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Abstract. Every closed connected Riemannian spin manifold of non-zero Â-genus or non-
zero Hitchin invariant with non-negative scalar curvature admits a parallel spinor, in partic-
ular is Ricci-flat. In this note, we generalize this result to closed connected spin manifolds
of non-vanishing Rosenberg index. This provides a criterion for the existence of a parallel
spinor on a finite covering and yields that every closed connected Ricci-flat spin manifold of
dimension ≥ 2 with non-vanishing Rosenberg index has special holonomy.
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1 Introduction and main results

Let (M, g) be a connected Riemannian manifold of dimension n whose universal cover M̃ admits
a spin structure. We denote by g̃ the pullback metric of g along the covering map M̃ → M .
If

(
M̃, g̃

)
carries a parallel spinor, g is Ricci-flat, i.e., its Ricci tensor vanishes identically. The

converse of this statement holds for closed connected Riemannian spin manifolds with non-zero
Â-genus or more general non-zero Hitchin invariant [10, Section 4.2]. This is a direct consequence
of the Schrödinger–Lichnerowicz formula and the non-triviality of the kernel of the spin Dirac
operator. It is an open question whether the converse of this statement holds in general.

Question 1.1. If g is Ricci-flat, does
(
M̃, g̃

)
admit a non-trivial parallel spinor?

In this note, we give a positive answer to Question 1.1 for closed connected spin manifolds
with non-vanishing Rosenberg index (see Theorem A). As a consequence, in dimension ≥ 2 these
manifolds have special holonomy for any Ricci-flat metric (see Corollary 1.3).

The Rosenberg index of a closed spin manifold is a class in the real K-theory of the maximal
group C∗-algebra of the fundamental group of the manifold. It is defined as the higher index of
the Cln-linear spin Dirac operator twisted by the Mishchenko bundle (see Section 2). In general,
the Rosenberg index is not only non-vanishing whenever the Â-genus or the Hitchin invariant is
non-zero, but also for many other classes of manifolds, as for example enlargeable manifolds [7, 8],
and aspherical manifolds whose fundamental group satisfies the Novikov conjecture [17].

Theorem A. Let (M, g) be a closed connected Riemannian spin manifold with non-vanishing
Rosenberg index. Then the following statements are equivalent:

(1) The Riemannian manifold (M, g) is Ricci-flat.

(2) The universal cover M̃ , equipped with the pullback metric, admits a non-trivial parallel
spinor.
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(3) There exists a finite Riemannian covering carrying a non-trivial parallel spinor with respect
to the pullback spin structure.

(4) The metric g has non-negative scalar curvature.

The main part of the proof of Theorem A is to show the implication (4)⇒(3). The proof
strategy is as follows. Suppose there exists a non-trivial twisted harmonic spinor. Then, by
the Schrödinger–Lichnerowicz formula and the assumption on the scalar curvature, this twisted
spinor is already parallel. We obtain a non-trivial parallel spinor on the universal covering
of M , which yields on a suitable finite covering a non-trivial parallel spinor with respect to
the pullback spin structure. In the following paragraph, we outline the construction of such
a twisted harmonic spinor under the assumption (4) in Theorem A.

A non-zero classical index such as the Â-genus or the Hitchin invariant gives rise to a non-
trivial harmonic spinor. In general, a non-vanishing higher index such as the Rosenberg index
does not give rise to a non-trivial harmonic spinor. But non-vanishing of the Rosenberg index is
still an obstruction — so far the best obstruction based on the index theory of Dirac operators —
to the existence of a positive scalar curvature metric on a closed connected spin manifold.
A classical rigidity statement by Bourguignon states that every closed Riemannian manifold
that does not admit a positive scalar curvature metric is Ricci-flat if the scalar curvature is non-
negative (see, e.g., [11]). Combining these two facts yield under assumption (4) that (M, g) is
Ricci-flat. By the structure theorem for Ricci-flat manifolds (see Theorem 3.1), the fundamental
group of M contains the subgroup Zq with finite index, and it is possible to detect the non-
vanishing Rosenberg index by the spin Dirac operator twisted by some flat finite-dimensional
Hermitian vector bundle (see Proposition 3.2). This detection principle we are using here is
due to Schick and Wraith [18], while an alternative approach is given in [15, Section 3]. Here
Ramras, Willett, and Yu [15] study the class of groups for which an associated non-vanishing
higher index can be detected by a finite representation.

