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Abstract. In the previous paper, the authors proved linear independence of the combina-
torial spanning set for standard C

(1)
ℓ -module L(kΛ0) by establishing a connection with the

combinatorial basis of Feigin–Stoyanovsky’s type subspace W (kΛ0) of C
(1)
2ℓ -module L(kΛ0).

In this note we extend this argument for C
(1)
1

∼= A
(1)
1 to all standard A

(1)
1 -modules L(Λ).

In the proof we use a coefficient of an intertwining operator of the type
(

L(Λ2)
L(Λ1) L(Λ1)

)
for

standard C
(1)
2 -modules.
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1 Introduction

In [7], the authors proved linear independence of the combinatorial spanning set for stan-
dard C

(1)
ℓ -module L(kΛ0) by establishing a connection with the combinatorial basis of Feigin–

Stoyanovsky’s type subspace W (kΛ0) of C
(1)
2ℓ -module L(kΛ0) constructed in [1]. For ℓ = 1 we

have C
(1)
1

∼= A
(1)
1 and the combinatorial basis of L

A
(1)
1

(kΛ0) is a part of the general construction
of combinatorial bases of all standard A

(1)
1 -modules L

A
(1)
1

(k0Λ0 + k1Λ1), k0 + k1 = k, obtained
independently in [5] and [3]. In this note we extend the argument from [7] to all standard A

(1)
1 -

modules by using a coefficient of an intertwining operator of the type
( L(Λ2)
L(Λ1) L(Λ1)

)
for standard

C
(1)
2 -modules. This gives a new proof of linear independence of combinatorial bases of stan-

dard A
(1)
1 -modules and, hopefully, this approach may lead to a proof of linear independence of

combinatorial bases of all standard C
(1)
ℓ -modules conjectured in [2].

As in [7], the key idea for the proof of linear independence of the spanning set B1 of monomial
vectors x(π)vΛ̄ in L

A
(1)
1

(Λ̄) is to embed Lie algebra l of type A1 into g of type C2 (see Figure 1)
together with its standard module

L
A

(1)
1

(
Λ̄
)
⊂ L

C
(1)
2

(Λ) ⊃ W
C

(1)
2

(Λ),

and then, by using the inner derivations T of g, connect the set B1 and the basis B1
2 of the

Feigin–Stoyanovsky subspace W
C

(1)
2

(Λ) consisting of monomial vectors x(π)vΛ.
Monomials x(π) and x(π) in the universal enveloping algebra U(ĝ), given by (2.2) and (2.8),

are parameterized with colored partitions π in three colors, determined by frequencies {aj , bj , cj |
j ≥ 0} satisfying the same difference conditions (2.3)–(2.5). The case when Λ̄ = kΛ0 and
Λ = kΛ0 is relatively simple because π in monomials x(π) and x(π) satisfy the the same initial
conditions a0 = b0 = c0 = 0 and for the proper power TN ′

of T we have

TN ′
: x(π) → x(π).
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However, in general the initial conditions for π in monomials x(π) and x(π) are not the same,
see (2.6)–(2.7) compared to (2.9)–(2.10), and, together with T , a coefficient w of an intertwining
operator of the type

( L(Λ2)
L(Λ1) L(Λ1)

)
for standard C

(1)
2 -modules is used to circumvent this difficulty.

2 Affine Lie algebras of type A
(1)
1 ⊂ C

(1)
2

and their standard modules

2.1 Affine Lie algebras and standard modules

Let g be a simple Lie algebra with a Cartan decomposition g = h+
∑

α∈R gα, where R is a root
system of g. Let α1, . . . , αn be a basis of R, θ the maximal root, and ω1, . . . , ωn the corresponding
fundamental weights. For each root α fix a root vector xα in gα. Let ⟨ , ⟩ be the normalized
Killing form so that ⟨θ, θ⟩ = 2, through which we identify h and h∗. Let B be a basis of g
consisting of root vectors and elements of h, with a linear order ≻.

Let g̃ be the affine Lie algebra associated to g,

ĝ = g⊗ C
[
t, t−1

]
+ Cc, g̃ = ĝ+ Cd,

with commutation relations

[x(i), y(j)] = [x, y](i+ j) + i⟨x, y⟩δi+j,0c, [c, g̃] = 0, [d, x(j)] = jx(j),

where x(n) = x⊗tn, for x ∈ g and n ∈ Z. Identify g = g⊗1 ⊂ ĝ. Set B = {b(n) | b ∈ B, n ∈ Z};
so that B ∪ {c} is a basis of ĝ. Extend the order on B to B: b(n) ≻ b′(n′) if n > n′ or n = n′,
b ≻ b′.

