (a, 80, 53°, 57°, 911, 912, 921, G22)
= (a,50(1,82), s0° (€1, £2), 870 (81, €2), 911 (61, 82), g12(1, &2),
921(€1,82), g22(€1,€2)),

where, for (£1,é2) = (1,1),

s9(1,1) = 89, se°(1,1) = sPe ™2, $3°(1,1) = s3°e™/2,

g11(1,1) = —igare ™4, g12(1,1) = _ig22€ﬂ-a/4,

g21(1,1) = —i(g11 — sQga1)e ™4, 922(1,1) = —i(g12 — s)g22)e™/*, (D.32)
for (£1,&2) = (1,-1),

(1, 1) =80, sP(1,—1) = se™2, (1, —1) = s%™Y/2,

gu(l,=1) = gne m/4v g12(1, 1) = 91267”1/4, g21(1,—1) = gore ™4,

g22(1, —1) = gope™™/*, (D.33)
for (¢1,&2) = (—1,1),

so(—1,1) =80, sF(-1,1) =se™/?,  sPP(—1,1) = s{%e ™2,

gu(=L1) = gllem/4’ g12(=1,1) = g1ze 7ra/47 g21(—1,1) = gare™/*,

g22(—1,1) = goge ™4, (D.34)
and, for (£1,&2) = (—1,—1),

s)(—1,—1) = s, s(—1, —1) = se™ /2, 6°(=1,—1) = s3%~ /2,

g11(—=1,-1) =i(ga1 + 80911)em/4, g12(—1,-1) = i(ga2 + sgglg)e_m/4,

g2 (—1,-1) =igie™*,  go(—1,—1) = igige "%, (D.35)

One uses this transformation in order to arrive at asymptotics for pure-imaginary 7 by using
those for real 7.
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D.5 Composed symmetries and asymptotics

In order to derive the complete set of requisite transformations, one considers the actions (D.7),
(D.8), (D.15), (D.22)—(D.25), and (D.32)—(D.35) as a group of basis symmetries, the composi-
tions of whose elements yield the remaining isomorphisms on M.

In order to do so, however, additional notation is necessary. For symmetries related to real 7,
introduce the auxiliary parameters

0, Eo = 0,

e1€{0,£1},  ee{0,£1},  m(e) = {i@ es € {£1}

and ¢ € {0,1}, and consider the 4-tuple (g1, 2, m(e2)[¢) concomitant with its associated isomor-
phism(s) on M denoted by F1* : C8 — C8, where

e1,e2,m(e2)

‘
32{1?82”(52)3 M — M, (a So>50 » 51 7911,9123921,922)

— ((—1)52(1, 38(51, g2, m(e2)|l), sq° (1,2, m(e2)|€), s7°(e1, €2, m(e2)|f),
gi1(e1, g2, m(e2)[l), gr2(e1, €2, m(e2)|€), go1(e1, €2, m(e2)l),
g22(e1, €2, m(£2)]0)); (D.36)

and, for symmetries related to pure-imaginary 7, introduce the auxiliary parameters

0, &y € {:tl},

él € {j:]'}? é? € {Ovil}v m(éQ) = ~ ~
Z|:€1, €2 = 07

and ¢ € {0, 1}, and consider the 4-tuple (€1, &2, m(éQ)\é) concomitant with its associated isomor-

phism(s) on M denoted by ?E{f}EQ eyt C8 = CB, where
.’;"{2} : M= M, (a, 59,850, s5° )
€1,62,Mm(€2) " 0>50 »S1 »911, 912, 921, 922

H(( )20, 80(é1, €0, 11(2)[€), 33° (€1, 2, 100(E2)|F),
(81,82, ( )|é) (él,ég,m( )’5) 912(61,627 (ég)’é),
921(51,62, ( )|) (él,ég,m(égﬂa). (D.37)
Let

0
?éo}o M =M, (a, 50, 580, 83 2,911, 912, 921, 922) — (a, 58,88075(1)0,911,912,9213922) (D.38)

denote the identity map,’” and, for £ = 0, set

Fn(1), (e1,e2,m(e2)|€) = (1,0,0(0),
Fi(-1), (e1,e2,m(e2)|0) = (—1,0,0]0),
?io} _ Fio(1,1), (e1,e2,m(e2)|€) = (0,1, 1]0), (D.39)
1.e2m(e2) Frr(1,-1), (1,69, m(e2)|0) = (0,—1,1]0),
Fi(=1,1),  (e1,e2,m(e2)]¢) = (0,1,—1|0),
Fi(=1,-1), (e1,e2,m(e2)|¢) = (0,—1,—1|0),

S"That is, s3(0,0,0[0) = s3, s&°(0,0,0[0) = s5°, 55°(0,0,0/0) = s3°, and g;(0,0,0/0) = gyj, .5 € {1,2}.
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and, for /= 0, set

I (1,1), (é1,82,m(é2)|0) = (1,1,0]0),
. I 1, é9,1(é2)[0) = (1,—1,0]0
ff;{o}a ) = ~ (1, =1), (?7%2’77(?)') (1, 10), (D.40)
Le2mies Fio(—1,1),  (&1,é2,m(é2)]0) = (—1,1,0]0),
Fio(=1,-1), (&1,é2,m(é2)¢) = (—1,-1,0]0).
Via the definitions (D.38)—(D.40), define the following compositions (isomorphisms on M):

for £ =0, 58 set

?{01}—1—1 :?{0} 105{01}0,07 (e1,€2, m(e2)[€) = (=1, -1, -1/0),
50, =, ool (enenmel) = (1,-1,-100),
?£01]:—11 —?{0—}11 5{01}0,07 (1,62, m(e2)|€) = (=1, -1,1{0),
‘rfiof}l,l = 3'“({),07}11 Oﬁ%}m (1,82, m(e2)]€) = (1, —1,1]0),
T =T e remle)l0) = (1,1, -1)0),
50 =50 o5l (nenmlel = (11,-10),
?{01}11 —9501}1097{01}00, (€1, €2, m(e2)|¢) = (—1,1,1/0),
Tt =T e nenm(e)ld) = (1,1,1)0), (D41)
and, for 0= 0, set
Flo =0 el (Gném(@)ld) = (1,0,-100),
3"{_0}0 L= e T (e, Eg,m( &)|0) = (—1,0,-1/0),
9i00}1 = 5:301}1 ?{0}1 0 (é1,82,1(é2) ¢ ) (1,0,1]0),
O =5 05, (51,52, n(22)10) = (~1,0,1]0). (D.42)

The cases ¢, = 1 are a bit more subtle, because there is no analogue, per se, of the (stan-
dard) identity map (D.38); rather, the role of the identity map for ¢,¢ =1 is mimicked by the
endomorphism Fy, (D, [ e {#£1}, given in Appendix D.2 (cf. equations (D.15)); with conspicuous
changes in notation (which are in line with the notations introduced in this subsection), it reads
(for £ =1):

9310}0 M —= M, (a 50,557 8% 7911791279217922)

= (CL, 50(07070“‘)780 (07070“‘)751 (07Oa0|1)7gll(0’0’0|1)’912(07070|1)7
921(07 070|1)7g22(07070‘1))7 (D43)

where, for [ € {£1},

90,0,00) = h(0),  s20,0,001) = sF (D), s¥(0,0,001) = (1),

9:7(0,0,0[1) == g;; (1), 1,5 € {1,2}. (D.44)
To complete the list of the remaining 0,0 =1 mappings, define, in analogy with the defini-
tions (D.39)—(D.42), the following compositions (isomorphisms) on M: for ¢ =1,

1% o 5tY

gt Yo (er,e2mlea)|0) = (—1,0,01),

—00_

%8Recall from Remarks 1.16 and 1.17 that G; = G2 < (G1)i; = —(G2)ij, i, € {1,2}.
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5o =000 T80 (er.e2.m(e2)l0) = (1,0,001),

g = o (eream(e)l0) = (0,1, -1]1),
g = ff{(’il 1o ffélo}o, (e1,e2,m(e2)]6) = (0,~1,11),
gi =010 ol (nenmlelt) = 0,1, -101),

1 0 1
953 1}1 = ?é 1}1 Cfé 0}07 (e1,e2,m(e2)|€) = (0,1,1]1),

EF{ll}—l -1= 9{1}1 —10° 5{01}0 09 (1,82, m(e2)[) = (=1, -1, —1[1),

‘ﬁl—}l -1= 9{1—}1 -1° ffi 0}0= (1,82, m(e2)]€) = (1, -1, —1[1),

g =g 07 L mle)|) = (—1,-1,1)1),

T =00 0T e (e mle)l0) = (1,-1,100),

G _9{1} LoF 0 (e e mie)) = (<1,1, -1[1),

?ﬁ}—l = ?éll}—l © ﬁ%}o’ (e1,82,m(e2)[€) = (1,1, —1[1),

?{11}1 1= ffé 1}1 © 9{01}0 0 (1,82, m(e2)[€) = (=1,1,1]1),

g =g o (erenm(e)|0) = (1,1 11); (D.45)
and, for ¢ = 1,

50 =300 0ol ré i)l = (1,1,01),

50 =10 00800 (G mE)ld) = (1,-1,00),

95{11},1,0 —9{01}10 Bt({)lo}m (517527 (2)’) ( 1,170|1)

GO 0= 00aide,  (ELamE)l) = (- 17—1,0\1>,

3%10}—1 :?éol}—l gil—}l 00 (€1,€2,m(€2)]€ ) (1,0, =1|1),

9?0}1 = ?301}1 Sril—}loa (1,€2,m(€ )|) (1,0, 1‘1)

O =g T L L mEld) = (-1,0,-1)1),

T =00 o0 (G a @)l = (-1,0,101), (D.46)

Via the elementary symmetries (D.7), (D.8), (D.15), (D.22)-(D.25), and (D.32)-(D.35), and
the definitions (D.38)—(D.46), one arrives at the following explicit list of actions on M of the

isomorphisms (cf. definition (D.36)) F! relevant for real 7, and (cf. definition (D.37))

- €1,62,m(e2)?
Sréf?é2,m(é2), relevant for pure-imaginary 7: for [,1’ € {£1},

(1) F5%o =

$9(0,0,0[0) = 59,  s5°(0,0,0[0) = s5°,  55°(0,0,0]0) = s3°,
9(0,0,0[0) = g5, 4,5 € {1,2}; (D.47)

s9(—1,0,0[0) = 59, 55°(—1,0,0]0) = s5°e™, 53°(—1,0,0]0) = 5™,
911(—1,0,0[0) = —i(ga1 + s0g11)e™/?, 912(—1,0,0(0) = —i(gos + sQg12)e ™2,
921(—1,0,0]0) = —igy1e™/?, 922(—1,0,0]0) = —igize~ ™/ (D.48)
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s9(1,0,00) = 59,  55°(1,0,0[0) = se™ ™, 57°(1,0,0]0) = s5°e™,
911(1,0,000) = igare ™2, g12(1,0,0/0) = igaze™/?,
921(1,0,0[0) = i(g11 — s3ga1)e ™2, 922(1,0,0(0) = i(g12 — 50g22)€™/%;  (D.49)

38(07_17_1’0) = 387 880(0’ 1|0) —s7oe™,
0,—1,-1]0

—sp7e™,

( ) =
911(0, =1, =1]0) = il'(g22 — g2157°”™ + 50 (912 — gu1s7°e™) ) ™/,
912(0, =1, —1]0) = —il'(g21 + s0g11) em/2,

(0,—1,-1]0) = il' (g12 — g1155°€>™ e /2,

(0,—1,—1]0) =

g21

922 —il' g11e™ % (D.50)

s0(0,—1,1]0) = s, 50°(0,—1,1]0) = —s7%e™, s17°(0, =1,1]0) = —s5°e™,
911(0,-1,1|0) = Ug12e™2, 150, —1,1|0) = —I'(g11 + 55°g12)e ™2,
921(0, —1,1]0) = I’ gp2e™/2, 922(0, —1,1]0) = —I'(ga1 + 5 gan)e ™/?; (D.51)

