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Abstract. We study the relationship between Yang–Baxter maps and the independence
preserving (IP) property, motivated by their role in integrable systems, from the perspective
of ultra-discretization. Yang–Baxter maps satisfy the set-theoretic Yang–Baxter equation,
while the IP property ensures independence of transformed random variables. The relation-
ship between these two seemingly unrelated properties has recently started to be studied by
Sasada and Uozumi (2024). Ultra-discretization is a concept primarily used in the context
of integrable systems and is an area of active research, serving as a method for exploring the
connections between different integrable systems. However, there are few studies on how the
stationary distribution for integrable systems changes through ultra-discretization. In this
paper, we introduce the concept of ultra-discretization for probability distributions, and
prove that the properties of being a Yang–Baxter map and having the IP property are both
preserved under ultra-discretization. Applying this to quadrirational Yang–Baxter maps,
we confirm that their ultra-discrete versions retain these properties, yielding new examples
of piecewise linear maps having the IP property. We also explore implications of our results
for stationary distributions of integrable systems and pose several open questions.
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1 Introduction

1.1 Background

Recently, research has begun on the connection between Yang–Baxter maps and the indepen-
dence preserving property [17], which originated from very different fields.

For a bijective function F : X × X → X × X where X is a set, F is called a Yang–Baxter
map if it satisfies the “set-theoretical” Yang–Baxter equation

F12 ◦ F13 ◦ F23 = F23 ◦ F13 ◦ F12, (1.1)

where Fij acts on the i-th and j-th factors of the product X × X × X .

On the other hand, when X is a measurable set and F is a measurable bijection, F is said
to have the independence preserving property (IP property for short) if there is a quadruplet
of (non-Dirac) probability distributions µ, ν, µ̃, ν̃ satisfying F (µ× ν) = µ̃× ν̃. In other words,
there exist independent (non-constant) X -valued random variables X, Y such that U , V are
also independent with (U, V ) := F (X,Y ).
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The background of the study on this new connection lies in the equivalence between the
existence of independent and identically distributed (i.i.d.) stationary distributions for (1 + 1)-
dimensional lattice models, and the IP property of the map that governs the local evolution
of these lattice models [4]. In recent years, the existence of i.i.d. stationary distributions for
various examples of lattice models that define integrable systems has been discovered, and it has
been suggested that there may be a connection between the integrability and the IP property
[4, 5, 6]. Based on this idea, the authors of [17] demonstrated that a class of Yang–Baxter maps
known as quadrirational maps possess the IP property.

Furthermore, the paper [17] suggests that there are possible extensions of the study on the
relationship between Yang–Baxter maps and the IP property, such as ultra-discrete versions and
matrix-valued versions. In this paper, the relationship between Yang–Baxter maps and the IP
property is examined from the perspective of ultra-discretization.

Ultra-discretization is a concept primarily used in the context of integrable systems, and sim-
ilar ideas are referred to as tropicalization in algebraic geometry and the zero-temperature limit
in statistical mechanics. It is an operation that transforms the algebra of addition and multipli-
cation into the algebra of min (or max) and addition. Although there are slight differences in
the choice of signs and other details, these three terms essentially represent the same operation.
One of the simplest examples is that the ultra-discretization of the map F (x, y) =

(
x + y, xy

)
is F⋆(x, y) = (min{x, y}, x− y).

The study of ultra-discretization in integrable systems has already been actively pursued. For
instance, it is well-known that when the discrete KdV equation (which is a discretization of the
KdV equation) is ultra-discretized, the box-ball system is obtained [8, 20]. Moreover, research
on the relation between the ultra-discrete integrable systems and tropical geometry is also being
conducted (see [8] and references therein). On the other hand, in statistical mechanics, it is
widely known that the zero-temperature limit of polymer models gives rise to first/last passage
percolation, and there is a substantial body of research on this topic (see [7] and references
therein). Especially, research on stochastic integrable models has been particularly active in
recent years. However, the statistical approach of studying the stationary distribution of discrete
classical (i.e., deterministic) integrable systems has just begun in recent years, and studies
on how the stationary distribution changes through ultra-discretization has still been scarcely
conducted. This present paper lays the foundation for such studies in this direction.

1.2 Results

Our main result consists of general theorems on ultra-discretization and concrete results con-
cerning the case of quadrirational maps.

First, as general theorems, we show that the properties of being a Yang–Baxter map and hav-
ing the IP property are both preserved under ultra-discretization in an appropriate sense (Propo-
sition 2.6 and Theorem 3.4) . In particular, we introduce the concept of ultra-discretization for
a class of probability distributions and formulate the ultra-discretization of the IP property.
Based on the newly introduced definition, for example, the ultra-discretization of the gamma
distribution is a shifted exponential distribution (Proposition 3.5), and the ultra-discretization of
the generalized inverse Gaussian distribution is a shifted and truncated exponential distribution
(Theorem 3.7).

As a second result, by applying the previous general theorems, we confirmed that the ultra-
discretization of quadrirational Yang–Baxter maps are also Yang–Baxter maps, and further, that
they have the IP property (Theorems 2.12 and 3.9). As a result, a large number of examples
of piecewise linear functions that having the IP property have been obtained. Such examples
were previously very few, such as FExp(x, y) := (min{x, y}, x−y), which satisfies the IP property
with the exponential distributions and geometric distributions. By constructing a general theory,
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we are able to systematically provide many such examples. Moreover, in special cases, the result
implies that the continuous-valued version of the box-ball system, or its generalization, has an
independent and identically distributed (i.i.d.) stationary distribution. The IP property for
piecewise linear functions is also related to results concerning the stationary distribution of the
zero-temperature limit of polymer models [7].

