|
SIGMA 21 (2025), 071, 6 pages arXiv:2504.15597
https://doi.org/10.3842/SIGMA.2025.071
Contribution to the Special Issue on Recent Advances in Vertex Operator Algebras in honor of James Lepowsky
Linear Independence for $A_1^{(1)}$ by Using $C_{2}^{(1)}$
Mirko Primc a and Goran Trupčević b
a) Faculty of Science, University of Zagreb, Zagreb, Croatia
b) Faculty of Teacher Education, University of Zagreb, Zagreb, Croatia
Received May 02, 2025, in final form August 12, 2025; Published online August 19, 2025
Abstract
In the previous paper, the authors proved linear independence of the combinatorial spanning set for standard $C_\ell^{(1)}$-module $L(k\Lambda_0)$ by establishing a connection with the combinatorial basis of Feigin-Stoyanovsky's type subspace $W(k\Lambda_0)$ of $C_{2\ell}^{(1)}$-module $L(k\Lambda_0)$. In this note we extend this argument for $C_{1}^{(1)}\cong A_{1}^{(1)}$ to all standard $A_{1}^{(1)}$-modules $L(\Lambda)$. In the proof we use a coefficient of an intertwining operator of the type $\binom{L(\Lambda_2)}{L(\Lambda_1)\ L(\Lambda_1)}$ for standard $C_{2}^{(1)}$-modules.
Key words: affine Lie algebras; standard modules; Feigin-Stoyanovsky's type subspace; combinatorial basis.
pdf (402 kb)
tex (12 kb)
References
- Baranović I., Primc M., Trupčević G., Bases of Feigin-Stoyanovsky's type subspaces for $C_\ell^{(1)}$, Ramanujan J. 45 (2018), 265-289, arXiv:1603.04594.
- Capparelli S., Meurman A., Primc A., Primc M., New partition identities from $C^{(1)}_\ell$-modules, Glas. Mat. Ser. 57 (2022), 161-184, arXiv:2106.06262.
- Feigin B., Kedem R., Loktev S., Miwa T., Mukhin E., Combinatorics of the $\widehat{\mathfrak{sl}}_2$ spaces of coinvariants, Transform. Groups 6 (2001), 25-52, arXiv:math-ph/9908003.
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
- Meurman A., Primc M., Annihilating fields of standard modules of $\mathfrak{sl}(2,\mathbb{C})^\sim$ and combinatorial identities, Mem. Amer. Math. Soc. 137 (1999), viii+89 pages, arXiv:math.QA/9806105.
- Primc M., Combinatorial bases of modules for affine Lie algebra $B_2^{(1)}$, Cent. Eur. J. Math. 11 (2013), 197-225, arXiv:1002.3535.
- Primc M., Trupčević G., Linear independence for $C_\ell^{(1)}$ by using $C_{2\ell}^{(1)}$, J. Algebra 661 (2025), 341-356, arXiv:2403.06881.
|
|