(0,1, -1]0) = 53,  55°(0,1, —1]0) = —s5°™, 53°(0,1, —1]0) = —s5°%e™,
911(0,1,—-1]0) = '(g12 — gu157°€*™)e ™2 g15(0,1,—1]0) = —'g1e™/?,

921(0,1,=1]0) = I'(g22 — g2157°€™™)e ™2, g3(0,1,—1|0) = —I'gee™/?; (D.52)

s0(0,1,110) = 55,  55°(0,1,1|0) = —s5%e™,  55°(0,1,1]0) = —s5%e™,

911(0,1,1]0) = il gppe™/2, 912(0,1,1]0) = —il'(ga1 + s gag)e ™2,
921(0,1,1]0) =il (g12 — 88922)67“1/27
922(0,1,1]0) = il (—g11 — g1255° + 89(g21 + 5 g22) ) e ™%, (D.53)

s3(—1,—1,—1|0) = 58, 58°(—1,—1,—1]0) = —s°,

s3°(—1,-1,-1[0) = —sg°e™,

g11(—=1,-1,-1]0) = '((g12 — g1157°€>™*) (1 + (s ) ) + 50 (922 — g2155°€™) Je ™,
g12(—1,-1,-110) = =1 (g1: (1 + (So) ) + s0g21)e™,

g1 (=1,—-1,-1]0) = I'(g22 — gns°e Tt sg (912 —g11s7°e 2M))e_ma

g22(—1, =1, —1|0) = —'(g21 + spg11)e™; (D.54)
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sO(1,—1,-1]0) = 59,  s5(1,—1,-1]0) = —s5e¥™, (1, -1, —1]0) = —s&°,
gll(la -1 _1|0) —l (912 - 9115(1>o 27“1)’ 912(1a _17 _1|0) = l,gll,
921(1, —1,-1|0) = —I'(g22 — g2157°€™), g22(1,—1,-1]0) = 'go1; (D.55)

(10) 95{701},71,1 =

so(=1,-1,10) = 55, s3°(=1,=1,10) = =57, s7°(=1,=1,1]0) = —s5%e*™,
g11(—1,-1,1|0) = —il' (g2 + s0g12),

g12(—1,—1,1]0) = il' (g1 + s5°g22 + so(g11 + s g12)),

g21(—1,-1,1|0) = —il'gy2, g22(—1,—-1,1|0) = il'(g11 + 55°g12); (D.56)

(11) & {0}1 1=

s9(1,—1,1]0) = 55,  s5(1,—1,1|0) = =5, s3°(1,—1,1]0) = —s5°,
g11(1,=1,1j0) = il' g™,  g12(1, —1,1]0) = —il'(g21 + 55°g22)e ™",
T™a

g21(1,=1,1]0) = il’ (g12 — s0g22)e™,
g22(1, —1,1]0) = —il' (g11 + s3°g12 — $0 (g1 + $3°g22))e ™% (D.57)

(12) ?{—01}:1,—1 =

so(=1.1,-100) =5, s°(=L 1L, -1j0) = =57, s7°(=1,1,-1]0) = —s5%e®™,
g11(—1,1,-1|0) = —il'(gas — g2155°€*™ + 50 (g12 — g1157°*™) )e ™™,
g12(—1,1,-1]0) = 11/(921 + 50911) e™,

921(—1,1,-1]0) = —il'(g12 — g1185°€*™)e ™,

g22(—1,1,-1|0) = il'g11€™; (D.58)

sO(1,1,-1]0) = 55,  s5°(1,1,-1|0) = =5, s3°(1,1,-1]0) = —s5°,

g (1,1,-1)0) = il’ (g22 — g215°*™),  g12(1,1,-1]0) = —il'gay,
921( 71, —1‘0) = il/(glg — gnscfo 2ma _ (922 _ 92181 27ra))’
922(1,1, =110) = —il' (911 — 5921 ); (D.59)

(14) ?{—01}:1,1 =

so(—1,1,10) = 55,  sP(—1,1,1|0) = —s5°,  s7°(—1,1,1|0) = —s5e*™,
g11(—1,1,1]0) = I'g12, g12(—1,1,1|0) = =I'(g11 + s g12),
g21(—1,1,1[0) = I'gao, 922(—1,1,1]0) = —1'(g21 + 55°922); (D.60)

(15) & i01}1 =

s0(1,1,110) = 89, s(1,1,1|0) = —s5°e*™, s3°(1,1,1]0) = —sg°,
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911(1,1,1]0) = —I'(g12 — sggaz)e™,

912(1,1,10) = =1'(—g11 — g1255° + s0(g21 + g2255°)) e ™,

921(1,1,1]0) = —I'(g22 — 59 (912 - 80922)) e™,

922(1,1,1]0) = U'((g21 + g2255°) (1 + (59)*) — s§(g11 + 56°g12))e™™; (D.61)

(16) 95%01}0 =
80(1,1,0[0) = &9,  83°(1,1,0[0) = sPe ™2 5°(1,1,0[0) = s5%e™ /2,
911(1,1,0[0) = —igore ™4 §12(1,1,0[0) = —igage™ /4,
§21(1,1,0[0) = —i(g11 — sQga1)e ™4,

G22(1,1,0]0) = —i(g12 — s0gaz)e™*; (D.62)

~ {0
17) 5% =

80(1,—1,0/0) = 53,  8°(1,-1,0[0) = s ™2 §3°(1,—1,0/0) = s3%e™/2,
g11(1,-1,0]0) = gyre ™4, g12(1,—1,0[0) = glge’m/4
g21(1,—1,0[0) = gare m/4, G22(1,—1,0]0) = gase™/*; (D.63)

(18) @{701]:1’0 =

§8(—1, 1,0|O) = 887 ( 1, 1’0|0) — Sooewa/Q §TO(_17 170|0) — SToe—wa/Q’
911(—1,1,0|O) :glle /47 912(_17170‘0) :.9126_7“1/4’
321(=1,1,0[0) = g21¢™/*, Gap(—1,1,0[0) = game ™/ %; (D.64)

(19) 79 _ 0=
80(=1,-1,0[0) = 83,  8°(—1,—1,0[0) = sFe™/2, (D.65)
§7°(—1,-1,0[0) = si%e ™2,
g11(—1,-1,0[0) = i(g21 + shg11)e™/*, 912(—1,-1,0[0) = i(g2 + shgr2)e ™4,
Go1(—1,-1,0[0) = igi €™, Gaa(—1,—1,0/0) = igrae ™4 (D.66)

(20) 519 _, =

80(1,0,—1]0) = 53,  §5°(1,0,—1]0) = —s5%e3™/2 §9°(1,0,—1|0) = —s3%e™ /2,
911(1,0,-1]0) = I'(g12 —gus? e ”/4, G12(1,0, =1]0) = /gy e™/%,
§21(1,0,—1]0) = U'(ga2 — go155°e*™)e ™/, G22(1,0,—1]0) = —'gye™/*; (D.67)

(21) gf{fol}o -1

S0(=1 1’0) = 50, 8°(—1,0,—1]0) = —s5°%e™/2,
5°(-1,0,-1]0) = —s57e’™,
911(=1,0,-1/0) = i (922 — g2157°€%™ 1 53 (912 — g1155°e*™) e O/,
912(—1,0,—1]0) = —il'(go1 + s0g11)e> /4,

g21(=1,0,-1]0) =i’ (912 — gu185°e?™)e /4

(—1 ) =

i’ grye®m/4, (D.68)

g21

922 —1/0



Trans-Series Asymptotics of Solutions to the Degenerate Painlevé 111 Equation 115

(22) ?foo}l =
0(1,0,1)0) = 80, &2(1,0,1]0) = —se3H2 32(1,0,1]0) = —sTe™V2,
911(1,0,1]0) = il/g20e™™ 4 §15(1,0,1]0) = —il'(go1 + 55°g22)e /4,
G21(1,0,1]0) = il’ (912 _ 88922)637ra/47
§22(1,0,110) = it/ (—g11 — 57912 + 50 (g21 + s§°g22) e >4, (D.69)

(23) 5%01}’071 =

§8(—1 0, 1‘0) = 587 AOO(—LO’ 1‘()) 3<l>oe7ra/2 §c1>o<_1707 HO) _ _8c0>oe3ﬂ-a/27
§11(=1,0,1]0) = —I'g12e™/*, 912(=1,0,1]0) = U'(g11 + s§°g12)e ™4,
921( 1,0, 1|O) 9226 /4 _@22(_1, 0, 1|0) = l/(_ng + 380922)6_”“/4; (D70)

(24) 9310}0 =

s9(0,0,0[1) = 55,  55°(0,0,0/1) = —s5°,  57°(0,0,0|1) = —s5°,
911(0,0,0[1) = ilg11,  ¢12(0,0,0[1) = —ilgia,  g21(0,0,0[1) = ilgo1,
922(0,0,0]1) = —ilgao; (D.71)

(25) 5{_11},0,0 =

s9(—1,0,0[1) = 59, 55°(=1,0,0]1) = —s5°e™, $3°(—1,0,0[1) = —s5e™™,
911(—1,0,0[1) = I(ga1 + 80911)‘3”&/2, 912(—1,0,0[1) = —(g22 + 88912)6_7“1/27
921(—=1,0,0[1) = Ig11€™%,  gop(—1,0,0]1) = —lg1pe ™2 (D.72)

(26) Srilo},o =

s0(1,0,011) = 59,  s5°(1,0,0/1) = —se™ ™, s3°(1,0,0]1) = —s5°%™,
911(1,0,0]1) = —lgye ™2, 912(1,0,0[1) = Iggpe™/?, (D.73)
921(1,0,0[1) = —I(g11 — sQg21)e ™2, g22(1,0,0[1) = I(g12 — s9g22)e™/?;

1
(27) ‘rfé,—}l,—l =

(0, —1,—1[1) = ), 58°(0, =1, —1]1) = s3%e™, $3°(0, —1, —1]1) = s3°e™,

9110, =1, —11) = —1I' (g2 — 9215? 2T 1 50 (g12 — guisie 2”"L))e"“‘/2,

9120, =1, —1[1) = —II'(g21 + s{g11)e™/?,

921(0, =1, —1|1) = —Il'(g12 — g1 57 2”)(3_”/2,

922(0, =1, =1|1) = ~Il'giye™/%; (D.74)
(28) T, =

s0(0, —1,1]1) = 83,  s5°(0,—1,1[1) = s7%™,  57°(0,—1,1|1) = s5°%e™,

911( 1 1‘1) = 1ll'glgem/2 912(0, —1, 1’1) = ilNl/<911 + 880912>e ﬂa/z,
921(0, —1,1|1) = ill' ggoe™/?, 922(0, =1, 1[1) = ill'(go1 + s°ga2)e ™2, (D.75)
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(209) 50, =

s0(0,1,-1]1) = 55, 50,1, —1|1) = %™,  55°(0,1, —1]1) = s5%™,
911(0,1,—1|1) = i’ (912 — 91157 QW)G_M/Q, 912(0,1,—-1|1) = 1”’!]116”/2
921(0, 1, —1|1) = ill'(g22 — g2155°*™)e ™2, g35(0,1, —1|1) = ill' g21¢™*/?; (D.76)

(30) 5, =

s0(0,1,1]1) = 55, s3(0,1,1|1) = 8™,  55°(0,1,1]1) = s5%™,

911(0,1,1|1) = —Il' ggpe™/?, 912(0,1,1]1) = —II'(g21 + s3°g22)e ™2,
921(0,1,1]1) = *[l,(glg — 88922)67“1/2,

g22(0,1,1|1) = Zl/(—gll — 80912 + 58(921 + 580922))e_m/2; (D.77)

1
(31) CT'~{—1},—1,—1 =

sO(—1,—1,—-1]1) =83,  s°(—1,—1,—1[1) = s5°,
(=1,-1,—-1J1) =

gi1(—1,—1,—1[1) = ill'((g12 — g1155°*™) (1 + (s ) ) + 50(g22 — g2155°€*™) )e ™,

gi2(—1,—1,—1|1) = ill’ (gr1(1+ (s ) ) + s0g21)e™,
(-1 ) (
(-1 ) =ill'(g

— sooe27ra

go1(—1, =1, =1|1) = ill' (gos — g2157°€*™ + 5§ (g12 — g1157°€*™) )e ™™,

g22{— 7_1)_1|]— - lll 1+30911) a; (D78)

(32) rfil—}l 1=

sO(1,—1,—1]1) =55,  s(1, -1, —1|1) = s5°e*™, s°(1,—1, —1[1) = s°,
g (1, =1, =1]1) = —ill'(g12 — g1155°e>™), g12(1, =1, =1[1) = —ill' g1,
go1(1, =1, —1|1) = —ill'(g22 — g2157°€*™),  goo(1,—1,—1[1) = —ill'gsr;  (D.79)

(33) 9{—11}:—1,1 =

sO(—=1,-1,1]1) = 55, (=1, -1,1|1) = s5°,  s7°(=1,—1,1|1) = s>,
—1,-1,1]1) = Il (go2 + s0g12).
gi2(—1,—1,1|1) = I’ (921 + 850922 + 80 (g11 + 850 912)).