1.3 Structure of the rest of this paper

In Section 2, we formulate the ultra-discretization of rational maps and show that the property
of being (parametrized) Yang–Baxter maps is preserved under the ultra-discretization (Propo-
sition 2.6). Then we recall the definition of quadrirational maps and explicitly calculate their
ultra-discretization. In Section 3, we formulate the ultra-discretization for a family of probability
distributions and show that the independence preservation property is preserved under ultra-
discretization in an appropriate sense (Theorem 3.4). Furthermore, we explicitly compute the
ultra-discretization for several specific probability distributions (Theorem 3.7). Finally, we show
that the ultra-discretization of quadrirational maps, obtained in Section 2, has the IP property
(Theorem 3.9). In Section 4, we discuss the relation of our result to various integrable systems
and address several open problems. A particularly important open question is the direct relation
between being a Yang–Baxter map (or a member of Yang–Baxter maps with parameters) and
having the IP property. Combining the results of the paper [17] and the current one suggests
a deeper relationship, but a direct mathematical connection has not yet been obtained.

2 Ultra-discretization of rational maps

2.1 Formulation and abstract results

For ε ∈ R+={x ∈ R | x > 0}, define Sε : R → R+ by Sε(x) = exp
(
−ε−1x

)
and Sn

ε : Rn → Rn
+ by

Sn
ε (x1, . . . , xn) = (Sε(x1), . . . , Sε(xn)).

These are bijections with S−1
ε (x) = −ε log x and (Sn

ε )
−1(x1, . . . , xn) =

(
S−1
ε (x1), . . . , S

−1
ε (xn)

)
their inverses. In the following, we simply write Sε instead of Sn

ε .

Let R+(x1, . . . , xn) denote the semi-ring of rational functions of form f = P
Q , where P and Q

are polynomials of x1, . . . , xn with positive real coefficients.

For f ∈ R+(x1, . . . , xn), denote by f⋆ the function on Rn which is obtained by replac-
ing (+,×)-algebra with (min,+)-algebra, i.e., f 7→ f⋆ is the semi-ring homomorphism from
R+(x1, . . . , xn) to the semi-ring of functions Rn → R endowed with operations (min,+) which
satisfies

c 7→ 0, xi 7→ xi, i = 1, . . . , n,

where c ∈ R+ is any positive constant function.

Example 2.1. If we define f ∈ R+(x, y) by f(x, y) = axk+byℓ

cxm+dyn where a, b, c, d > 0 and
k, ℓ,m, n ∈ N, we have f⋆(x, y) = min{kx, ℓy} −min{mx, ny}.

The function f⋆ is the ultra-discretization of f in the following sense.

Proposition 2.2. For f ∈ R+(x1, . . . , xn), (Sε)
−1 ◦ f ◦Sε : Rn → R converges uniformly on Rn

+

to f⋆ as ε ↓ 0.
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Proof. Since we have (Sε)
−1 ◦ f ◦ Sε = (Sε)

−1 ◦ P ◦ Sε − (Sε)
−1 ◦ Q ◦ Sε, it is sufficient to

show that (Sε)
−1 ◦ P ◦ Sε converges to P⋆ when P is a polynomial of x1, . . . , xn with positive

coefficients.
Let P =

∑
j gj , where each gj is a monomial with coefficient cj > 0. Then P⋆ = minj{gj⋆}

and we can write

S−1
ε ◦ P ◦ Sε = −ε log

(∑
j

cj exp
(
−ε−1gj⋆

))

= P⋆ − ε log

(
cj0 +

∑
j ̸=j0

cj exp
(
−ε−1(gj⋆ − P⋆)

))
,

where the index j0 = j0(x1, . . . , xn) with P⋆(x1, . . . , xn) = gj0⋆(x1, . . . , xn). Since gj⋆ − P⋆ ≥ 0
and cj are positive, we obtain

min
j
cj ≤ cj0 +

∑
j ̸=j0

cj exp
(
−ε−1(gj⋆ − P⋆)

)
≤

∑
j

cj ,

which implies the uniform convergence on Rn
+. ■

We will only use the uniform convergence on compact subsets of Rn
+. Note that the ultra-

discretization here is also called the tropicalization or the zero-temperature limit in other liter-
ature.

Remark 2.3. Note that the map f 7→ f⋆ is not injective even if we identify polynomials that
differ only in their coefficients. For example, if we define f, g ∈ R+(x, y) by f(x, y) = x2+xy+y2

and g(x, y) = x2 + y2, we have f⋆(x, y) = min{2x, x+ y, 2y} and g⋆(x, y) = min{2x, 2y}, which
are the same as functions on R2.

Remark 2.4. If we use S−ε instead of Sε, we will have the image in the (max,+) algebra as
the limit in Proposition 2.2.

Let F : X ×X → X ×X be a Yang–Baxter map on a set X , i.e., F satisfies the Yang–Baxter
equation (1.1) in Section 1.1. If S : X → X is a bijection and we denote S : X × X → X × X
by the map which acts as S on each component, then clearly S−1 ◦ F ◦ S is also a Yang–Baxter
map.

Combining this with Proposition 2.2, we have the following.

Proposition 2.5. If f1, f2 ∈ R+(x, y) and F = (f1, f2) : R2
+ → R2

+ is a Yang–Baxter map, then
F⋆ = (f1⋆, f2⋆) is a Yang–Baxter map on R2.

Next, we also consider the ultra-discretization of Yang–Baxter maps with parameters. Let
Fα,β : X × X → X ×X be a family of maps with parameters α, β. We say that

(
Fα,β

)
satisfies

the Yang–Baxter property if the Yang–Baxter equation

Fα,β
12 ◦ Fα,γ

13 ◦ F β,γ
23 = F β,γ

23 ◦ Fα,γ
13 ◦ Fα,β

12

holds for any (α, β, γ). If
(
Fα,β

)
also satisfies

F β,α
21 ◦ Fα,β

12 = id,(
Fα,β

)
is called a reversible Yang–Baxter family.