We now discuss the relation between Theorem A and special holonomy. A Riemannian mani-
fold is called irreducible if the representation of the reduced holonomy group on the general linear
group of the tangent space is irreducible. By Berger’s holonomy list [1], the reduced holonomy
group of any connected irreducible Ricci-flat manifold of dimension n is given by SO(n) in the
generic case, or one of the following subgroups: SU(n/2) (locally Calabi–Yau), Sp(n/4) (locally
hyper-Kähler), G2 or Spin(7). In dimension ≥ 2, the assumption that the Riemannian manifold
is irreducible excludes all flat manifolds, in particular all Ricci-flat locally symmetric spaces [2,
Theorems 10.72 and 7.61]. Note that the subgroups U(n) (locally Kähler) and Sp(n/4) · Sp(1)
(locally quaternionic Kähler) cannot occur as holonomy groups of Ricci-flat manifolds [2, Propo-
sition 10.29 and Theorem 14.45]. While there exist examples of closed locally Calabi–Yau, locally
hyper-Kähler, G2, and Spin(7) manifolds, no closed irreducible Ricci-flat manifold with generic
reduced holonomy is known. This leads to the following question.

Question 1.2. Does every closed connected Ricci-flat manifold of dimension n ≥ 2 have special
holonomy, i.e., its reduced holonomy group is a proper subgroup of SO(n)?

The de Rham splitting theorem states that every complete simply-connected Riemannian
manifold is isometric to a Riemannian product of complete non-flat irreducible manifolds and
a Euclidean space [2, Theorem 10.43]. We obtain that for reducible manifolds and flat manifolds
the conclusion in Question 1.2 holds. Since every Ricci-flat manifold of dimension ≤ 3 is already
flat, this includes all manifolds of dimension 2 and 3. In dimension ≥ 4, Question 1.2 is still
open. It is related to spin geometry as follows. Every complete simply-connected irreducible
Riemannian spin manifold

(
M̃, g̃

)
admits a parallel spinor if and only if it has special holonomy

(see [10, Theorem 1.2] and [20]). We obtain by Theorem A the following corollary, which
addresses Question 1.2 in the special case of spin manifolds with non-vanishing Rosenberg index.
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Corollary 1.3. Every closed connected Ricci-flat spin manifold of dimension ≥ 2 with non-
vanishing Rosenberg index has special holonomy.

2 The Rosenberg index

In this section, we give a brief introduction to higher index theory with the goal to define the
Rosenberg index [17]. See [13] for the construction of the (Cln-linear) spinor bundle, [12] and [4]
for some background concerning Hilbert C∗-modules and differential operators acting on Hilbert
C∗-module bundles, [19, Definition 2.1] for a definition of graded real Dirac bundles carrying
a Hilbert C∗-module structure, and [16] for an introduction to real K-theory of C∗-algebras and
in particular for a definition of the spectral picture of real K-theory.

Let (M, g) be a closed connected Riemannian spin manifold of dimension n. This means that
the manifold is oriented and equipped with a spin structure Spin(M, g), which is a lift of the
SO(n)-principal bundle of oriented orthonormal frames along the double covering Spin(n) →
SO(n). The spin structure gives rise to the following two complex vector bundles

S := Spin(M, g)×ρ ∆, ρ : Spin(n) → Aut(∆) complex spin representation,

S := Spin(M, g)×cl Cln, cl : Spin(n) → Aut(Cln) left multiplication.

They are called the irreducible spinor bundle and the Cln-linear spinor bundle, respectively. Here
we denote by Cln the complexification of the Clifford algebra of Rn which carries the structure of
a graded real C∗-algebra and a graded real Hilbert Cln-module. The irreducible spinor bundle S
equipped with its natural metric, connection and Clifford multiplication has the structure of
a Dirac bundle. The Cln-linear spinor bundle S, equipped with the grading, real structure
and Hilbert module structure obtained fiber-wise from Cln, the induced Cln-linear connection,
and the Clifford multiplication, carries the structure of a graded real Cln-linear Dirac bundle.
Note that S is isomorphic as a Dirac bundle to a direct sum of copies of the irreducible spinor
bundle S.