Denote by Λ0, . . . ,Λn the fundamental weights of g̃. For a given Λ = k0Λ0+k1Λ1+· · ·+knΛn,
let L(Λ) = Lg̃(Λ) be a standard (i.e., integrable highest weight) g̃-module, vΛ a fixed highest
weight vector, and k = Λ(c) the level of L(Λ) (cf. [4]).

2.2 Bases of standard modules for affine Lie algebra of type A
(1)
1 ⊂ C

(1)
2

Let g be a simple Lie algebra of the type C2. Let

R = {2ϵ1, ϵ1 + ϵ2, 2ϵ2, ϵ1 − ϵ2, ϵ2 − ϵ1,−2ϵ2,−ϵ1 − ϵ2,−2ϵ1} ⊂ R2 (2.1)

be a root system of g. Let α1 = ϵ1 − ϵ2, α2 = 2ϵ2 be a root basis, θ = 2ϵ1 the maximal root,
and ω1 = ϵ1, ω2 = ϵ1 + ϵ2 the corresponding fundamental weights.

Fix root vectors x11, x12, x22, x12, x21, x22, x21, x11 corresponding respectively to the
roots in (2.1) and let x11, x22 be the simple coroots in h corresponding to positive roots 2ϵ1
and 2ϵ2. These vectors form a weight basis B of g. Define an order on B in the following way:
set 1 ≻ 2 ≻ 2 ≻ 1 and define a lexicographic order xab ≻ xa′b′ if a ≻ a′ or a = a′, b ≻ b′.

Denote by Λ0, Λ1, Λ2 the fundamental weights of g̃. For Λ = k0Λ0 + k1Λ1 + k2Λ2, let
L(Λ) = L

C
(1)
2

(Λ) be a standard g̃-module of the level k = k0+k1+k2 with a fixed highest weight
vector vΛ. The standard module L(Λ) can be realised in the tensor product of level 1 standard
modules, L(Λ) ⊂ L(Λ0)

⊗k0 ⊗ L(Λ1)
⊗k1 ⊗ L(Λ2)

⊗k2 .

On the top of the standard module L(Λ0) there is the trivial 1-dimensional module for g;
denote by v0 its weight vector. On the top of L(Λ1) there is the 4-dimensional irreducible
module V (ω1) for g with weights ϵ1, ϵ2, −ϵ1, −ϵ2 and corresponding weight vectors v1, v2, v1,
v2. On the top of L(Λ2) there is the 5-dimensional irreducible module V (ω2) for g with weights
ϵ1 + ϵ2, −ϵ1 + ϵ2, 0, ϵ1 − ϵ2, −ϵ1 − ϵ2 and corresponding weight vectors v12, v12, v00, v12, v12.
Note that v0 = vΛ0 , v1 = vΛ1 , v12 = vΛ2 .
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Figure 1. The root system of type C2.

The subalgebra l = span{x11, x11, x11} ⊂ g is a simple algebra of type A1 with the simple
root θ = 2ϵ1.

The inclusion l ⊂ g induces an inclusion of affine Lie algebras l̃ ⊂ g̃; the subalgebra l̃ is of
type A

(1)
1 . Denote by Λ̄0 and Λ̄1 fundamental weights of l̃. Standard l̃-modules can be found as

l̃-submodules of standard g̃-modules

L
A

(1)
1

(
Λ̄0

) ∼= U
(̃
l
)
vΛ0 ⊂ L

C
(1)
2

(Λ0),

L
A

(1)
1

(
Λ̄1

) ∼= U
(̃
l
)
vΛ1 ⊂ L

C
(1)
2

(Λ1) ∼= U
(̃
l
)
vΛ2 ⊂ L

C
(1)
2

(Λ2),

L
A

(1)
1

(
Λ̄
) ∼= U

(̃
l
)
vΛ ⊂ L

C
(1)
2

(Λ),

for Λ̄ = k̄0Λ̄0 + k̄1Λ̄1, Λ = k0Λ0 + k1Λ1 + k2Λ2, where k̄0 = k0, k̄1 = k1 + k2. For this reason we
will use the notation Λ0, Λ1, Λ2 also for l̃.

The PBW spanning set of L
A

(1)
1

(Λ), Λ = k0Λ0 + k1Λ1, can be reduced to a monomial basis
consisting of monomial vectors∏

j≥0

x11(−j)cjx11(−j)bjx11(−j)ajvΛ (2.2)

satisfying difference conditions

ai + bi + ai+1 ≤ k, ci + bi + ai+1 ≤ k, (2.3)

ci + bi+1 + ai+1 ≤ k, (2.4)

ci + bi+1 + ci+1 ≤ k (2.5)

and initial conditions

a0 = b0 = 0, c0 ≤ k1, (2.6)

a1 ≤ k0 (2.7)

for L
A

(1)
1

(Λ). This was proved by different methods in [5] and [3]. In this note we give a new
proof of linear independence by transforming its elements to elements of a monomial basis of
a Feigin–Stoyanovsky subspace for g̃.