We can prove the Yang–Baxter property for the ultra-discretization with parameters in the
same way as the theorem above.
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Proposition 2.6. If fα,β1 , fα,β2 ∈ R+(x, y, α, β) and the family of maps
(
Fα,β

)
α,β∈R+

, where
Fα,β =

(
fα,β1 , fα,β2

)
: R2

+ → R2
+, satisfies the Yang–Baxter property, then(

Fα,β
⋆

)
α,β∈R =

(
fα,β1⋆ , fα,β2⋆

)
α,β∈R

satisfies the Yang–Baxter property on R2. Moreover, if
(
Fα,β

)
is a reversible Yang–Baxter

family, then
(
Fα,β
⋆

)
is also a reversible Yang–Baxter family.

Remark 2.7. In the preceding proposition, the quantities α, β were temporarily treated as
variables of F and reinterpreted as parameters after ultra-discretization. Accordingly, their
domain in F⋆ has changed from R+ to R.

Note that if we treat fα,β1 , fα,β2 as functions in R+(x, y) of fixed parameters α, β and perform
ultra-discretization, the information about the parameters can be lost, and we cannot obtain
the ultra-discretized Yang–Baxter maps with parameters.

Remark 2.8. The strategy to use the ultra-discretization to obtain piecewise linear Yang–
Baxter maps was also studied in [9, 10] in the context of discrete integrable systems.

2.2 Quadrirational maps

In this subsection, we review the quadrirational maps studied in [1, 15, 17], and consider the
ultra-discretization of them.

A map F : CP1×CP1 → CP1×CP1; (x, y) 7→ (u, v) is said to be quadrirational if both F and
its companion map F : CP1 × CP1 → CP1 × CP1; (x, v) 7→ (u, y) are birational, where CP1 is
the one-dimensional complex projective space. In [1], it is shown that any quadrirational map
F (x, y) =

(
u(x, y), v(x, y)

)
has the form

u(x, y) =
a(y)x+ b(y)

c(y)x+ d(y)
, v(x, y) =

A(x)y +B(x)

C(x)y +D(x)
,

where a, b, c, d, A, B, C, D are polynomials whose degrees are at most two. The authors of [1]
also showed that, any quadrirational map such that the highest degree of the coefficients in the
representations of both u and v is 2 is Möbius equivalent to any of the five families of maps
FI =

(
Fα,β
I

)
, FII =

(
Fα,β
II

)
, . . . , FV =

(
Fα,β
V

)
, where α and β are complex parameters.

Although the representative maps FI, . . . , FV are reversible Yang–Baxter maps, not all quadri-
rational maps satisfy the Yang–Baxter property because Möbius actions do not preserve the
Yang–Baxter property.

In [15], it is shown that there are additional 5 families of quadrirational Yang–Baxter maps
up to YB equivalence, named HI, HII, H

A
III, H

B
III and HV, and all of them are reversible. Here

two families of quadrirational maps
(
Fα,β

)
and

(
F̃α,β

)
are YB equivalent if there exists a family

of bijection ϕ(α) in CP1 such that F̃α,β =
(
ϕ(α)−1 × ϕ(β)−1

)
◦ Fα,β ◦ (ϕ(α)× ϕ(β)) holds.

It is also shown in [15] that HI and HII have subtraction-free representatives named H+
I

and H+
II respectively, and HA

III and H
B
III are originally subtraction-free:

H+,α,β
I (x, y) =

(
y

α

β + αx+ βy + αβxy

1 + x+ y + βxy
,
x

β

α+ αx+ βy + αβxy

1 + x+ y + αxy

)
,

H+,α,β
II (x, y) =

(
y

α

β + αx+ βy

1 + x+ y
,
x

β

α+ αx+ βy

1 + x+ y

)
,

HA,α,β
III (x, y) =

(
y

α

αx+ βy

x+ y
,
x

β

αx+ βy

x+ y

)
,

HB,α,β
III (x, y) =

(
y
1 + βxy

1 + αxy
, x

1 + αxy

1 + βxy

)
.
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In what follows, we restrict the variables x, y and the parameters α, β of these maps to lie
in R+ for applying ultra-discretization.

Define bijections I, θα : R+ → R+ by I(x) = 1
x and θα(x) = αx for α ∈ R+. As mentioned

in [17], HA
III and H

B
III have the following relationship:

HB,α,β
III = ((I ◦ θα)× id) ◦HA,α,β

III ◦ (id× (I ◦ θβ)),

in particular they are Möbius equivalent.
Note that we can consider naturally the limit of HB,α,β

III when α or β tend to 0, while it is
not possible for HA,α,β

III . We will introduce Yang–Baxter families with similar property which
are Möbius equivalent to H+,α,β

I and H+,α,β
II .

We define GI =
(
Gα,β

I

)
by

Gα,β
I = ((I ◦ θα)× id) ◦H+,α,β

I ◦ (id× (I ◦ θβ)).

The map Gα,β
I can be written explicitly as

Gα,β
I (x, y) =

(
y
1 + βx+ βy + βxy

1 + αx+ βy + αxy
, x

1 + αx+ αy + αxy

1 + αx+ βy + βxy

)
.

We also define GII =
(
Gα,β

II

)
by

Gα,β
II = (θα−1 × θβ−1) ◦H+,α−1,β−1

II ◦ (θα × θβ).

The map Gα,β
II can be written explicitly as

Gα,β
II (x, y) =

(
y
1 + βx+ βy

1 + αx+ βy
, x

1 + αx+ αy

1 + αx+ βy

)
.

Proposition 2.9. Maps GI and GII satisfy the Yang–Baxter property, and both are reversible.