—1,-1,1|1) = il'g1o, go2(—1,=1,1|1) = Il'(g11 + 5 g12); (D.80)

sO(1,—1,1]1) = 55,  s(1,—1,1|1) = s5°e*™,  s3°(1, —1,1]1) = s&°,

gu1(1, —1,1[1) = —1l'gage™, g12(1, =1, 1[1) = —1l'(g21 + 5 gaz)e ™™,

g21(1, —1,1|1) = —1l'(g12 — sQg22)e™,

g22(1, = 1,1|1) = =1 (g11 + 5912 — 85(g21 + 50 g22))e ™% (D.81)



Trans-Series Asymptotics of Solutions to the Degenerate Painlevé 111 Equation 117

(35) 3{11},1,4 =

sO(—1,1,—1[1) =83,  sF(=1,1,—1]1) = s5°, s3°(—1,1, —1[1) = s5°e*™,
gu(—1,1,-11) =1’ (922 — g2157°€ 2ma s (912 —gusye 27"1))6‘_”,
g12(—1,1, —1|1) = II'(ga1 + sQg11)e™,
go1(—1,1,—1[1) = II'(g12 — g1157°e*™)e ™,
g22(—1,1,—=1[1) = Il'g1 €™, (D.82)
1
(36) FiY 1 =
so(LL=11) = s, sg7(L,1,=1[1) = s7%*™, s7°(1,1, =1]1) = 5,
g11(1,1,—11) = =1’ (g2 — 92133>O 2may g12(1, 1, —1|1) = ~1l'gan,
g21(1, 1, —1[1) = ~1I'(g12 — g1157°e*™ — 50 (ga2 — g2157°e*™)),
g22(1, 1, —11) = =1’ (g11 — s0g21); (D.83)
1
(37) ?{—1},1,1 =
sO(—=1,1,11) =83, sP(=1,1,1]1) =57, s7°(=1,1,1[1) = s5°e®™,
gu(=LL11) =ill'gra,  gra(=1,1,1]1) = ill’ (911 +53°g12);
g21(—1,1,1[1) = ill'gpo, g22(—1,1,1|1) = 1ll'(g21 + s§°g22); (D.84)

(38) 3{11},1 =

sO(1,1,1]1) = 89, s8(1,1,1]1) = 85, s°(1,1,1]1) = s&°,

g11(1,1,1]1) = —ill’ (912 — 58922)67“17

g12(1,1,1|1) = ill’ (=911 — s3°q12 + s (g1 + s g22))e ™,

go1(1,1,1]1) = —ill’ (922 — 80 (g12 — s0g22) )€™,

g22(1,1,1[1) = il ((921 + 880922)(1 + (88)2) — 88(911 + 88°g12))e_7m; (D.85)

80(1,1,011) = &9,  8°(1,1,0[1) = —s%e ™2 §3°(1,1,0|1) = —s3%e™ /2,
911(1,1,0[1) = Igage ™/, 912(1,1,0]1) = —Igage™/*,
921(1,1,0]1) = I(g11 — sgo1)e ™4,

§22(1,1,0[1) = ~1(g12 — shgo2)e™™4; (D.86)
1
(40) 5,0 =

§0(1 —1,01) = s, §F(1,—1,0[1) = —s5%e T2
§°(1,—1,0[1) = —s%e™/2,
911(1, —1,001) = ilgiie ™4, §12(1,—1,0[1) = —ilgipe™,
Go1(1,—1,0]1) = ilgare ™4, Gga(1,—1,0|1) = —ilggge™/*; (D.87)
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(41) 5 )=

30(—1,1,0[1) = s, 5°(—1,1,0[1) = —sFe™/2,

§TO(—1, 1,01) = _Sfoe*ﬂaﬂ’
g (=1,1,011) = ilgne™*,  §i1a(~1,1,0]1) = —ilgipe ™4,
Go1(—1,1,001) = ilgze™/", Gar(—1,1,011) = —ilgaze ™/%; (D.88)

(42) ¥ _ =

8( ,—1,0[1) 238, 5°(—1,-1,0|1) = Sgoeﬂa/Q

8°(—1,-1,0]1) = —s°e ™2, g11(—1,-1,0]1) = (921 +50911) e/,
g12(—1,-1,0]1) = 5(922 + 58912)6‘”/4,
go1(—1,-1,0[1) = —Igi1e™/4, go2(—1,-1,0[1) = lgrpe ™/ (D.89)

{1
(43) Fi 1 =
80(1,0,—11) = 53,  85°(1,0,—1]1) = s°e3™/2 33°(1,0, —1|1) = s /2,

911(1,0,—11) = il (912 — gi1sie 2”“)«3_”“/4, g12(1,0,—1|1) = lll'gnem/‘l
G21(1,0,=1|1) = ill' (g22 — go157°€”™)e ™%, Gaa(1,0,—1[1) = ill' gz1€™/*; (D.90)

11
(44) 5d, =
80(1,0,11) = &9,  8°(1,0,1]1) = s°e3™/2 §°(1,0,1]1) = s3%e™/2,
911(1,0,1]1) = —1l' gope®™/*, 912(1,0,1]1) = 1l (ga1 + gaasi®)e *™/4,

§21(1,0, 1|1) = _Zl/(gu . 88922)637“1/4,

g22(170, 1|1) = ill(_gll _ 880912 + 38(921 + 880922))673711#4; (Dgl)

(45) 7 =

so(-1 1!1) =50, 8°(—1,0,—11) = s3°e™/2,

57°(—=1,0,-1]1) = 80063”“/2
G11(—1,0,—1]1) = =1l (g22 — g215°*™ + 50 (912 — g1155°€”™) )e5m/4,
G12(—1,0, —1|1) = —IU'(go1 + s0g11) LI

g21(—1,0, —1|1) I (912 — g1155°% 27ra) —37ra/4’
g22(=1,0,=11) =~ gue®™ (D.92)

30(~1,0,11) = 53, 8°(—1,0,1]1) = s3%™/2 53°(—1,0,1|1) = s5°e>™/2,
g11(—1,0,1|1) = —il~l'g12e7fa/4’ 912(—=1,0,1]1) = —ill'(g11 + s§°g12)e ™4,
921(—=1,0,1]1) = —ill' ggge™ /4,

922(—1,0,1|1) = —ill' (go1 + 5P gao)e "4, (D.93)
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Finally, applying the isomorphism Cf;{f,}%m(sﬁ (resp., ﬁéf,}é%m(éﬁ), whose action on M is given
by equations (D.47)~(D.61) and (D.71)~(D.85) (resp., equations (D.62)-(D.70) and (D.86)-
(D.93)), to the corresponding (£1,e2, m(eg2)|¢) = (0,0,0[0) (resp., (£1,22,m(£2)[¢) = (0,0,0|0))
asymptotics (as 7 — +oo with b > 0) for u(7), f+(7), H(7), and o(7) derived in Section 4, one
arrives at the asymptotics as 7 — +oo (resp., 7 — +ioco) for u(r), fi(7), H(7), and o(7) stated

in Theorem 2.4 (resp., Theorem 2.8).%°

E Asymptotics of ¢(7) as 7 — oo and 7 — Fioco

In this appendix, asymptotics as 7 — +oo (resp., 7 — +ioo) for £eb > 0 of the function ¢(7)
(cf. Proposition 1.5) are presented in Theorem E.3 (resp., Theorem E.6). The results of this
appendix are seminal for an upcoming series of works on asymptotics of integrals of solutions to
the DP3E (1.1) and related functions.

Remark E.1. Since the function ¢(7) is defined mod(27), the reader should be cognizant of
the fact that the asymptotics for ¢(7) stated in Theorems E.3 and E.6 are defined mod(27);
this mod(2) arbitrariness, however, is not important, because the requisite functions are ()

and exp(ip(71)).

Remark E.2. If one is only interested in the asymptotics as 7 — 400 for e¢b > 0 of the
function ¢(7), then, in Theorem E.3, one sets (1, €2, m(e2)|¢) = (0,0,0]0) and uses the fact that
(cf. Appendix D.5, the identity map (D.47)) s3(0,0,0[0) = sJ, s5°(0,0,0|0) = s§°, (0,0, 0]0) =
5(130, and gij(0,0,0‘O) = Gij, i,j S {1,2}.

Theorem E.3. Let u(7r) be a solution of the DP3E (1.1) and ¢(7) be the general solution
of the ODE &'(7) = 2ar~! + b(u(7))~! for eb > 0 corresponding to the monodromy data
(a, 89, 3%, $5°, 911, G12, 921, 922) - Let

0, Eo = 0,

¢ e{0,1},
+eo, eg9 € {il}, { }

e1,e2 € {0,+1}, m(e2) = {

and eb = |eble!™2. For k = +1, let

g11(e1, €2, m(€2)|0)g12(e1, €2, m(E2) [€) g21 (21, €2, m(E2)[€) # 0, gaa(er, €2, m(e2)|¢) =0,
and, for k= —1, let

gi1(e1,€2,m(e2)|¢) = 0, g12(e1, €2, m(e2)|€) 921 (€1, €2, m(e2)[€) g22 (€1, €2, M(£2)|€) # O,

where explicit expressions for gij(e1,e2, m(e2)|l), i,5 € {1,2}, are given in Appendiz D, equa-
tions (D.47)~(D.61) and (D.71)~(D.85). Then, for sY(e1,e2, m(e2)|l) # je(~1)'*2ma 60

irk
(—1)52@(7) = 3e 23k (_1)52(817)1/37'2/3 + 2(_1)€2a1n LTM
T—400e' "1 (Ebefiﬂ"g?) /
L2 (k) =k — i) (20 (k)
m=2

*Tn Section 3 (resp., Section 2), p. 1174 (resp., p. 7) of [61] (resp., [57]), for item (9) in the definition of the
mapping F1,1, the formula for g21(1, 1) is missing: it reads g21(1,1) = ig12e™.