2.3 Feigin–Stoyanovsky subspace

For a simple Lie algebra g, let ω be a minuscule coweight of g, ⟨ω,R⟩ = {−1, 0, 1}. The minuscule
coweight ω induces a Z-gradation on g

g = g−1 + g0 + g1, g0 = h+
∑

⟨ω,α⟩=0

gα, g±1 =
∑

⟨ω,α⟩=±1

gα.
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The set Γ = {α ∈ R | ⟨ω, α⟩ = 1} is called the set of colors. The subalgebras g±1 ⊂ g are
commutative, while g0 is reductive.

The Z-gradation of g induces a Z-gradation of g̃, g̃ = g̃−1 + g̃0 + g̃1, where

g̃0 = g0 ⊗ C
[
t, t−1

]
+ Cc+ Cd, g̃±1 = g±1 ⊗ C

[
t, t−1

]
.

Again, the subalgebras g̃±1 ⊂ g̃ are commutative.
Feigin–Stoyanovsky subspace W (Λ) = Wg̃(Λ) of a standard module Lg̃(Λ) is a g̃1-submodule

generated by the highest weight vector W (Λ) = U(g̃1)vΛ.

2.4 Bases of Feigin–Stoyanovsky subspaces for affine Lie algebra of type C
(1)
2

Let g be a simple Lie algebra of type C2, as before. The minuscule coweight ω = ω2 induces
a Z-gradation on g with the set of colors Γ = {2ϵ1, ϵ1 + ϵ2, 2ϵ2} (see Figure 1).

The Feigin–Stoyanovsky subspace W
C

(1)
2

(Λ) for Λ = k0Λ0 + k1Λ1 + k2Λ2, k = k0 + k1 + k2,
has a monomial basis∏

j≥0

x22(−j)cjx12(−j)bjx11(−j)ajvΛ (2.8)

satisfying difference conditions (2.3)–(2.5) and initial conditions

a0 = b0 = c0 = 0, a1 ≤ k0, a1 + b1 ≤ k − k2, (2.9)

b1 + c1 ≤ k − k2 (2.10)

for W
C

(1)
2

(Λ) (cf. [1] and [6]1).

3 Proof of linear independence for A
(1)
1

3.1 Translation L
A

(1)
1
(Λ) → W

C
(1)
2

(Λ′)

Let Λ = k0Λ0 + k1Λ1. Let

π =
∏
j≥0

(−j)cj (−j)bj (−j)aj

be a colored partition with parts −j of colors a, b, c appearing with frequencies aj , bj , cj , which
satisfy difference conditions (2.3)–(2.5). Denote by x(π) and x(π) monomials (2.2) and (2.8),
respectively. Note that x(π) is noncommutative and x(π) is commutative.

Denote by T = adx12 a derivative on ĝ and U(ĝ). Then, up to a scalar, Tx11(j) = x12(j),
Tx11(j) = x21(j), Tx21(j) = x22(j). Note that Tx11(j) = Tx12(j) = 0.

For a monomial x(π) satisfying difference and initial conditions for L
A

(1)
1

(Λ) set

N ′ =
∑
j≥0

bj + 2
∑
j≥0

cj .

The action by TN ′
transforms x(π) to x(π): TN ′

x(π) = x(π). Furthermore, TN ′+1x(π) = 0.
Let vΛ = v⊗k0

0 ⊗ v⊗k1
1 be a highest weight vector of L

C
(1)
2

(Λ). Then

x12(0)
N ′
x(π)vΛ = x12(0)

N ′−1(Tx(π))vΛ + x12(0)
N ′−1x(π)x12(0)vΛ

= · · · =
(
TN ′

x(π)
)
vΛ = x(π)vΛ.

1When interchanging C
(1)
2 ↔ B

(1)
2 we should interchange Λ1 ↔ Λ2.
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Note that x12(0) annihilates vΛ since the corresponding root is positive. Furthermore, initial
conditions for W

C
(1)
2

(Λ) imply that x(π)vΛ ̸= 0 ⇔ c0 = 0.
Hence for a monomial x(π) set

N = N(π) =
∑
j≥0

bj + 2
∑
j≥0

cj − c0.