Proof. The map GII is a (reparametrization of a) Yang–Baxter equivalent family of H+
II ,

thus GII clearly satisfies the Yang–Baxter property.
For GI, note that H+

I is a reversible Yang–Baxter family
(
as well as HA

III

)
. We also have by

direct calculation that

((I ◦ θα)× (I ◦ θβ)) ◦H+,α,β
I ◦ ((I ◦ θα)× (I ◦ θβ)) = H+,α,β

I .

Now the result follows from [15, Proposition 2]. The reversibility also follows by the same
argument. ■

Remark 2.10. For GII, similar construction as GI does not work, namely, the family
(
((I ◦

θα)× id) ◦H+,α,β
II ◦ (id× (I ◦ θβ))

)
does not satisfy the Yang–Baxter property. In particular, the

same argument as the proposition above cannot be applied to H+
II because

((I ◦ θα)× (I ◦ θβ)) ◦H+,α,β
II ◦ ((I ◦ θα)× (I ◦ θβ)) ̸= H+,α,β

II .

Remark 2.11. The map Gα,β
II is the same function as ψα,β in [13], where all the distributions

satisfying the IP property for Gα,β
II are characterized. Also, in [11], a family of non-commutative

Yang–Baxter maps Ka,b,−c was introduced, and the map Gα,β
I is YB equivalent to the commu-

tative version of K1,1,−1. Similarly, Gα,β
II is YB equivalent to the map K0,1,−1.

We can apply Proposition 2.6 to the subtraction-free Yang–Baxter families H+
I , GI, H

+
II ,

GII, H
A
III and H

B
III:
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Theorem 2.12. Let H+
I,⋆, GI,⋆, H

+
II,⋆, GII,⋆, H

A
III,⋆ and HB

III,⋆ be the ultra-discretization of H+
I ,

GI, H
+
II , GII, H

A
III and HB

III respectively. Then these families satisfy the Yang–Baxter property
on R2. Moreover, they are reversible.

The maps in Theorem 2.12 can be written as follows:

H+,α,β
I,⋆ (x, y) = (y − α+min{β, α+ x, β + y, α+ β + x+ y} −min{0, x, y, β + x+ y},

x− β +min{α, α+ x, β + y, α+ β + x+ y} −min{0, x, y, α+ x+ y}),

Gα,β
I,⋆ (x, y) = (y +min{0, β + x, β + y, β + x+ y} −min{0, α+ x, β + y, α+ x+ y},

x+min{0, α+ x, α+ y, α+ x+ y} −min{0, α+ x, β + y, β + x+ y}),

H+,α,β
II,⋆ (x, y) = (y − α+min{β, α+ x, β + y} −min{0, x, y},

x− β +min{α, α+ x, β + y} −min{0, x, y}),

Gα,β
II,⋆(x, y) = (y +min{0, β + x, β + y} −min{0, α+ x, β + y},

x+min{0, α+ x, α+ y} −min{0, α+ x, β + y}),

HA,α,β
III,⋆ (x, y) = (y − α+min{α+ x, β + y} −min{x, y},

x− β +min{α+ x, β + y} −min{x, y}),

HB,α,β
III,⋆ (x, y) = (y +min{0, β + x+ y} −min{0, α+ x+ y},

x+min{0, α+ x+ y} −min{0, β + x+ y}).

These functions are piecewise linear and the Yang–Baxter property of them could be proved di-
rectly, but our framework provides an alternative method for verifying the Yang–Baxter property
for these maps.

Remark 2.13. For GI,⋆, GII,⋆ and HB
III,⋆, we can naturally consider the limit when α or β

tend to ∞. Hence, similarly as summarized in the figure at [17, p. 4] for the subtraction-free
rational maps, we can consider special cases with α or β = ∞, which are ultra-discretization of
special cases of subtraction-free rational maps with α or β = 0. This limiting procedure is also
applicable for the IP property discussed in the latter sections.

Remark 2.14. If we use S−ε instead of Sε (in other words, min is replaced by max), some
different Yang–Baxter families are obtained. However, it can be shown that the Yang–Baxter
families obtained in this way from H+

I and GI are the same as GI,⋆ and H+
I,⋆, respectively.

Remark 2.15. The map HB,α,β
III is known to define the local dynamics of the modified discrete

KdV equation [16] and it is well known that up to the change of signs of variables, HB,α,β
III,⋆ define

the ultra-discrete KdV equation [9, 10]. In particular, when α, β ∈ N∪ {∞} and we restrict the
possible values of the variables so that x ∈ {0, 1, . . . , α} and y ∈ {0, 1, . . . , β}, then the dynamics
associated with the map HB,α,β

III,⋆ (up to the signs again) corresponds to the box-ball system with
box capacity α and carrier capacity β.

3 Ultra-discretization of probability distributions
and the independence preserving property

3.1 Formulation and abstract results

In this subsection, we introduce an ultra-discretization of probability distributions, which is new
as far as we know. Then we prove that the IP property is conserved under the ultra-discretization
in a proper sense.
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Definition 3.1. Let (µε)ε be probability distributions on R+ indexed by ε > 0. When S−1
ε (µε),

the pushforward measure of µε by S
−1
ε , converges weakly to a probability measure µ on R, then

we say that µ is the ultra-discretization of (µε)ε.

Next, we prove a general result concerning the weak convergence of pushforward of weakly
converging probability distributions by compactly converging functions.

Lemma 3.2. Let m, ℓ ∈ N and D ⊂ Rm be an open set. Let (µn)n∈N be a sequence of probability
distributions on D and (fn)n∈N be a sequence of continuous functions from D to Rℓ. Assume
that there exist a probability distribution µ on D and a continuous function f : D → Rℓ such that

µn → µ weakly, fn → f uniformly on any compact set K ⊂ D

as n goes to ∞. Then we have limn→∞ fn(µn) = f(µ) weakly.