We denote by π the fundamental group of the manifold M and by C∗π the maximal group
C∗-algebra of π. The Mishchenko bundle L is the associated bundle of the universal cover of M
by the representation l : π → Aut(C∗π) given by left multiplication [14]. It carries a natural
flat connection, a C∗π-valued metric and a real structure. Tensoring the Cln-linear spinor
bundle by the Mishchenko bundle yields a graded real Cln ⊗ C∗π-linear Dirac bundle. The
induced Cln ⊗ C∗π-linear Dirac operator DL extends to a self-adjoint and regular unbounded
operator

DL : H1(M,S⊗ L) −−−→ L2(M,S⊗ L).

Here the Sobolev spaces H1(M,S⊗ L) and L2(M,S⊗ L) are countably generated Hilbert Cln⊗
C∗π-modules which are similarly defined as the corresponding Sobolev spaces in the classical
case. Since the manifold M is compact, the generalized Rellich theorem [4, Theorem 2.33]
yields that the functional calculus for unbounded regular and self-adjoint operators on Hilbert
C∗-modules [4, Theorem 1.19] restricts to

ΦDL : C0(R) −−−→ KomCln⊗C∗π

(
L2(M,S⊗ L)

)
. (2.1)

This is stated in [4, Proposition 2.34] with g ≡ 1 and X a point. Here KomA(E) denotes the
compact operators on a Hilbert A-module E for a C∗-algebra A. The map ΦDL defines a class
in the spectral picture of the n-th real K-theory group of C∗π (see, e.g., [16, Lecture 13]). It is
called the Rosenberg index of the manifold M .
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3 Proof of the main theorem

In this section, we give a proof of Theorem A. It is based on the structure theorem for Ricci-
flat manifolds [5, Theorem 4.5], which is a direct consequence of the Cheeger–Gromoll splitting
theorem [3], and a detection principle for the spectrum of Hilbert C∗π-modules by Schick and
Wraith [18].

Theorem 3.1 (structure theorem for Ricci-flat manifolds). Every closed connected Ricci-flat
manifold M admits a finite normal Riemannian covering N × T q → M consisting of a closed
simply-connected Ricci-flat manifold N and a flat torus T q. In particular, the fundamental group
of M contains the subgroup Zq with finite index.

Proposition 3.2 ([18, Proposition 3.6]). Let π be a group containing the subgroup Zq with
finite index d, and let B be a possibly unbounded self-adjoint and regular operator on a countably
generated Hilbert C∗π-module. Suppose T 2 − 1 is compact in the sense of Hilbert C∗π-modules
for the bounded transform T := B

(
B2 + 1

)−1/2
. If 0 is in the spectrum of B, then there exists

a representation ρ : π → U(d) such that 0 is in the spectrum of B ⊗ρ id.

Proof of Theorem A. Let (M, g) be a closed connected Riemannian spin manifold of dimen-
sion n with non-vanishing Rosenberg index. We denote as in Section 2 the fundamental group
of M by π, the universal cover of M by M̃ , the Mishchenko bundle by L, the irreducible spinor
bundle by S, the Cln-linear spinor bundle by S, and the induced Dirac operators by D and D,
respectively. Moreover, we equip the universal cover of M by the pullback metric g̃ and denote
its irreducible spinor bundle by S̃.

Since a parallel spinor on a finite covering of M lifts to a parallel spinor on the universal
covering of M and the scalar curvature is by definition the trace of the Ricci curvature, the
implications (3)⇒(2) and (1)⇒(4) are trivial. Suppose there exists a non-trivial parallel spinor u
on M̃ . The curvature tensor K of the spinor bundle S̃ is related to the Ricci curvature via

Ricg̃(X) · u = −2
n∑

j=1

ej ·KX,eju (3.1)

for any local orthonormal frame e1, . . . , en of TM̃ |U and any vector field X supported in an open
subset U [6, Section 3.1]. Since u is non-trivial and parallel, this yields that M̃ is Ricci-flat,
hence M is Ricci-flat. This proves the implication (2)⇒(1). It remains to show the implication
(4)⇒(3). Suppose the scalar curvature of the Riemannian manifold (M, g) is non-negative.
We have to show that there exists a finite Riemannian covering of M together with a parallel
spinor with respect to the pullback spin structure. The proof splits into the following four steps.