Let x(π) = x(π1)x11(0)
c0 . Note that N(π) = N(π1) + c0. Then

x12(0)
Nx(π)vΛ =

(
TNx(π)

)
vΛ =

(
TN

(
x(π1)x11(0)

c0
))
vΛ

= x(π1)x21(0)
c0vΛ +

∑
· · ·x22(0)vΛ (3.1)

= x(π1)x21(0)
c0vΛ. (3.2)

In (3.1) the sum goes over all the other possibilities of action of TN on factors in x(π). In
all of these at least two T ’s act on the same x11(0) factor. Hence one gets at least one x22(0)
factor, which commutes with x11(0) and x21(0), and annihilates vΛ.

Notice that x21(0) acts on the v1’s in the tensor product v⊗k0
0 ⊗ v⊗k1

1 . Since c0 ≤ k1, then
x21(0)

c0vΛ ̸= 0. Moreover, x21(0)v1 = v2 and x21(0)v2 = 0.
Hence,

x12(0)
Nx(π)vΛ = x(π1)x21(0)

c0vΛ. (3.3)

Furthermore, x12(0)
N+1x(π)vΛ = 0.

Different possibilities of distribution of x21(0)’s on the tensor product v⊗k0
0 ⊗ v⊗k1

1 in (3.2)
will be handled by certain coefficients of intertwining operators.

3.2 Intertwining operators

For L
C

(1)
2

(Λ1) there is an operator (a coefficient of an intertwining operator) w : L
C

(1)
2

(Λ1) →
L
C

(1)
2

(Λ2) such that v1
w−→ 0, v2

w−→ v12, where v12 is a highest weight vector of L
C

(1)
2

(Λ2), and w
commutes with the action of g̃1 (see [1, Proposition 7] or [6, Remark 6.3]).

On L(Λ) use tensor products of these operators

wk1,s = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k0

⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k1−s

⊗w ⊗ · · · ⊗ w︸ ︷︷ ︸
s

,

where s ≤ k1
Act on (3.2) by wk1,c0

wk1,c0x(π1)x21(0)
c0vΛ

= x(π1)wk1,c0x21(0)
c0vΛ

= x(π1)wk1,c0v
⊗k0
0 ⊗ v

⊗(k1−c0)
1 ⊗ v⊗c0

2 +
∑

x(π1)wk1,c0v
⊗k0
0 ⊗ · · · (3.4)

= x(π1) v
⊗k0
0 ⊗ v

⊗(k1−c0)
1 ⊗ v⊗c0

12︸ ︷︷ ︸
vΛ′

,

where Λ′ = k0Λ0 + (k1 − c0)Λ1 + c0Λ2. In (3.4), the sum goes over all other distributions
of x21(0)’s on tensor factors. These have at least one v1 among the last c0 tensor factors and
hence are annihilated by wk1,c0 .

Since x(π) satisfies initial conditions (2.6)–(2.7) for L
A

(1)
1

(Λ), then, by (2.4) and (2.5) for i = 0,
x(π1) satisfies initial conditions (2.9)–(2.10) for WC

(1)
2

(Λ′), with k′0 = k0, k
′
1 = k1 − c0, k

′
2 = c0.

Hence x(π1)x21(0)
c0vΛ

wk1,c0−−−−→ x(π1)vΛ′ and x(π1) satisfies initial conditions for W
C

(1)
2

(Λ′).
Note also that x(π1)x21(0)

c0vΛ
wk1,s−−−→ 0, for c0 < s ≤ k1.
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3.3 Proof of linear independence

Let ∑
π

Cπx(π)vΛ = 0, (3.5)

be a relation of linear dependence, where all monomials in (3.5) satisfy difference and initial
conditions for L

A
(1)
1

(Λ). Let N = maxπ N(π). Proceed inductively on N ; act on (3.5) by x12(0)
N

0 =
∑

N(π)<N

Cπx12(0)
Nx(π)vΛ +

∑
N(π)=N

Cπx12(0)
Nx(π)vΛ =

∑
N(π)=N

Cπx12(0)
Nx(π)vΛ

=
∑

N(π)=N
c0=0

Cπx(π1)vΛ +
∑

N(π)=N
c0=1

Cπx(π)x21(0)vΛ + · · ·+
∑

N(π)=N
c0=s

Cπx(π1)x21(0)
svΛ, (3.6)

for some s ≤ k1. The second equality follows since x12(0)
Nx(π) = 0 if N(π) < N , while the

third follows from (3.3). Proceed inductively on s; act on (3.6) by wk1,s. Then all sums except
the last one are annihilated. One gets∑

N(π)=N
c0=s

Cπx(π1)vΛ′ = 0, (3.7)

for Λ′ = k0Λ0 + (k1 − s)Λ1 + sΛ2. This is a relation of linear dependence in W
C

(1)
2

(Λ′). Note
that all monomials in (3.7) satisfy difference and initial conditions for W

C
(1)
2

(Λ′). Since these
are linearly independent, all Cπ in (3.7) are zero.
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