Proof. We prove that for any bounded continuous function g : Rℓ → R,

lim
n→∞

E[g(fn(Xn))] = E[g(f(X))]

if Xn ∼ µn and X ∼ µ. Since µn → µ weakly, we have

lim
n→∞

E[g(f(Xn))] = E[g(f(X))].

Hence, we only need to prove that

lim
n→∞

|E[g(f(Xn))]− E[g(fn(Xn))]| = 0. (3.1)

Now, we prove that g ◦ fn → g ◦ f uniformly on any compact set K ⊂ D. Fix a compact set
K ⊂ D and suppose that g ◦ fn|K does not converge uniformly to g ◦ f |K . Then there exist
δ > 0, a sequence (xk)k∈N ⊂ K and an increasing sequence nk → ∞ (k → ∞) such that

|g(fnk
(xk))− g(f(xk))| > δ

for any k ∈ N. Since K is compact, we can even assume that xk converges to some x∞ ∈ K
by passing to a subsequence if necessary. Then, since fn converges to f uniformly on K,
limk→∞ fnk

(xk) = f(x∞) and so

lim
k→∞

(g(fnk
(xk))− g(f(xk))) = g(f(x∞))− g(f(x∞)) = 0

gives the contradiction.
Having this uniform convergence g ◦ fn → g ◦ f on compact sets, it is straightforward to

prove (3.1). In fact, assuming ∥g∥∞ ̸= 0, for any δ > 0, since µn → µ weakly, there exists
a compact set Kδ ⊂ D such that supn P (Xn /∈ Kδ) <

δ
4∥g∥∞ . Also, there exists nδ such that for

any n ≥ nδ and x ∈ Kδ, |g(fn(x))− g(f(x))| < δ
2 . Hence,

|E[g(fn(Xn))]− E[g(f(Xn))]| ≤ E[|g(fn(Xn))− g(f(Xn))|]
≤ E

[
2∥g∥∞1Xn /∈Kδ

]
+ E

[
|g(fn(Xn))− g(f(Xn))|1Xn∈Kδ

]
<
δ

2
+
δ

2
= δ.

Hence, the lemma follows. ■

Remark 3.3. The above lemma is essentially the same as [17, Lemma 4.3]. In this paper,
we only need to consider the case where ℓ = m = 2 and D = R2, while in [17], the case D = R2

+

is considered, with the codomains of the functions f and fn also being R2
+. Although the proof

is essentially the same, we provide it here as well for the sake of completeness.
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The next theorem is the main result of this subsection, which states that the IP property
is inherited to the ultra-discretization if such limits exist both for functions and probability
distributions.

Theorem 3.4. For a family of continuous functions Fε : R2
+ → R2

+ and probability distributions
µε, νε, µ̃ε, ν̃ε on R+ indexed by ε > 0, suppose that Fε(µε×νε) = µ̃ε×ν̃ε holds for any sufficiently
small ε > 0. If S−1

ε ◦ Fε ◦ Sε converges to F : R2 → R2 uniformly on any compact set and µ, ν,
µ̃, ν̃ are the ultra-discretization of (µε)ε, (νε)ε, (µ̃ε)ε, (ν̃ε)ε, respectively, then F (µ× ν) = µ̃× ν̃.

Proof. Let F̄ε := S−1
ε ◦ Fε ◦ Sε. By assumption, F̄ε

(
S−1
ε (µε)× S−1

ε (νε)
)
= S−1

ε (µ̃ε)× S−1
ε (ν̃ε).

Since µ, ν, µ̃, ν̃ are the ultra-discretization of µε, νε, µ̃ε, ν̃ε, respectively, S
−1
ε (µε)× S−1

ε (νε)
converges weakly to µ×ν and S−1

ε (µ̃ε)× S−1
ε (ν̃ε) converges weakly to µ̃×ν̃. Then, by Lemma 3.2,

F̄ε

(
S−1
ε (µε)× S−1

ε (νε)
)
converges weakly to F (µ× ν), and it is also the weak limit of S−1

ε (µ̃ε)×
S−1
ε (ν̃ε), hence we conclude F (µ× ν) = µ̃× ν̃. ■

3.2 Examples of probability distributions

In this subsection, we give concrete examples of ultra-discretization of probability distributions.
First, as a simple example for the ultra-discretization of probability distributions, we show

that the shifted exponential distribution is the ultra-discretization of the sequence of gamma
distributions. To state this result, we introduce gamma distributions and shifted exponential
distributions.

Gamma distribution. For λ, a > 0, the gamma distribution with parameters (λ, a), which
we denote Ga(λ, a), has density

1

Z
xλ−1e−ax1x>0,

where Z is a normalizing constant.
Shifted exponential distribution. For λ > 0, a ∈ R, the shifted exponential distribution

with parameters (λ, a), which we denote sExp(λ, a), has density

1

Z
e−λx1x>a,

where Z is a normalizing constant.

Proposition 3.5. Let µε be the probability distribution Ga(λε, Sε(a)) for λ > 0, a ∈ R. Then
sExp(λ,−a) is the ultra-discretization of (µε)ε.

Proof. Let µε := Ga(λε, Sε(a)). Then, since the normalizing constant of Ga(λ, a) is Γ(λ)
aλ

, the
density of S−1

ε (µε) is

e−λa

Γ(λε)ε
exp(−λx) exp

(
− exp

(
−x+ a

ε

))
.