%Recall that (cf. Remark 2.1) s§(e1, €2, m(e2)|¢) = s§. For s)(e1, 2, m(e2)|€) = je(=11 T2 ™, the exponentially
small correction term in the asymptotics (E.1) is absent.
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[ '.
D I S | e

nIEN iy 42ig -+ li=!
[>n i1 +ig+-+i=n

n+l=m
. k(—l)sle lgkelz (2+\/>)1k} 1) 2a

V2m33/4 (ebe—ime2) 1/6,1/3
(s3(e1, 82, m(2)|6) — ie(—l)”%ra)e—%(x/@rik)(—l)s2 (eb)!/372/3

x (1) 7 7/3)

X
x (1+0(r713)), ke {£1}, (E.1)
where
—1)%27a)2 _
£ ey = | lon e mE0e T k=, (©2)
b In (gaz(e1, €2, m(e2)|€)e"V2m) ™2 1 | = 1,
- ~ a(l+i(—1)%2a)e'™ /3 -
Bk =0, Talk) = X é(sbil L O (E3)
_ i(_1)52aei2ﬂ'k/3 1— 2@2 )
=— —1)% E.4
valk) 36(cb)2/3 g i) (E4)
and
_ 3i i(—1)%2el78/3(1 + 2i(—1)%2a)
(0 50 (F) = Sy A1) 1) i)+ DR
1, i(_l)sgeiﬂk/S

+ Hmas(k) = T () <(m +3)(m + 5+ 2i(=1)%a)Vm43(k)

—_

+ ) 0+ Dy (B) (g (k) = 2(m + 2 = j)vmy25(k))

3

=0
_ i(—lgzzsf/i”k/?’ (m + 1)ﬁm+1(l<:)>, m € Zy, (E.5)
with
(k) = W ilk) =0, (E6)
o salk) = —2 (Pml+2<k> § o palk) + fP}f(k)mmlj(k)) C mez. (87
=0
and
i) = S Pi) =0, (E£8)

= (eb)'/3 (tj+2(/€) —2uj42(k) + z]: Uy (k)tj—mz(k)>> )

P* (k) = g (u (k) — i(=1)2e
2, (E.9)

N>j5>

where the expansion coefficients Uy, (k) and wy, (k) (resp., tm(k)), m € Zy, k € {£1}, are given
in equations (2.2)-(2.9) (resp., (2.13) and (2.14)).5

51Note: > 10 =0.
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Proof. The proof is presented for the case 7 — +oo with ¢b > 0, that is, (e1,e2, m(e2)|f) =
(0,0,0/0) (cf. Appendix D). Recall from Proposition 1.5 that, given any solution u(7) of the
DP3E (1.1), the function ¢(7) is defined as the general solution of the ODE ¢'(7) = 2a7~! +
b(u(7))~!. From [61, Propositions 1.2 and 4.1.1] (see also [58, Section 1]), it can be shown that,
for e € {£1},

¢(r) = —iln <ZZZ((:))> : (E.10)

the trans-series asymptotics (as 7 — +oo with ¢b > 0) for u(r) is given in Theorem 2.4,
whilst only the leading-order asymptotics for the function b(7) is derived in Lemma 4.1 (cf.
equations (4.3)—(4.5)); therefore, in order to proceed with the proof, trans-series asymptotics
for b(7) must be derived.

Commencing with the asymptotics (4.1) and (4.2), and repeating, verbatim, the asymptotic
analysis of Section 4, one shows that the asymptotic representation (as 7 — oo with €b > 0)
for the function b(7) reads

b(r) = bi(k)exp(=2By(r)), ke {1}, (E.11)

T—+00

where
by (k) := (b(k))?(b)"/? exp(2i(a — 1/2) In((eb)/el™/3 /2)), (E.12)
with b(k) given in equation (4.5), and

B(r) = iglnT — %(\/g—f- ik:) (5b)1/37'2/3 + i U (k) (771/3)m

m=1

> Um(k) _3V3 ik)(eb)1/3,2/3 _3V3 ik)(eb)1/3,2/3
" (ZOWJFO(G /3 (/3 +ik) (cb) ))e /3 (v/3+ik) (cb) . (E.13)

it remains to determine the expansion coefficients {7, (k)}>°_; and the first non-zero coeffi-
cient v, (k). Via the definitions (1.31), the isomonodromy deformations (1.36), the defini-
tions (1.38), (1.39), and (3.2), and equation (E.11), one shows that the function By(7) solves
the following inhomogeneous second-order nonlinear ODE

()~ 2540 - (4 (47 ) ) B
1 2d ulT d ulT
=5 <3drln< E/??) + 1ad—1 <71(+i?1) + 8€u(7)> , (E.14)
where (cf. equation (3.20)) u(7) = %5(55)2/36_12ﬂk/3 (7'1/3 + Uo,k(T))7 with v x(7) given in the

asymptotics (4.1). From the expression for u/(7) given in the proof of [61, Proposition 5.7] and
the definitions (1.31) and (3.2), it follows that

i In(u(r)) = u'(7) _ 1 + 92 <a(7’)d(7') — b(T)C(T)) : (E.15)

dr u(T) T u(T)

via equation (3.20), the asymptotics (4.1), (4.2), (4.99), and (4.100), and equation (E.15), one
shows that, for k € {1},

d ! o f(R)
- In(u(7)) et <1 + 2 (71/3)m+2>
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— Vo(k)r2/3e — 23 (\/3+ik) () /37 2/3(1 +0O(r 71/3)) (E.16)
where the expansion coefficients {1, (k)}>°_ are given in equations (E.6)—(E.9), and
k21/231/4eimh /3 oimk/4(ch)1/6 (50 — jo=Ta)
- a2+ \/g)fika :

Substituting the asymptotic expansions (2.1), (E.13), and (E.16) into the second-order nonlinear
ODE (E.14), and equating coefficients of terms of orders

O((7713)™ exp (=23 (V3 + ik) (eb) /372/3)),

—
-
~—

Vo

my1 = 2,3, and O((T_1/3)m2), N > mg > 2, one arrives at, after simplification, for k € {£1}, in
the indicated order:

(i) O(723exp(—23 (V3 +ik) (0) /372/3)) =

V3(V3 +ik)* (V3 — 2k) (eb) 3o (k) = 0; (E.17)

(ii) O(r ' exp(—23 (V3 + k) (cb) /3r%/3) ) =

V3(V3 +ik)* (V3 — 2k) (eb) vy (k)
(_12 + \/g(\/g‘f‘ ik)eiﬂk/?)) eiﬂk/4(6b)1/2 (38 _ iefﬂa)

- VGV : (E-18)

(i) O(r72/%) =
—4e™ 2R3 — (13 41)%; (E.19)

(iv) O(r4/3%) =
2ie™™H/3 — kv/3 4 §; (E.20)

(v) O(r7%3) =
b1 (k) = 0; (E-21)

(vi) O(r7%) =

iy - ey -

(vil) O(r~7/%) =
D3 (k) = 0; (E-23)

(vili) O(r8/3) =
die™TR/3 (eb) /34 (k) = ga(ee;r;/; (1 _32a2 +ia> ; (E.24)
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(ix) O(T_(m+9)/3), m e Ly, =

Aie 7R3 (b)Y (m, + 5) D ys (k)

(1+1i2a)

_66—127rk/3(€b)2/3um+5(k> _ ; (i1 (k) + ie—iwk/S(Eb)l/SM:I+3(k)

1 m—1 i
+ 3 (m+3)(m+5+i2a)Upm43(k) + Z I+ DVip1(k) (py— i (k)
7=0

2ia26i7rk/3
—2(m + 2 = j)Vmi2—;(K)) — W(m + 1)17m+1(k)> ; (E.25)

with the convention Zj_:lo* := 0. Solving equations (E.17) and (E.18) for vg(k) and vy (k),
k € {£1}, respectively, one shows that

717‘(‘]{/3 1ﬂk/4(2+\[)1k“(80 e*ﬂ'a)
V233 — k) (b)1/6

Equations (E.19) and (E.20) are identities. Solving equations (E.21)-(E.25) for the coeffi-
cients vy (k), va(k), v3(k), va(k), and Upos(k), k € {£1}, m € Z,, respectively, one arrives
at equations (E.3)—(E.9); therefore, the trans-series asymptotics for the function b(7) is now
established via equations (E.11)—(E.13); in particular, for k € {£1},

vo(k) =0 and vi(k) = —

Bi(7) H:mlg InT— 7(f+ ik) (eb) /3723 4 Z (r /3™
m=1
B ie—iﬁk/3ei7rk/4(2+\/§)ika( 7ra) 3\2/5(\/§+ik)(ab)1/37'2/3
\/%33/4(\/§ _ k) (5 )1/67-1/3
x (1+0(r71/3)). (E.26)

Via equation (3.20), the asymptotics (4.1) and (4.2), equation (E.10), the definition (E.12)
(cf. equation (4.5)), the asymptotics (E.26), and the expansion

00 u,
( 2 Ty m)

N S (g ()" ()2 - (g1 ()"
TH_Jroo Z Z Z TN 1(+1/3 ™ s (E'27>
m=2 n,IEN ij42ig+-+li=I igligh- - il (71/3)

[>n  ij+ig+-+i=n
n+l=m

where ¢ = (—=1)"~!(n — 1)! is a special value of the Stirling number of the first kind [32], one

arrives at, for k € {£1}, the (1, e2,m(e2)|¢) = (0,0,0|0) trans-series asymptotics (as 7 — +00
with b > 0) for the function ¢(7)

5 (0/0) 1/3.2/3 2emk/372/3
p(r) = iL{o) (k) — kn +—(f+1k)(5b) +2aln —a
o] [ u
DI ECED DD SR e
m=2 n,EN i142ig4--+li=I =1

[>n  ij4ig+-+i=n
n+l=m
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—im iT ika . _ra
< (Y™ ke imk/3eimk/4 (2 1 /3)" (s — ie )e—¥(\/§+ik)(ab)l/372/3
\/%33/4(55)1/67-1/3
x (L+0(r 1), (E.28)

where

.f(o‘o)(k) _ lll(gllem)i,2 k=+1,
©0 ln(gggem) , k=-1.

Finally, applying the (map) isomorphism (cf. Appendix D) 3’5{?}52,771(52)7 whose action on M is
given by equations (D.47)—(D.61) and (D.71)—(D.85), to the corresponding (e1,e2, m(e2)|f) =
(0,0,0]0) asymptotics (E.28) for ¢(7), one arrives at the trans-series asymptotics (E.1) (and
equations (E.2)—(E.9)) stated in the theorem. [ |

Remark E.4. Via equation (E.11), the definition (E.12) (cf. equation (4.5)), and the asymp-
totics (E.26), one arrives at, from the asymptotics (4.99), (4.100), and (4.101), respectively, the
trans-series asymptotics (as 7 — +oo with €b > 0) for the functions ¢(7), d(7), and a(7).

Remark E.5. It is instructive to illustrate the first few contributions of the multi-indexed double
summation in equation (E.27) to the asymptotics of ¢(7) for various values of the index m: (i) for
m =2 (that is, O(772/3)), (n,I) = (1,1) = i; = 1, thus, for k € {£1},5

ae—i2mk/3

>y (—l)n_l(n—l)‘l_[[(uj_l(k))ij:u (1) = &
o 0 3(ch)1/3

n,lEN i1 42ig+4---+li=I
[>n  i4ig+-+i=n
n+l=2

[ :

)DIED DENNSTCLCII § (o R
,IEN i1 42ig4-4 L=l i=1 kK

[Zn  i+ig+-+i=n

n+I1=3

(i) for m = 4 (that is, O(7=43)), (n,1) = (2,2) = (i1,i2) = (2,0), and (n,1) = (1,3) =
(il,iz,i;g) = (0,0, 1), thus, for k € {:l:l},

[ » :
_ (uj_l(k))lj (uo(k))2 a2€—ml~c/3
) > ()" L — )] 2= = ug(k) — — ;
M IEN iy +2igf--li = ]11 i 2 18(cb)?/3
[>n  i+ig+-+i=n
n+4l=4

(iv) for m = 5 (that is, 0(7_5/3)), (n,1) = (2,3) = (i1,i2,i3) = (1,1,0), and (n,l) = (1,4) =
(il,i2,13,i4) = (0,0,0, 1), thus, for k € {il},

[ .
] ()
1) — 1) %: k) — un(k k) = 0:
HE’[EN i1+2i2+§---+[i[:[( )" (n )E i uz(k) — uo(k)ur (k) = 0;
[Zn  i1+ig++i=n
n—+I=5

%2Recall that the expansion coefficients {u;(k)}52o, k € {£1}, are given in equations (2.2)—(2.9).
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and (v) for m = 6 (that is, O(772)), (n,I) = (3,3) = (i1,i2,13) = (3,0,0), (n,[) =
(ilai27i3>i4) € {(1707170)7(0727070)}a and (na [) = (175) = (i17i27i37i4ai5) = (07070707
for k € {£1},