Step 1: The Riemannian manifold (M, g) is Ricci-flat. Since the Rosenberg index does not
vanish, the manifold M does not admit a positive scalar curvature metric. Since the scalar
curvature of M is non-negative, it follows by Ricci flow or a classical result by Bourguignon [11]
that the manifold M is Ricci-flat. A new proof using only spinorial techniques is given by the
author in [19, Sections 3 and 4] and will be briefly sketched here.

The non-vanishing Rosenberg index gives rise to a family of almost DL-harmonic sections
{uϵ}ϵ>0, i.e., uϵ ∈ C∞(M,S⊗ L), ∥uϵ∥L2 = 1 and ∥Dj

Luϵ∥L2 < ϵ for all j > 0 and all ϵ > 0 [19,
Lemma 3.2]. Since the scalar curvature of M is non-negative, we obtain by the Schrödinger–
Lichnerowicz formula ∥∇uϵ∥L2 < ϵ for all ϵ > 0. We can improve this estimate by Moser
iteration [19, Lemma 3.4 ff.] and obtain ∥∇uϵ∥∞ ≲ ϵr for all ϵ ∈ (0, 1) and a suitable positive
constant r which is independent of ϵ. By the Poincaré inequality, we obtain that the family is
almost constant, i.e.,∥∥ūϵ − 〈

uϵ(p) , uϵ(p)
〉∥∥

Cln⊗C∗π
≲ ϵr with ūϵ :=

1

vol(M)

∫
M

〈
uϵ(q) , uϵ(q)

〉
dq,
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for all ϵ ∈ (0, 1) and all p ∈ M . Furthermore, we can choose the family {uϵ}ϵ>0 such that∥∥∇2uϵ
∥∥ ≲

√
ϵ holds for all ϵ > 0 [19, Lemma 4.3]. Together with equation (3.1), we obtain

∥Ric(X)∥L2 ≲ ∥Ric(X) · uϵ∥L2 ≲
√
ϵ (3.2)

for any vector field X on M and all sufficiently small ϵ > 0, hence M is Ricci-flat.

Step 2: There exists a flat Hermitian bundle over M carrying a non-zero twisted paral-
lel spinor. Since the manifold M is Ricci-flat by Step 1, we can apply Theorem 3.1 and the
fundamental group of M contains the subgroup Zq with finite index d for some q and d. The
Rosenberg index of M does not vanish by assumption, hence the twisted Dirac operator

DL : H1(M,S⊗ L) −−−→ L2(M,S⊗ L)

is not invertible (see, e.g., [19, Lemma 2.4 (ii)]). Since the Cln-linear spinor bundle S is a direct
sum of copies of the irreducible spinor bundle S, we obtain that the twisted Dirac operator

DL : H1(M,S ⊗ L) −−−→ L2(M,S ⊗ L)

is also not invertible. The functional calculus associated to DL restricts as in equation 2.1,
hence the operator T 2 − 1 is compact for the bounded transform T := DL

(
D2

L + 1
)−1/2

, and we
can apply Proposition 3.2. This yields a representation ρ : π → U(d) such that DL ⊗ρ id is not
invertible. Note that the representation ρ extends by the universal property of the maximal
group C∗-algebra to a representation ρ : C∗π → GLd(C). We define V as the flat Hermitian
bundle M̃ ×ρ Cd. Following the identifications

(S ⊗ L)⊗ρ Cd ∼= S ⊗
(
M̃ ×π C∗π ⊗ρ Cd

) ∼= S ⊗ V,

we obtain DL⊗ρ id = DV (compare [18, Proposition 3.1]), hence the twisted Dirac operator DV is
not invertible. Since the manifold M is closed and the twisting bundle V has finite-dimensional
fibers, the spectrum of DV consists of eigenvalues only, hence the kernel of DV is non-zero. Let u
be a non-trivial element in the kernel of DV . Since the scalar curvature of M is non-negative by
assumption, we obtain by the Schrödinger–Lichnerowicz formula

∥∇u∥2L2 ≤ ⟨∇∗∇u, u⟩L2 + 1
4⟨scalg u, u⟩L2 = ∥DV u∥2L2 = 0.