Since limε→0 Γ(λε)ε =
1
λ and limε→0 exp

(
− exp

(
−x+a

ε

))
= 1x>−a + e−11x=−a, as ε → 0, the

above density function converges almost everywhere to

λe−λa exp(−λx)1x>−a,

which is the density function of sExp(λ,−a). By Scheffé’s lemma, we conclude the proof. ■

We symbolically denote this situation as Ga⋆ = sExp.
Next, we consider three classes of probability distributions on R+ with two positive param-

eters p, q > 0, which are introduced in [17]. In that paper, unnecessary extra parameters have
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been introduced for the Kummer distribution of Type 2 and the generalized inverse Gaussian
distribution, but they were deliberately used to provide a unified notation for how the three dis-
tributions relate concerning scale transformation and weak convergence. In the present paper,
we keep the same parametrization as the use of such a parametrization makes the statement of
main theorem unified and is also the key to understanding ultra-discretization of them.

Generalized beta prime distribution (p, q). For λ, a, b ∈ R, −b < λ
2 < a, the generalized

beta prime distribution with parameters (λ, a, b; p, q), which we denote gBe′(λ, a, b; p, q), has
density

1

Z
xλ−1(1 + px)−a−λ

2
(
1 + qx−1

)−b+λ
2 1x>0,

where Z is a normalizing constant.

Kummer distribution of Type 2 (p, q). For λ, b ∈ R, a > 0, −b < λ
2 , the Kummer

distribution of Type 2 with parameters (λ, a, b; p, q), which we denote K(λ, a, b; p, q), has density

1

Z
xλ−1e−apx

(
1 + qx−1

)−b+λ
2 1x>0,

where Z is a normalizing constant.

Generalized inverse Gaussian distribution (p, q). For λ ∈ R, a, b > 0, the generalized
inverse Gaussian distribution with parameters (λ, a, b; p, q), which we denote GIG(λ, a, b; p, q),
has density

1

Z
xλ−1e−apx−bqx−1

1x>0,

where Z is a normalizing constant.

The following three classes of probability distributions are the ultra-discretization of three
classes of probability distributions above with a suitable choice of parameters, which is proved
in Theorem 3.7. In the following, p, q ∈ R.

Mixed exponential distribution of beta type (p, q). For λ, a, b ∈ R, −b < λ
2 < a,

the mixed exponential distribution of beta type with parameters (λ, a, b; p, q), which we denote
mExpB(λ, a, b; p, q), has density

1

Z
e−λx

(
e(a+

λ
2
)(x+p)1x<−p + 1x>−p

)(
1x<q + e−(b−λ

2
)(x−q)1x>q

)
,

where Z is a normalizing constant.

Mixed exponential distribution of Kummer type (p, q). For λ, a, b ∈ R, −b < λ
2 , the

mixed exponential distribution of Kummer type with parameters (λ, a, b; p, q), which we denote
mExpK(λ, a, b; p, q), has density

1

Z
e−λx1x>−p−a

(
1x<q + e−(b−λ

2
)(x−q)1x>q

)
,

where Z is a normalizing constant.

Mixed exponential distribution of GIG type (p, q). For λ, a, b ∈ R with a+b+p+q > 0,
the mixed exponential distribution of GIG type with parameters (λ, a, b; p, q), which we denote
mExpGIG(λ, a, b; p, q), has density

1

Z
e−λx1x>−p−a1x<b+q,

where Z is a normalizing constant.
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Remark 3.6. The mixed exponential distribution of GIG type is a shifted and truncated ex-
ponential distribution.

Theorem 3.7. Fix p, q ∈ R.

(i) Let µε be the probability distribution Be′(λε, aε, bε;Sε(p), Sε(q)) for λ, a, b ∈ R, −b< λ
2 <a.

Then mExpB(λ, a, b; p, q) is the ultra-discretization of (µε)ε.

(ii) Let µε be the probability distribution K(λε, Sε(a), bε;Sε(p), Sε(q)) for λ, a, b ∈ R, −b < λ
2 .

Then mExpK(λ, a, b; p, q) is the ultra-discretization of (µε)ε.

(iii) Let µε be the probability distribution GIG(λε, Sε(a), Sε(b);Sε(p), Sε(q)) for λ, a, b ∈ R.
Assume a+ b+ p+ q > 0. Then mExpGIG(λ, a, b; p, q) is the ultra-discretization of (µε)ε.

Proof. (i) Let µε = gBe′(λε, aε, bε;Sε(p), Sε(q)). Then the density of S−1
ε (µε) is

1

Zε
exp(−λx)

(
1 + exp

(
−p+ x

ε

))−ε(a+λ
2
)(

1 + exp

(
−q − x

ε

))−ε(b−λ
2
)

where

Zε =

∫
R
exp(−λx)

(
1 + exp

(
− p+ x

ε

))−ε(a+λ
2
)(

1 + exp

(
−q − x

ε

))−ε(b−λ
2
)

dx.

First, by direct computations, we have

lim
ε→0

(
1 + exp

(
−p+ x

ε

))−ε(a+λ
2
)

= 1x+p≥0 + e(p+x)(a+λ
2
)1x+p<0

and

lim
ε→0

(
1 + exp

(
−q − x

ε

))−ε(b−λ
2
)

= 1q−x≥0 + e(q−x)(b−λ
2
)1q−x<0.

Hence, we only need to prove that limε→0 Zε = Z, where

Z =

∫
R
exp(−λx)

(
1x+p≥0 + e(p+x)(a+λ

2
)1x+p<0

)(
1q−x≥0 + e(q−x)(b−λ

2
)1q−x<0

)
.

Since (
1 + exp

(
−p+ x

ε

))−ε(a+λ
2
)

≤ max
{
1, 2−ε(a+λ

2
)
}(

1x+p≥0 + e(p+x)(a+λ
2
)1x+p<0

)
,

and (
1 + exp

(
−q − x

ε

))−ε(b−λ
2
)

≤ max
{
1, 2−ε(b−λ

2
)
}(

1q−x≥0 + e(q−x)(b−λ
2
)1q−x<0

)
,

there exists C > 0 such that for sufficiently small ε > 0,

exp(−λx)
(
1 + exp

(
−p+ x

ε

))−ε(a+λ
2
)(

1 + exp

(
−q − x

ε

))−ε(b−λ
2
)

≤ C exp(−λx)
(
1x+p≥0 + e(p+x)(a+λ

2
)1x+p<0

)(
1q−x≥0 + e(q−x)(b−λ

2
)1q−x<0

)
.
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Since the last expression is integrable over R, by the Lebesgue convergence theorem, we conclude
limε→0 Zε = Z.