[
Z Z (—1)"" 1 ,H UJ 1
=1

’I’L,[EN i1+2i2+---+[i[=[
[>n  i1+ig+-+ij=n
n+1=6

= ug(k) — uo(k)uz(k) + - ==

Theorem E.6. Let u(r) be a solution of the DP3E (1.1) and ¢(7) be the general solution
of the ODE &'(7) = 2ar~! + b(u(7))~! for eb > 0 corresponding to the monodromy data
(avsgu88078?7911791279217922)- Let

0, &y ef{£1}, .
gref£1), &He{0,+1), m@E)={" 2 {1} /e {0,1},
+é1, E2=0,
and eb = |eb|e!™2. For k = +1, let
g1 (€1, 82,0 (62)\5)912(231,82, m(éz) @921 (1,2, (62)15) 0, G22(E1, 82,10 (52)15) =0,

and, for k= —1, let
g11(€1,80,m(22)|0) =0, 1o (é1, 80, 110(82)|0) Go1 (21, €2, 1(€2)|€) Goa (€1, 22, (22)] ) # 0O

where explicit expressions for §;j (61,62, (52)|€), i j € {1,2}, are gwen in Appendiz D, equa-
tions (D.62)~(D.70) and (D.86)~(D.93). Then, for 83(é1,&a,m(82)]€) # iel-1)2ma 63

i . X ik 2/3
(_1)1+€2¢>(7_) _ 36‘2§’“(_1)52(Eb)1/37'3/3+2(—1)1+52a1n 676
T—4o00eiTE1/2 (Ebeflﬂ'@) 1/
+iE 2O (k) — k=1 (20 (k)
m=2
[ (& )i
D Y S I o
n,EN i142ig4---+lij=I =1
[Zn  ip+ig+-+i=n
n+l=m
_ink J ik(—1)'te2q
x (r M - ke et (24 v3)™
’ V2m33/4 (ebeﬂ“f?) 1/67'3/3
X (30 (21, 2, 1m(29)[0) — el D2 m)e 243 (V3+ik)(~1)%2 (eb) /372
x (1+0(r713), ke {il}, (E.29)

where T, is defined by equation (2.20),

A A A oA €21a) 2
£(m(52)\£)(k) _ {1H(911(51a€27 i(&2)[0)e(-1"2 ) k=41, (E.30)
|

12 In (a2 (&1, €2, m(éq)[f)e-D F2ma) 2 g — 1

%3Recall that (cf. Remark 2.1) 83(é1, s, m(é2)|0) = s3. For 83(é1,a, m(é2)|0) = ie(_l)ézm, the exponentially
small correction term in the asymptotics (E.29) is absent.
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a(l + i(_1)1+€2a)eiﬂk/3

(k) =0,  Da(k) T Ak =0 (£.31)
i(— ézaeiQﬂ'k/3 _ a2 .
Pa(k) = 316>(€b>2/3 (1 > +i(—1)1+%>, (£.32)

and

(m + 5)Um4s5(k)
i(_l)égeiﬂ'k/3(1 + 21(_1)1+é2a>
A % k
12(56)1/3 :U’erl( )

= e 1) () P () +

i(_l)ézeiﬂk/ii

+ ia;;ﬁg(k) @ ((m +3)(m +5 + 2i(=1) 2 a) D (k)

m—1

+ QG+ VP (B) (i (k) = 2(m + 2 = j)Vmq2—5(k))
0

j:
i(—1 522a2ei7rk/3 N
— ( 3)(517)1/3 (m + 1)I/m+1(k)>, m € Z+, (E33)
with
» 2aei7rk/3 ”
mi
fir, +2(k) = =2 | Pr, 4o(K) + W05, 12(k) + ZP;(k])t{)mlfj(k) ) my € Ly, (E.35)
=0
and
. 2aei7rk/3 =,
=, 3. i2rk . . 4 R .
Pi(k) =3 (ua(k) —i(=1)%e"5 (eb)'/? (tj+2(k) — 20 9(k) + umz(k)tj—mz(k')>> :
mo=0
N3j>2, (E.37)

where the expansion coefficients ty, (k) and wp, (k) (resp., € (k)), m € Z4, k € {£1}, are given
in equations (2.22)—(2.27) (resp., (2.30) and (2.31)).

Proof. Applying the (map) isomorphism (cf. Appendix D) @;f}@ (E)? whose action on M is
given by equations (D.62)—(D.70) and (D.86)—(D.93), to the (¢1,e2, m(e2)|¢) = (0,0,0/0) asymp-
totics (E.28) (as 7 — 400 with eb > 0) for ¢(7), one arrives at the trans-series asymptotics (E.29)

(and equations (E.30)—(E.37)) stated in the theorem. [

F Literature survey of the DP3E

The interested reader will find representative samples of the ubiquitous manifestations of the
DP3E (1.1) in this appendix.

(i) It was shown in [75] that a variant of the DP3E (1.1) appears in the characterisation of the
effect of the small dispersion on the self-focusing of solutions of the fundamental equations
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of nonlinear optics in the one-dimensional case, where the main order of the influence of this
effect is described via a universal special monodromic solution of the nonlinear Schrédinger
equation (NLSE); in particular, the author studies the asymptotics of a function that can
be identified as a solution (the so-called ‘Suleimanov solution’) of a slightly modified, yet
equivalent, version of the DP3E (1.1) for the parameter values a =i/2 and b= 64k~3,
where k& > 0 is a physical variable.

(ii) In [56], an extensive number-theoretic and asymptotic analysis of the universal special
monodromic solution considered in [75] is presented: the author studies a particular mero-
morphic solution of the DP3E (1.1) that vanishes at the origin; more specifically, it is
proved that, for —2ia € Z, the aforementioned solution exists and is unique, and, for the
case a — 1/2 € Z, this solution exists and is unique provided that u(7) = —u(—7). The
bulk of the analysis presented in [56] focuses on the study of the Taylor-series expansion
coefficients of the solution to the DP3E (1.1) that is holomorphic at 7 = 0; in particular,
upon invoking the ‘normalisation condition’ b = a and taking ¢ = +1, it is shown that, for
general values of the parameter a, these coefficients are rational functions of a? that possess
remarkable number-theoretic properties: en route, novel notions such as super-generating
functions and quasi-periodic fences are introduced. The author also studies the connection
problem for the “Suleimanov solution” [60] of the DP3E (1.1).

(iii) Unlike the physical optics context adopted in [75], the authors of [8] provide a colossal
Riemann—Hilbert problem (RHP) asymptotic analysis of the solution of the focusing NLSE,
107V +20% U+ |¥|?¥ = 0, by considering the rogue wave solution ¥ (X, T) of infinite order,
that is, a scaling limit of a sequence of particular solutions of the focusing NLSE modelling
so-called rogue waves of ever-increasing amplitude, and show that, in the regime of large
variables R? 3 (X, T) when |X| — 400 in such a way that T|X|~3/2 — 54~1/2 = O(IX|~1/3),
the rogue wave of infinite order W(X,T) can be expressed explicitly in terms of a func-
tion V(y) extracted from the solution of the Jimbo-Miwa Painlevé II (PII) RHP for pa-
rameters p = In(2)/27 and 7 = 1;%¢ in particular, [8, Corollary 6] presents the leading
term of the T — 400 asymptotics of the rogue wave of infinite order ¥(0,T) (see also
[7, Theorem 2 and Section 4]),5° which, in the context of the DP3E (1.1), coincides, up
to a scalar, 7-independent factor, with exp(ip(7)), T = 72, where, given the solution,
denoted by u(7), say, of the DP3E (1.1) studied in [56] for the monodromy data corre-
sponding to a = i/2 (and a suitable choice for the parameter b), ¢(7) is the general solution
of the ODE ¢'(7) = 2a7~" + b(a(r)) L.

(iv) The authors of [13] present an expansive study of algebraic solutions (rational functions
of 71/3) of the DP3E (1.1) for the parameter values ¢ = —1, b =i, and a = —in, n € Z. By

54Not to be confused with the independent variable 7 that appears in the DP3E (1.1) and throughout this work.

5For the rogue wave of infinite order [8], one needs to consider asymptotics of tronquée/tritronquée solutions
of the inhomogeneous PII equation,

du(x; @) 3
——— = 2(u(z; zu(z; ) — «
LY — 2(u(w; )’ + zulzia) - a,
for the special complex value of a = % + ilr;f) (asymptotics for tronquée/tritronquée solutions of the PII equation

with @ = 0 are given in the monograph [29]), and to know that the increasing tritronquée solution, denoted
upp(z; @) in [64], is void of poles on R; furthermore, for the function V(y) to have sense as a meaningful asymptotic
representation of the rogue wave of infinite order W(X, T), it is, additionally, necessary that upp(x; ) be a global
solution (analytic V « € R) of the PII equation for a = 3 —&—i%. In [64], the author provides a complete
RHP asymptotic analysis of the global nature of tritronquée solutions of the PII equation for various complex

values of «, including the particular value o = % + ilr;f), and relates the function V(y) to the PII equation,

subsequently identifying the particular solution that is requisite in order to construct V(y) as the increasing
tritronquée solution upp(x; o) for the special parameter value o = % + i%; moreover, the value of the total,
regularised integral over R for the increasing tritronquée solution is evaluated.
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considering the Lax-pair equations associated with the DP3E (1.1), the authors construct
their simultaneous solutions, called the ‘seed’ lax-pair solutions, corresponding to the sim-
plest algebraic solution of the DP3E (1.1), u(1) := uo(7r) = %7’1/3, for e = -1, b =i,
and a = 0 in terms of Airy functions, and then formulate, as Riemann—Hilbert Prob-
lem 1 (RHP1), the inverse monodromy problem for the rational solution u(7) := u,(7)
for a = —in, n € Z\ {0} (the case a = —in for n = 0 is solved via the ‘seed’” Lax-pair solu-
tions); in particular, the authors show that, if RHP1 is solvable for 7 > 0 and n € Z, then
the function wu, (7) defined by [13, equation (101)] is the unique solution of the DP3E (1.1)
with e = —1, b =i, and a = —in, n € Z, that is a rational function of 7/3 (see [13, The-
orem 1]). The authors then use the RHP1 representation for the algebraic solution wu, ()
of the DP3E (1.1) to consider the large-positive-n asymptotic behaviour of the solution
(as a consequence of an inherent symmetry of the DP3E (1.1) that is discussed at the
beginning of [13, Section 4.1], it is sufficient to consider large n € N); in particular, after
a rescaling argument for both the independent variable and the spectral parameter, the
authors present a rigorous asymptotic analysis of RHP1 and derive N 3 n — oo (for suf-
ficiently large rescaled 7 > 0) asymptotics of the function wu,(7) (see, in particular, [13,
Theorems 2 and 3]). (In this context, see also [14].)

Introducing the substitution eTu = (/3)2%y, ebr? = 2(x/3)3, the author of [72] transforms
the DP3E (1.1) into the second-order nonlinear ODE
3a 1

' (2)*  y(x) 2, 1
@) 2@+ —+ a)’

y'(z) =

where the prime denotes differentiation with respect to x, and then, via additional aux-
iliary changes of variables, shows that, with = te'?, the latter ODE for y governs
the isomonodromy deformation of a 2 x 2 linear system O\W(A,t) = LB(X¢)¥(A 1),
where My (C) > B(A,t) is given in equation (1.4), or, equivalently, equation (3.2), of [72].
By applying the isomonodromy deformation method [45], the author demonstrates the
Boutroux ansatz (near the point at infinity) by deriving an elliptic asymptotic representa-
tion of the general solution y(z) in terms of the Weierstrass p-function as x = te'® — oo
in cheese-like strip domains along generic directions; see, in particular, the leading-order
asymptotics of y(z) stated in [72, Theorems 2.1-2.3].