This shows that u is parallel, and the second step is proved.

Step 3: There exists a non-trivial parallel spinor on M̃ equipped with the pullback metric.
This step corresponds to [18, Proposition 3.3]. The proof is given below for the sake of com-
pleteness. Let V be the flat Hermitian bundle over M and u be the twisted parallel spinor
constructed in Step 2. We denote by Ṽ and ũ the pullback of V and u to the universal cov-
ering of M , respectively. By construction the twisted spinor ũ is parallel with respect to the
pullback connection. Since the covering map M̃ → M is a local isometry, hence preserves all
local structures, the pullback connection on M̃ equals the usual spinor connection twisted with
the pullback connection on Ṽ . Since V is by definition in Step 2 equal to M̃ ×ρ Cd with the
representation ρ : π → U(d), we obtain

Ṽ = M̃ ×ρ̃ Cd ∼= M̃ × Cd with ρ̃ : {1} = π1
(
M̃

)
−−−→ π

ρ−−−→ U(d).

This yields an identification S̃ ⊗ Ṽ ∼=
(
S̃
)d

as bundles with connection, hence the parallel twisted
spinor ũ can be identified with a vector of d parallel spinors on M̃ . Since ũ is non-trivial, at
least one component of ũ is non-trivial and we obtain a non-trivial parallel spinor on M̃ . This
proves the third step.
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Step 4: There exists a finite Riemannian covering of M together with a non-trivial parallel
spinor with respect to the pullback spin structure. In the first part of the argument bellow, we
follow the approach taken in the proof of [18, Lemma 2.7]. By the structure theorem for Ricci-
flat manifolds (see Theorem 3.1), there exists a finite Riemannian covering (N, gN )× (T q, gfl) →
(M, g) where (N, gN ) is a simply-connected Ricci-flat manifold and T q the q-torus equipped with
a flat metric gfl. This yields that the universal covering of M is isometric to (N, gN )× (Rq, g̃fl).
Note that a Riemannian product admits a non-trivial parallel spinor if and only if each of its
factors does. Since the universal covering of M carries a non-trivial parallel spinor by Step 3,
(N, gN ) carries a non-trivial parallel spinor. It now suffices to show that a suitable double
covering of the q-torus equipped with a flat metric and the spin structure pulled back from M
carries a non-trivial parallel spinor.

Since the q-torus is parallelizable and equipped with a flat metric, the SO(q)-principal bundle
of orthonormal frames SO(T q) can be trivialized such that the trivial connection coincides with
the Levi-Civita connection. Let s be the corresponding global section of SO(T q). Note that
double coverings over a connected manifold X are classified by homotopy classes of homomor-
phisms π1(X) → Z2 [9, Section 1.3].

Let G be {0}, Z or Z2 for q = 1, q = 2 or q > 2, respectively. By the trivialization of SO(T q),
we obtain an isomorphism π1(SO(T q)) ∼= Zq×G and the spin structure on T q, which is a certain
double cover of SO(T q), is classified by some map

(f1, f2) : Zq ×G → Z2.

For n > 1, the condition to be a spin principal bundle yields f2 ̸= 0 [13, Section 1, Corollary 1.5].
The isomorphism π1(T

q) ∼= Zq together with the map f1 : Zq → Z2 gives rise to a double cover-
ing T̄ q → T q. By construction, the pullback of the spin structure of T q along the map T̄ q → T q,
denoted by Spin

(
T̄ q

)
, is classified by the map (0, f2) : Zq × G → Z2. Therefore, the pullback

of the section s along the double covering T̄ q → T q lifts to a section of Spin
(
T̄ q

)
, hence yields

a trivialization of the Spin(q)-principal bundle of T̄ q.
Since the trivial connection on the trivialization of SO

(
T̄ q

)
coincides with the Levi-Civita

connection and we just lifted this trivialization, the trivial connection on the trivialization
of Spin

(
T̄ q

)
also coincides with the Levi-Civita connection. It follows that the constant sections

of the associated trivialized spinor bundle over T̄ q are parallel, and Theorem A is proved. ■
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