(ii) Let µε = K(λε, Sε(a), bε;Sε(p), Sε(q)). Then the density of S−1
ε (µε) is

1

Zε
exp(−λx) exp

(
− exp

(
−a+ p+ x

ε

))(
1 + exp

(
−q − x

ε

))−ε(b−λ
2
)

,

where Zε is the normalizing constant. By direct computations,

lim
ε→0

exp

(
− exp

(
−a+ p+ x

ε

))
= 1x+p+a>0 + e−11x+p+a=0.

Hence, by the same argument as (i), the result follows.
(iii) The proof is completed in the same way as in (i) and (ii). ■

Based on the result of this theorem, from now on, we denote gBe′⋆ = mExpB, K⋆ = mExpK
and GIG⋆ = mExpGIG. We note that gBe′(λ, a, b; 1, 1) is the beta prime distribution Be′ and
mExpB(λ, a, b; 0, 0) is the asymmetric Laplace distribution AL, so as a special case we have the
relation Be′⋆ = AL.

3.3 IP property for ultra-discretization of quadrirational maps

In this subsection, we apply Theorem 3.4 to concrete rational functions and obtain the IP
property for the ultra-discretization of rational functions.

First, as a very classical example, recall that for FGa(x, y) :=
(
x+y, xy

)
, its ultra-discretization

is explicitly computed as FGa,⋆(x, y) = (min{x, y}, x − y)(= FExp(x, y)). Then, applying The-
orem 3.4 and the fact that Ga⋆ = sExp and Be′⋆ = AL, from the IP property of gamma
distributions for FGa, we obtain the IP property of shifted exponential distributions for FGa,⋆

without any direct computation (see also [7, Proposition 5.7]).
In the following, we prove the IP property for the ultra-discretization of quadrirational maps

using the same approach.
Recall that H+,α,β

I,⋆ , H+,α,β
II,⋆ and HA,α,β

III,⋆ are obtained in Theorem 2.12. To obtain the IP
property of these maps, we first recall the IP property for the quadrirational maps obtained
in [17].

Theorem 3.8 ([17, Theorem 1.1]). Let α, β > 0. If X and Y are R+-valued independent random
variables with the following marginal distributions, then the R+-valued random variables U , V
given by (U, V ) = F (X,Y ) for each map are independent and have the following marginal
distributions:

(i) For F = H+,α,β
I ,

X ∼ gBe′(λ, a, b;α, 1), Y ∼ gBe′(−λ, a, b;β, 1),
U ∼ gBe′(−λ, a, b;α, 1), V ∼ gBe′(λ, a, b;β, 1),

where λ ∈ R, a, b > 0, −min{a, b} < λ
2 < min{a, b}.

(ii) For F = H+,α,β
II ,

X ∼ K(λ, a, b;α, 1), Y ∼ K(−λ, a, b;β, 1),
U ∼ K(−λ, a, b;α, 1), V ∼ K(λ, a, b;β, 1),

where λ ∈ R, a, b > 0, −b < λ
2 < b.
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(iii) For F = HA,α,β
III ,

X ∼ GIG(λ, a, b;α, 1), Y ∼ GIG(−λ, a, b;β, 1),
U ∼ GIG(−λ, a, b;α, 1), V ∼ GIG(λ, a, b;β, 1),

where λ ∈ R, a, b > 0.

Then, as a consequence of Theorems 3.4, 3.7 and 3.8, we have the following IP property for
the ultra-discretization of quadrirational maps.

Theorem 3.9. Let α, β ∈ R. If X and Y are R-valued independent random variables with the
following marginal distributions, then the R-valued random variables U , V given by (U, V ) =
F (X,Y ) for each map are independent and have the following marginal distributions:

(i) For F = H+,α,β
I,⋆ ,

X ∼ gBe′⋆(λ, a, b;α, 0), Y ∼ gBe′⋆(−λ, a, b;β, 0),
U ∼ gBe′⋆(−λ, a, b;α, 0), V ∼ gBe′⋆(λ, a, b;β, 0),

where λ ∈ R, a, b > 0, −min{a, b} < λ
2 < min{a, b}.

(ii) For F = H+,α,β
II,⋆ ,

X ∼ K⋆(λ, a, b;α, 0), Y ∼ K⋆(−λ, a, b;β, 0),
U ∼ K⋆(−λ, a, b;α, 0), V ∼ K⋆(λ, a, b;β, 0),

where a, λ ∈ R, b > 0, −b < λ
2 < b.

(iii) For F = HA,α,β
III,⋆ ,

X ∼ GIG⋆(λ, a, b;α, 0), Y ∼ GIG⋆(−λ, a, b;β, 0),
U ∼ GIG⋆(−λ, a, b;α, 0), V ∼ GIG⋆(λ, a, b;β, 0),

where a, b, λ ∈ R, a+ b > max{−α,−β}.

Proof. The proof follows by applying Proposition 2.2, Theorems 3.4, 3.7 and 3.8 for each
quadrirational map and quadruplets of probability distributions. ■

Similar to the result of Yang–Baxter property for the ultra-discretization of quadrirational
maps, it is not straightforward to obtain this theorem by direct calculations. Therefore, applying
the general theorem for the ultra-discretization of the IP property (namely, Theorem 3.4) is
a reasonable approach.