In [82], the authors study the eigenvalue correlation kernel, denoted by K,(z,y,t), for
the singularly perturbed Laguerre unitary ensemble (pLUE)%® on the space 3 of n x n
positive-definite Hermitian matrices M = (M)};_; defined by the probability measure
Z Y (det M)¥exp(—tr Vi(M))dM, n € N, a > 0, t > 0, where

Zn ::/ (det M)¥e V(M) ps
iy

is the normalisation constant, dM := [];; dM;; H;L:_ll 15—, 1 dRe(Mjy,)d Im(Mjy,), and
Vi(z) :== x + t/x, v € (0,400). By considering, for example, a variety of double-scaling
limits such as n — oo and (0,d] >t — 0T, d > 0, such that s := 2nt belongs to compact
subsets of (0, +00), or n — oo and ¢t — 0T such that s — 0T, or n — oo and (0,d] > ¢ such
that s — 400, the authors derive the corresponding limiting behaviours of the eigenvalue
correlation kernel by studying the large-n asymptotics of the orthogonal polynomials asso-
ciated with the singularly perturbed Laguerre weight w(z;t, o) = 2%~ "#(*) and, en route,
demonstrate that some of the limiting kernels involve certain functions related to a special
solution of (Pyy)p, (1.2); moreover, in the follow-up work [83] on the pLUE, the authors

5The pLUE and its relation to the Painlevé ITI (PIII) equation was introduced and studied in [16].
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(vii)

derive the large-n asymptotic formula (uniformly valid for (0,d] > ¢, d > 0 and fixed) for
the Hankel determinant

n—1

+oo
Dy [w;t] := det (/ x]+kw(x;t,oz)dx)
0

7,k=0

associated with the singularly perturbed Laguerre weight w(z;t, ), and show that the
asymptotic representation for D, [w;t] involves a function related to a particular solution
of (Pyr)p, (1.2). In the study of the Hankel determinant

n—1

1
Dult,a, B) = det ( | eutsta 5>dg)
0

3,k=0

generated by the Pollaczek-Jacobi-type weight w(z;t, o, 8) = (1 — x)Pe~t/* z € [0,1],
t >0, a,p >0, which is a fundamental object in unitary random matrix theory, under a
double-scaling limit where n, the dimension of the Hankel matrix, tends to co and ¢t — 0T
in such a way that s := 2n?t remains bounded, the authors of [15] show that the double-
scaled Hankel determinant has an integral representation in terms of particular asymptotic
solutions of a scaled version of the DP3E (1.1) (or, equivalently, (Pyy)p, (1.2)). In [4],
the authors study singularly perturbed unitary invariant random matrix ensembles on J
defined by the probability measure

C: (det M) exp(—ntr Vi,(M))dM, nkeN, a>-—1,

where C), := f}f: (det M)*e "t Ve(M)q M, and the (perturbed) potential V() has a pole
of order k at the origin, Vi(z) := V(z) + (t/x)*, t > 0, with the regular part V of the
potential being real analytic on [0,400) and satisfying certain constraints; in particular,
for the pLUE, the authors obtain, in various double-scaling limits when the size of the
matrix n — oo (at an appropriately adjusted rate) and the “strength” of the perturba-
tion t — 0, asymptotics of the associated eigenvalue correlation kernel and partition func-
tion, which are characterised in terms of special, pole-free solutions of a hierarchy (indexed
by k) of higher-order analogues of the PIII equation: the first (k = 1) member of this PIII
hierarchy, denoted by ¢1(s), s > 0, solves a rescaled version of the DP3E (1.1). (Analo-
gous results for the singularly perturbed Gaussian unitary ensemble (pGUE) on the set H,,
of n x n Hermitian matrices are also obtained in [4].) For the pLUE with perturbed po-
tential Vi (x) := V(z)+(t/x)*, k € N, x € (0, +00), t > 0, studied in [4], the authors of [19]
consider a related Fredholm determinant of an integral operator, denoted by ICpiyr, acting
on the space L?((0,+00)), whose kernel is constructed from a certain My(C)-valued func-
tion associated with a hierarchy (indexed by k) of higher-order analogues of the PIII equa-
tion; more precisely, for the Fredholm determinant F'(s; \) := Indet(I—Kpip), s, A > 0, the
authors of [19] obtain s — +o00 asymptotics of F'(s; A) characterised in terms of an explicit
integral representation of a special, pole-free solution for the first (k = 1) member of the
corresponding PIIT hierarchy: this solution is denoted by ¢1()\), and it solves a rescaled
version of the DP3E (1.1).

In [77], the authors compute small-t asymptotics of a class of solutions to the two-
dimensional cylindrical Toda equations (2DCTE),%7

qg(t) + t_qug(t) — 4(eqk(t)—qk_1(t) _ er+1(t)_Qk(t))7

57See, also, its generalisations [35, 36, 37, 38].



130

A. Vartanian

(viii)

k € Z, satisfying the periodicity conditions gxy,(t) = ¢x(t), where the integer n is arbitrary
but fixed. Solutions that are valid for all ¢ > 0 have the representation g (t) = logdet(I —
ACk) — logdet(I — AMKCg—1), where K, is the integral operator on Ry with kernel

—t((1—w)ut+(1—w Hu"1)

E €
Z W —wu + v ’
fwn =T {1}

for some coefficients c,,, and X is a free parameter. For n = 3 and the imposition of an
additional constraint, which implies ¢;(¢) = 0 and g¢2(t) = —g3(t), the 2DCTE gives rise
to the radial Bullough-Dodd equation (for g3(t)), g4 (t) + 1t~ q4(t) = 4(e2:) — e=as(t)),
which, via the dependent-variable transformation w(t) = e~%®) reduces to the nonlinear
ODE

by making one more change of variables, namely, t = \%/3 and w(t) = A\~/3W()), this
ODE can, in turn, be transformed to the PIII equation with parameter values (16/9,0, 0,

s WN))E W) 16(W(N)2 16 1
WO%'WW__A 9T T oWy

where the prime denotes differentiation with respect to A, which can be identified as
a special reduction of the DP3E (1.1) for a = 0. The small-t asymptotics of gx(t) are
derived by computing the asymptotics det(I — ACy), 7+ br(t/n)%, n = 2,3, where explicit
expressions for the coefficients aj and by are presented in [77].

The DP3E (1.1) also plays a prominent role in the description of surfaces with constant
negative Gaussian curvature (K-surfaces) and two straight asymptotic lines (Amsler sur-
faces) [9]. A non-degenerate surface in R? is called an affine sphere if all affine normal
directions intersect at a point: this class of surfaces is described by an integrable equation
first derived by Tzitzéica. As discussed in [9], for affine spheres characterised by the prop-
erty that they possess two intersecting straight affine lines, the corresponding Tzitzéica
equation reduces to the PIII equation with parameter values (1,0,0, —1),

where the prime denotes differentiation with respect to t, with y(t) = t'/3*H(r) and t =
33%7"3/ 4 and where H(r), with r := xy, is a Lorentz invariant solution of the Tzitzéica
equation that satisfies the second-order nonlinear ODE

(H0)P H0) L ((e L
= 0 (2 - ).

where the prime denotes differentiation with respect to r; in fact, the ODE for the func-
tion y(t) can be identified as a special reduction of the DP3E (1.1) for a = 0: letting
7 = 273/261CmANT/ 4 and u(r) = —273/2e71Cm DT/ Ay () 'm = 0,1, 2,3, and choosing the
(external) parameter values ¢ = b = +1 and a = 0, it follows that the DP3E (1.1) reduces
to the ODE for y(t). The algebroid theory for solutions of the ODE for H(r) is presented
in [59].

H'(r)=
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(ix)

Let X be a six-dimensional Calabi-Yau (CY) manifold (a complex Kéhler three-fold with
covariantly constant holomorphic three-form 2). The Strominger—Yau—Zaslow (SYZ) con-
jecture (see [24] for details) states that, near the large complex structure limit, both X
and its mirror should be the fibrations over the moduli space of special Lagrangian tori
(submanifolds admitting a unitary flat connection). As an examination of the SYZ con-
jecture, Loftin—Yau—Zaslow (LYZ) set out to prove the existence of the metric of Hessian
form gp = %dxj ® dz*, where 27, j = 1,2,3, are local coordinates on a real three—‘
dimensional manifold, and ¢ (a Ké&hler potential) is homogeneous of degree two in 7
and satisfies the real Monge—Ampére equation det(azza‘z;k) =1: LYZ showed that the
construction of the metric is tantamount to searching for solutions of the definite affine
sphere equation (DASE) 1.z + 1e¥ + |U[?e72¥ = 0, Uz = 0, where 1) and U are real-
and complex-valued functions, respectively, on an open subset of C. For U = 272, LYZ
proved the existence of the radially symmetric solution 1 of the DASE with a prescribed
behaviour near the singularity z = 0, and established the existence of the global solu-
tion to the coordinate-independent version of the DASE on S? with three points excised.
In [24], the authors show that the DASE, and a closely related equation called the Tzitzéica
equation, arise as reductions of anti-self-dual Yang-Mills (ASDYM) system by two transla-
tions; moreover, they show that the ODE characterising its radial solutions give rise to an
isomonodromy problem described by the PIII equation for special values of its parameters.
In particular (see [24, Proposition 1.3]), the authors show that, for U = 272, solutions of
the DASE that are invariant under the group of rotations (rotational symmetry) z — ez,
¢ € R, are of the form ¥(z,%) = In(H(s)) — 31n(s), with s := |2|"/2, where H(s) solves the
PIII equation with parameter values (—8,0,0, —16),
_(3U(s))?  H(s)  8(3(s))? 16

) =50 s s H(s)’

where the prime denotes differentiation with respect to s, which can be identified as a spe-
cial reduction of the DP3E (1.1) for a = 0. The authors of [24] demonstrate that the
existence theorem for Hessian metrics with prescribed monodromy reduces to the study of
the PIII equation with parameters (—8,0,0, —16), that is, a class of semi-flat CY metrics
is obtained in terms of real solutions of the DP3E (1.1) for a = 0 (see also [17, 18, 22, 23]).

In [39], the author introduces affine spheres as immersions of a manifold M as a hyper-
surface in R™ with certain properties and defines the affine metric h and the cubic form C
on M. By identifying, for 3-dimensional cones and, correspondingly, affine 2-spheres,
the manifold M with a non-compact, simply-connected domain in C, one can introduce
complex isothermal co-ordinates z on M, in terms of which the affine metric A may equiva-
lently be described by a real conformal factor u(z) and the cubic form C' by a holomorphic
function U(z) on M, the relations being h = e¢%|dz|? and C' = 2Re(U(z))dz3: the compat-
ibility condition of the pair (u,U) is referred to as Wang’s equation, e* = 1 Au+2|U|%e~2,
where Au = gz, + uyy = 4u.z is the Laplacian of u, 9, := $(89,—10,), and 0z := 3(9,+19)).
By classifying pairs (¢,U), where 9 is a vector field on M generating a one-parameter
group of conformal automorphisms on M which multiply U by unimodular complex con-
stants, the author finds, for every pair (¢, U), a unique solution u of Wang’s equation
such that the corresponding affine metric A is complete on M and v is a Killing vector
field for h: this latter property permits Wang’s equation to be reduced to a second-order
nonlinear ODE that is equivalent to the DP3E (1.1), a detailed qualitative study for which
is presented in [39]. The author presents a complete classification of self-associated cones
(one calls a cone self-associated if it is linearly isomorphic to all its associated cones, with
two cones said to be associated with each other if the Blaschke metrics on the corre-
sponding affine spheres are related by an orientation-preserving isometry) and computes
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isothermal parametrisations of the corresponding affine spheres, the solution(s) of which
can be expressed in terms of degenerate PIII transcendents (solutions of the DP3E (1.1)).

Whilst not directly relevant to the DP3E (1.1), the following facts are worth mentioning:
(1) elliptic asymptotic representations in terms of the Jacobi sn-function in cheese-like strip
domains along generic directions are obtained for the general solution of the ‘complete’ PIII
equation in [73]; (2) a detailed study of the PIIT monodromy maps under the Dg — Dg confluence
has recently been presented in [6]; (3) parametric Stokes phenomena for the Dg and D7 cases
of the PIII equation are studied in [46]; (4) application of the PIII equation to the study
of transformation phenomena for parametric Painlevé equations for the Dg and D7 cases is
considered in [47], whilst the Dg case is studied in [76, 79]; (5) the monograph [34] studies
the relation of the PIII equation of type (Pir)p, to isomonodromic families of vector bundles
on P! with meromorphic connections; (6) in [31], the 7-function associated with the degenerate
PIII equation of type Dg is shown to admit a Fredholm determinant representation in terms
of a generalised Bessel kernel; and (7) by using the universal example of the Gross—Witten—
Wadia (GWW) third-order phase transition in the unitary matrix model, concomitant with
the explicit Tracy—Widom mapping of the GWW partition function to a solution of a PIII
equation, the transmutation (change in the resurgent asymptotic properties) of a trans-series in
two parameters (a coupling g2 and a gauge index N) at all coupling and all finite N is studied
in [1] (see also [25]).

Acknowledgements

The author is grateful to A.V. Kitaev for perspicacious comments and criticisms related to
preliminary results of this work, and to the St. Petersburg Branch of the Steklov Mathematical
Institute (POMI) for hospitality. The author is grateful to the referees for a cornucopia of
constructive recommendations which were instrumental in improving the content of the paper.
The author also wishes to honour the memories of L.D. Faddeev and P.P. Kulish.

References

[1] Ahmed A., Dunne G.V., Transmutation of a trans-series: the Gross—Witten—Wadia phase transition, J. High
Energy Phys. 2017 (2017), no. 11, 054, 51 pages, arXiv:1710.01812.

[2] Andreev F.V., Kitaev A.V., Exponentially small corrections to divergent asymptotic expansions of solutions
of the fifth Painlevé equation, Math. Res. Lett. 4 (1997), 741-759.

niceto 1., Bagar G., Schiappa R., A primer on resurgent transseries and their asymptotics, ys. Rep.
3] Ani 1., B G., Schi R., A pri i d thei ics, Phys. Rep. 809
(2019), 1-135, arXiv:1802.10441.

[4] Atkin M.R., Claeys T., Mezzadri F., Random matrix ensembles with singularities and a hierarchy of
Painlevé 111 equations, Int. Math. Res. Not. 2016 (2016), 2320-2375, arXiv:1501.04475.

[6] Baldino S., Schiappa R., Schwick M., Vega R., Resurgent stokes data for Painlevé equations
and two-dimensional quantum (super) gravity, Commun. Number Theory Phys. 17 (2023), 385-552,
arXiv:2203.13726.

[6] Barhoumi A., Lisovyy O., Miller P.D., Prokhorov A., Painlevé-III monodromy maps under the D¢ — Ds
confluence and applications to the large-parameter asymptotics of rational solutions, SIGMA 20 (2024),
019, 77 pages, arXiv:2307.11217.

[7] Bilman D., Buckingham R., Large-order asymptotics for multiple-pole solitons of the focusing nonlinear
Schrodinger equation, J. Nonlinear Sci. 29 (2019), 2185-2229, arXiv:1807.09058.

[8] Bilman D., Ling L., Miller P.D., Extreme superposition: rogue waves of infinite order and the Painlevé-I11
hierarchy, Duke Math. J. 169 (2020), 671-760, arXiv:1806.00545.

[9] Bobenko A.I, Eitner U., Painlevé equations in the differential geometry of surfaces, Lecture Notes in Math.,
Vol. 1753, Springer, Berlin, 2000.


https://doi.org/10.1007/jhep11(2017)054
https://doi.org/10.1007/jhep11(2017)054
http://arxiv.org/abs/1710.01812
https://doi.org/10.4310/MRL.1997.v4.n5.a12
https://doi.org/10.1016/j.physrep.2019.02.003
http://arxiv.org/abs/1802.10441
https://doi.org/10.1093/imrn/rnv195
http://arxiv.org/abs/1501.04475
https://doi.org/10.4310/cntp.2023.v17.n2.a5
http://arxiv.org/abs/2203.13726
https://doi.org/10.3842/SIGMA.2024.019
http://arxiv.org/abs/2307.11217
https://doi.org/10.1007/s00332-019-09542-7
http://arxiv.org/abs/1807.09058
https://doi.org/10.1215/00127094-2019-0066
http://arxiv.org/abs/1806.00545
https://doi.org/10.1007/b76883

Trans-Series Asymptotics of Solutions to the Degenerate Painlevé 111 Equation 133

(10]
(11]

(12]
(13]

(14]

Bolibruch A., Its A., Kapaev A.,; On the Riemann—-Hilbert—Birkhoff inverse monodromy problem and the
Painlevé equations, St. Petersburg Math. J. 16 (2005), 105-142.

Bothner T., Miller P.D.; Rational solutions of the Painlevé-III equation: large parameter asymptotics,
Constr. Approz. 51 (2020), 123-224, arXiv:1808.01421.

Brzezinski J., Galois theory through exercises, Springer Undergrad. Math. Ser., Springer, Cham, 2018.

Buckingham R.J., Miller P.D., On the algebraic solutions of the Painlevé-III (D7) equation, Phys. D 441
(2022), 133493, 22 pages, arXiv:2202.04217.

Buckingham R.J., Miller P.D., Differential equations for approximate solutions of Painlevé equations: ap-
plication to the algebraic solutions of the Painlevé-III (D7) equation, SIGMA 20 (2024), 008, 27 pages,
arXiv:2308.16051.

Chen M., Chen Y., Fan E., Perturbed Hankel determinant, correlation functions and Painlevé equations,
J. Math. Phys. 57 (2016), 023501, 31 pages, arXiv:1507.05261.

Chen Y., Its A., Painlevé IIT and a singular linear statistics in Hermitian random matrix ensembles. I,
J. Approzx. Theory 162 (2010), 270-297, arXiv:0808.3590.

Contatto F., Integrable Abelian vortex-like solitons, Phys. Lett. B 768 (2017), 23-29, arXiv:1612.01879.

Contatto F., Dorigoni D., Instanton solutions from Abelian sinh-Gordon and Tzitzeica vortices, J. Geom.
Phys. 98 (2015), 429-445, arXiv:1412.8312.

Dai D., Xu S.X., Zhang L., Gap probability at the hard edge for random matrix ensembles with pole
singularities in the potential, STAM J. Math. Anal. 50 (2018), 2233-2279, arXiv:1710.08132.

Deift P.A., Zhou X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337.

Delabaere E., Divergent series, summability and resurgence III. Resurgent methods and the first Painlevé
equation, Lecture Notes in Math., Vol. 2155, Springer, Cham, 2016.

Dunajski M., Abelian vortices from sinh-Gordon and Tzitzeica equations, Phys. Lett. B 710 (2012), 236-239,
arXiv:1201.0105.

Dunajski M., Gavrea N., Elizabethan vortices, Nonlinearity 36 (2023), 4169-4186, arXiv:2301.06191.

Dunajski M., Plansangkate P., Strominger—Yau—Zaslow geometry, affine spheres and Painlevé III, Comm.
Math. Phys. 290 (2009), 997-1024, arXiv:0809.3015.

Dunne G.V., Resurgence, Painlevé equations and conformal blocks, J. Phys. A 52 (2019), 463001, 31 pages,
arXiv:1901.02076.

Edgar G.A., Transseries for beginners, Real Anal. Ezchange 35 (2010), 253-309, arXiv:0801.4877.

Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. II,
Robert E. Krieger Publishing, Melbourne, Fla., 1981.

Fedoryuk M.V., Asymptotic analysis. Linear ordinary differential equations, Springer, Berlin, 1993.

Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Y., Painlevé transcendents: The Riemann—Hilbert
approach, Math. Surveys Monogr., Vol. 128, American Mathematical Society, Providence, RI, 2006.

Garoufalidis S., Its A., Kapaev A., Marinio M., Asymptotics of the instantons of Painlevé I, Int. Math. Res.
Not. 2012 (2012), 561-606, arXiv:1002.3634.

Gavrylenko P., Lisovyy O., Pure SU(2) gauge theory partition function and generalized Bessel kernel, in
String-Math 2016, Proc. Sympos. Pure Math., Vol. 98, American Mathematical Society, Providence, RI,
2018, 181-205, arXiv:1705.01869.

Gradshteyn 1.S., Ryzhik I.M., Table of integrals, series, and products, 5th ed., Academic Press, Boston,
MA, 1994.

Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Stud.
Math., Vol. 28, Walter de Gruyter & Co., Berlin, 2002.

Guest M.A., Hertling C., Painlevé III: a case study in the geometry of meromorphic connections, Lecture
Notes in Math., Vol. 2198, Springer, Cham, 2017.

Guest M.A., Tts A.R., Lin C.S., Isomonodromy aspects of the tt* equations of Cecotti and Vafa I. Stokes
data, Int. Math. Res. Not. 2015 (2015), 11745-11784, arXiv:1209.2045.

Guest M.A., Tts A.R., Lin C.S., Isomonodromy aspects of the tt* equations of Cecotti and Vafa II: Riemann—
Hilbert problem, Comm. Math. Phys. 336 (2015), 337-380, arXiv:1312.4825.


https://doi.org/10.1090/S1061-0022-07-00967-3
https://doi.org/10.1007/s00365-019-09463-4
http://arxiv.org/abs/1808.01421
https://doi.org/10.1007/978-3-319-72326-6
https://doi.org/10.1016/j.physd.2022.133493
http://arxiv.org/abs/2202.04217
https://doi.org/10.3842/SIGMA.2024.008
http://arxiv.org/abs/2308.16051
https://doi.org/10.1063/1.4939276
http://arxiv.org/abs/1507.05261
https://doi.org/10.1016/j.jat.2009.05.005
http://arxiv.org/abs/0808.3590
https://doi.org/10.1016/j.physletb.2017.01.078
http://arxiv.org/abs/1612.01879
https://doi.org/10.1016/j.geomphys.2015.08.021
https://doi.org/10.1016/j.geomphys.2015.08.021
http://arxiv.org/abs/1412.8312
https://doi.org/10.1137/17M1153704
http://arxiv.org/abs/1710.08132
https://doi.org/10.1002/cpa.3160480304
https://doi.org/10.1007/978-3-319-29000-3
https://doi.org/10.1016/j.physletb.2012.02.078
http://arxiv.org/abs/1201.0105
https://doi.org/10.1088/1361-6544/acddc5
http://arxiv.org/abs/2301.06191
https://doi.org/10.1007/s00220-009-0861-x
https://doi.org/10.1007/s00220-009-0861-x
http://arxiv.org/abs/0809.3015
https://doi.org/10.1088/1751-8121/ab3142
http://arxiv.org/abs/1901.02076
http://arxiv.org/abs/0801.4877
https://doi.org/10.1007/978-3-642-58016-1
https://doi.org/10.1090/surv/128
https://doi.org/10.1093/imrn/rnr029
https://doi.org/10.1093/imrn/rnr029
http://arxiv.org/abs/1002.3634
https://doi.org/10.1090/pspum/098/07
http://arxiv.org/abs/1705.01869
https://doi.org/10.1515/9783110198096
https://doi.org/10.1007/978-3-319-66526-9
https://doi.org/10.1093/imrn/rnu250
http://arxiv.org/abs/1209.2045
https://doi.org/10.1007/s00220-014-2280-x
http://arxiv.org/abs/1312.4825

134 A. Vartanian

[37] Guest M.A., Its A.R., Lin C.S., Isomonodromy aspects of the tt* equations of Cecotti and Vafa III: Iwasawa
factorization and asymptotics, Comm. Math. Phys. 374 (2020), 923-973, arXiv:1707.00259.

[38] Guest M.A., Its A.R., Lin C.S., The tt*-Toda equations of A,, type, arXiv:2302.04597.

[39] Hildebrand R., Self-associated three-dimensional cones, Beitr. Algebra Geom. 63 (2022), 867-906,
arXiv:1806.06588.

[40] Hille E., Ordinary differential equations in the complex domain, Dover Publications, Mineola, NY, 1997.

[41] Its A.R., “Isomonodromic” solutions of equations of zero curvature, Math. USSR Izv. 26 (1986), 497-529.

[42] Tts A.R., Fokas A.S., Kapaev A.A., On the asymptotic analysis of the Painlevé equations via the isomon-
odromy method, Nonlinearity 7 (1994), 1291-1325.

[43] Its A.R., Kapaev A.A., Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solu-
tion, J. Phys. A 31 (1998), 4073-4113.

[44] Tts A.R., Kapaev A.A., Quasi-linear Stokes phenomenon for the second Painlevé transcendent, Nonlinearity
16 (2003), 363-386, arXiv:nlin/0108010.

[45] Its A.R., Novokshenov V.Yu., The isomonodromic deformation method in the theory of Painlevé equations,
Lecture Notes in Math., Vol. 1191, Springer, Berlin, 1986.

[46] Iwaki K., Voros coefficients of the third Painlevé equation and parametric Stokes phenomena,
arXiv:1303.3603.

[47] Iwaki K., On WKB theoretic transformations for Painlevé transcendents on degenerate Stokes segments,
Publ. Res. Inst. Math. Sci. 51 (2015), 1-57, arXiv:1312.1874.

[48] Janson S., Roots of polynomials of degrees 3 and 4, arXiv:1009.2373.

[49] Joshi N., Lustri C.J., Luu S., Stokes phenomena in discrete Painlevé II, Proc. A. 473 (2017), 20160539,
20 pages, arXiv:1607.04494.

[50] Kapaev A.A.; Quasi-linear Stokes phenomenon for the Painlevé first equation, J. Phys. A 37 (2004), 11149—
11167, arXiv:nlin/0404026.

[51] Kapaev A.A., Quasi-linear Stokes phenomenon for the Hastings—McLeod solution of the second Painlevé
equation, arXiv:nlin.SI/0411009.

[52] Kitaev A.V., The method of isomonodromic deformations and the asymptotics of the solutions of the
“complete” third Painlevé equation, Math. USSR Izv. 31 (1988), 193-207.

[63] Kitaev A.V., Method of isomonodromic deformations for the “degenerate” third Painlevé equation, J. Sov.
Math. 46 (1989), 2077-2083.

[64] Kitaev A.V., The justification of asymptotic formulas that can be obtained by the method of isomonodromic
deformations, J. Sov. Math. 57 (1991), 3131-3135.

[55] Kitaev A.V., Elliptic asymptotics of the first and second Painlevé transcendents, Russian Math. Surveys 49
(1994), 81-150.

[66] Kitaev A.V., Meromorphic solution of the degenerate third Painlevé equation vanishing at the origin, SIGMA
15 (2019), 046, 53 pages, arXiv:1809.00122.

[67] Kitaev A.V., Vartanian A., Connection formulae for asymptotics of solutions of the degenerate third Painlevé
equation: I, Inverse Problems 26 (2010), 105010, 58 pages, arXiv:1005.2677.

[68] Kitaev A.V., Vartanian A., Asymptotics of integrals of some functions related to the degenerate third
Painlevé equation, J. Math. Sci. 242 (2019), 715-721.

[59] Kitaev A.V., Vartanian A., Algebroid solutions of the degenerate third Painlevé equation for vanishing
formal monodromy parameter, J. Math. Anal. Appl. 532 (2024), 127917, 86 pages, arXiv:2304.05671.

[60] Kitaev A.V., Vartanian A., One-parameter meromorphic solution of the degenerate third Painlevé equation
with formal monodromy parameter a = £i/2 vanishing at the origin, J. Math. Sci. 284 (2024), 700-725,
arXiv:2305.17278.

[61] Kitaev A.V., Vartanian A.H., Connection formulae for asymptotics of solutions of the degenerate third
Painlevé equation. I, Inverse Problems 20 (2004), 1165-1206, arXiv:math.CA/0312075.

[62] Lin Y., Dai D., Tibboel P., Existence and uniqueness of tronquée solutions of the third and fourth Painlevé
equations, Nonlinearity 27 (2014), 171-186, arXiv:1306.1317.

[63] Loday-Richaud M., Divergent series, summability and resurgence II. Simple and multiple summability,

Lecture Notes in Math., Vol. 2154, Springer, Cham, 2016.


https://doi.org/10.1007/s00220-019-03559-5
http://arxiv.org/abs/1707.00259
http://arxiv.org/abs/2302.04597
https://doi.org/10.1007/s13366-021-00599-8
http://arxiv.org/abs/1806.06588
https://doi.org/10.1070/IM1986v026n03ABEH001157
https://doi.org/10.1088/0951-7715/7/5/002
https://doi.org/10.1088/0305-4470/31/17/015
https://doi.org/10.1088/0951-7715/16/1/321
http://arxiv.org/abs/nlin/0108010
https://doi.org/10.1007/BFb0076661
http://arxiv.org/abs/1303.3603
https://doi.org/10.4171/PRIMS/148
http://arxiv.org/abs/1312.1874
http://arxiv.org/abs/1009.2373
https://doi.org/10.1098/rspa.2016.0539
http://arxiv.org/abs/1607.04494
https://doi.org/10.1088/0305-4470/37/46/005
http://arxiv.org/abs/nlin/0404026
http://arxiv.org/abs/nlin.SI/0411009
https://doi.org/10.1070/IM1988v031n01ABEH001056
https://doi.org/10.1007/BF01096090
https://doi.org/10.1007/BF01096090
https://doi.org/10.1007/BF01098980
https://doi.org/10.1070/RM1994v049n01ABEH002133
https://doi.org/10.3842/SIGMA.2019.046
http://arxiv.org/abs/1809.00122
https://doi.org/10.1088/0266-5611/26/10/105010
http://arxiv.org/abs/1005.2677
https://doi.org/10.1007/s10958-019-04509-1
https://doi.org/10.1016/j.jmaa.2023.127917
http://arxiv.org/abs/2304.05671
https://doi.org/10.1007/s10958-024-07380-x
http://arxiv.org/abs/2305.17278
https://doi.org/10.1088/0266-5611/20/4/010
http://arxiv.org/abs/math.CA/0312075
https://doi.org/10.1088/0951-7715/27/2/171
http://arxiv.org/abs/1306.1317
https://doi.org/10.1007/978-3-319-29075-1

Trans-Series Asymptotics of Solutions to the Degenerate Painlevé 111 Equation 135

[64]

Miller P.D., On the increasing tritronquée solutions of the Painlevé-II equation, SIGMA 14 (2018), 125,
38 pages, arXiv:1804.03173.

Murata Y., Classical solutions of the third Painlevé equation, Nagoya Math. J. 139 (1995), 37-65.

Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé
equations of special type Pri(D7) and Pui(Ds), J. Math. Sci. Univ. Tokyo 13 (2006), 145-204.

Olde Daalhuis A.B., Exponentially-improved asymptotics and numerics for the (un)perturbed first Painlevé
equation, J. Phys. A 55 (2022), 304004, 16 pages, arXiv:2205.12800.

Shimomura S., Truncated solutions of the fifth Painlevé equation, Funkcial. Fkvac. 54 (2011), 451-471.

Shimomura S., Series expansions of Painlevé transcendents near the point at infinity, Funkcial. Ekvac. 58
(2015), 277-319.

Shimomura S., Three-parameter solutions of the PV Schlesinger-type equation near the point at infinity and
the monodromy data, SIGMA 14 (2018), 113, 50 pages, arXiv:1804.10369.

Shimomura S., Elliptic asymptotic representation of the fifth Painlevé transcendents, Kyushu J. Math. 76
(2022), 43-99, arXiv:2012.07321.

Shimomura S., Boutroux ansatz for the degenerate third Painlevé transcendents, Publ. Res. Inst. Math. Sci.
60 (2024), 651-698, arXiv:2207.11495.

Shimomura S., Elliptic asymptotics for the complete third Painlevé transcendents, Funkcial. Ekvac. 68
(2025), 69-117, arXiv:2211.00886.

Steinmetz N., Nevanlinna theory, normal families, and algebraic differential equations, Universitext,
Springer, Cham, 2017.

Suleimanov B.I., Effect of a small dispersion on self-focusing in a spatially one-dimensional case, JETP Lett.
106 (2017), 400-405.

Takei Y., On the role of the degenerate third Painlevé equation of type (D8) in the exact WKB analysis,
in Exact WKB Analysis and Microlocal Analysis, RIMS Kokyturoku Bessatsu, Vol. B37, Research Institute
for Mathematical Sciences, Kyoto, 2013, 211-222.

Tracy C.A., Widom H., Asymptotics of a class of solutions to the cylindrical Toda equations, Comm. Math.
Phys. 190 (1998), 697-721, arXiv:solv-int/9701003.

van Spaendonck A., Vonk M., Painlevé I and exact WKB: Stokes phenomenon for two-parameter transseries,
J. Phys. A 55 (2022), 454003, 64 pages, arXiv:2204.09062.

Wakako H., Takei Y., Exact WKB analysis for the degenerate third Painlevé equation of type (Ds), Proc.
Japan Acad. Ser. A Math. Sci. 83 (2007), 63-68.

Wasow W., Linear turning point theory, Appl. Math. Sci., Vol. 54, Springer, New York, 1985.

Xia X., Tronquée solutions of the third and fourth Painlevé equations, SIGMA 14 (2018), 095, 28 pages,
arXiv:1803.11230.

Xu S.X., Dai D., Zhao Y.Q., Critical edge behavior and the Bessel to Airy transition in the singularly
perturbed Laguerre unitary ensemble, Comm. Math. Phys. 332 (2014), 1257-1296, arXiv:1309.4354.

Xu S.X., Dai D., Zhao Y.Q., Painlevé III asymptotics of Hankel determinants for a singularly perturbed
Laguerre weight, J. Approz. Theory 192 (2015), 1-18, arXiv:1407.7334.


https://doi.org/10.3842/SIGMA.2018.125
http://arxiv.org/abs/1804.03173
https://doi.org/10.1017/S0027763000005298
https://doi.org/10.1088/1751-8121/ac7bbb
http://arxiv.org/abs/2205.12800
https://doi.org/10.1619/fesi.54.451
https://doi.org/10.1619/fesi.58.277
https://doi.org/10.3842/SIGMA.2018.113
http://arxiv.org/abs/1804.10369
https://doi.org/10.2206/kyushujm.76.43
http://arxiv.org/abs/2012.07321
https://doi.org/10.4171/prims/60-4-1
http://arxiv.org/abs/2207.11495
https://doi.org/10.1619/fesi.68.69
http://arxiv.org/abs/2211.00886
https://doi.org/10.1007/978-3-319-59800-0
https://doi.org/10.1134/S0021364017180126
https://doi.org/10.1007/s002200050257
https://doi.org/10.1007/s002200050257
http://arxiv.org/abs/solv-int/9701003
https://doi.org/10.1088/1751-8121/ac9e29
http://arxiv.org/abs/2204.09062
https://doi.org/10.1007/978-1-4612-1090-0
https://doi.org/10.3842/SIGMA.2018.095
http://arxiv.org/abs/1803.11230
https://doi.org/10.1007/s00220-014-2131-9
http://arxiv.org/abs/1309.4354
https://doi.org/10.1016/j.jat.2014.12.003
http://arxiv.org/abs/1407.7334

	1 Introduction
	1.1 The degenerate Painlevé III equation (DP3E)
	1.2 Hamiltonian structure, auxiliary functions, and the sigma-form
	1.3 Lax pairs and isomonodromic deformations
	1.4 Canonical solutions and the monodromy data
	1.5 The monodromy manifold, the direct and inverse problems of monodromy theory, and organisation of the paper

	2 Summary of results
	3 Asymptotic solution of the direct problem of monodromy theory
	3.1 Matrix WKB analysis
	3.2 Parametrix near the double-turning points
	3.3 Asymptotic matching

	4 The inverse monodromy problem: Asymptotic solution
	A Proof of Proposition 3.4
	B Appendix
	C Appendix
	D Symmetries and transformations
	D.1 The transformation tau to -tau
	D.2 The transformation tau to tau
	D.3 The transformation a to -a
	D.4 The transformation tau to pm mi tau
	D.5 Composed symmetries and asymptotics

	E Appendix
	F Literature survey of the DP3E
	References