Remark 3.10. As discussed in Remark 2.15, for α, β ∈ N∪{∞}, it is known that the mapHB,α,β
III,⋆

induces the generalized box-ball system BBS(α, β) [18]. Hence, to understand the stationary
distributions of BBS(α, β), its IP property with respect to probability distributions supported
on the discrete sets {0, 1, 2, . . . , α} for X and {0, 1, 2, . . . , β} for Y has been studied in detail
in [5]. Also, for general α, β ∈ R, [4] studied the IP property of HB,α,β

III,⋆ and obtained partial
characterization results.

Remark 3.11. Similar to HB,α,β
III,⋆ , for H+,α,β

I,⋆ , H+,α,β
II,⋆ and HA,α,β

III,⋆ , there should be discrete
probability distributions which also satisfy the IP property. We have a guess that the discretized
version of probability distributions Be′⋆, K⋆ and GIG⋆ may satisfy the IP property, but we do
not pursue it here.

Remark 3.12. The IP property with the similar distribution as Theorem 3.9 also holds for GI,⋆,
GII,⋆ and HB

III,⋆ since they are obtained by simple change of variables from H+
I,⋆, H

+
II,⋆ and HA

III,⋆.
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4 Discussion

4.1 Relation to integrable systems

In this subsection, we review relations between the Yang–Baxter maps studied in this paper
and some integrable lattice systems, whose dynamics are deterministic or random. Importantly,
their (special class of) stationary distributions are often characterized by the IP property of the
Yang–Baxter maps.

For deterministic models, the map HB,α,β
III with special parameters α = 1, β = 0 is known

to define the discrete KdV equation, and its ultra-discretization defines the box-ball system
(cf. [8, 10, 19, 20]). More generally, as mentioned in Remark 2.15, HB,α,β

III is related to the
modified discrete KdV equation and its ultra-discretization HB,α,β

III,⋆ defines the box-ball system
with the box capacity α and the carrier capacity β for α, β ∈ N ∪ {∞}. On the other hand,
in [4], under a very general setting, the i.i.d. type stationary distributions associated to the
deterministic lattice dynamics defined by a local map F are shown to be characterized by the
distributions having the IP property for this map F . Applying this general result, the i.i.d. type
stationary distributions of the discrete KdV equation, the modified discrete KdV equation and
the box-ball systems with/without capacity are partially characterized in [5] and [4] with the
result on the IP property shown in [14]. Other than HB,α,β

III,⋆ , whether the ultra-discretization of
quadrirational maps correspond to some (ultra-discrete) integrable systems is, at least to our
knowledge, unknown.

For stochastic models, the maps FGa and FBe(x, y) :=
( 1−y
1−xy , 1− xy

)
are found to have a close

relation to positive temperature (1 + 1)-dimensional random polymers [2]. Actually, in [2], the
authors characterize all (1 + 1)-dimensional stationary random polymers having a nice inte-
grable property. For this, the IP property of FGa and FBe and characterization of the distribu-
tions having the IP property play essential roles. Following the approach of [2, 7] studies the
zero-temperature version of (1 + 1)-dimensional stationary random polymers, which are related
to FGa,⋆ and FBe′,⋆ where FBe′(x, y) =

(1+x+y
xy , 1+y

x

)
is the subtraction-free version of FBe. Same

for the positive temperature case, the distributions having the IP property for FGa,⋆ and FBe′,⋆

induce the stationary distributions for random polymers, but the complete characterization of
the zero-temperature version of (1+1)-dimensional stationary random polymers is still missing.

4.2 Open problems

In this subsection, we mention some open problems.

First, as the most fundamental question, the mathematical relation between the Yang–Baxter
property and the IP property is completely open. Although several similarities between the two
properties have been revealed in the previous study [17] and in this paper, a direct mathematical
connection between them remains to be established, and would be of great interest. In particular,
the Yang–Baxter property considered here is a notion pertaining to a family of maps, whereas
the IP property is defined for individual maps. Furthermore, the IP property is invariant under
arbitrary changes of variables in each component, while the Yang–Baxter property does not
share this invariance. These distinctions highlight the conceptual differences between the two,
and so a precise formalization of their relationship is a challenging open question.

Next, as a problem related only to the Yang–Baxter property, can we classify all the ultra-
discrete quadrirational maps having the Yang–Baxter property, which has been already done for
the quadrirational maps [15]? Here, the ultra-discrete quadrirational map is a piecewise linear
map from R2 to R2 whose inverse map is (well-defined and) also a piecewise linear map, and
whose companion map as well as its inverse map are also (well-defined and) piecewise linear.

The characterization of the distributions having the IP property for the ultra-discretization
of quadrirational maps introduced in this paper is almost open. To the best of our knowledge,
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the only case that has been fully characterized is FExp = FGa,⋆, which was done in [3]. In fact,
in general, for the ultra-discrete versions, there are not only continuous distributions with den-
sity functions, but also discrete distributions that have the IP property. In particular, for the
three functions given in our main theorem, there should also be discrete distributions having the
IP property, but this has not yet been done except for HB,α,β

III,⋆ , which was studied in [4] and [5].
Furthermore, simply finding examples of discrete distributions is not sufficient for a complete
characterization, and a complete characterization without any condition on the property of the
distribution is considered to be a rather difficult task. We note that for the original quadrira-
tional maps HI, HII and HIII in Theorem 3.8, the characterization problem has been completely
resolved in the following order: the case of HIII in [14], HII in [13], and HI in [12].

Related to the last subsection, it is also interesting to see whether there is a determinis-
tic/stochastic lattice dynamics induced by the map H+

I , H+
I,⋆, H

+
II and H+

II,⋆.
Given that the quadrirational maps HI, HII and HIII are derived from a fully geometric back-

ground in [1, 15], one would expect that a similar geometric characterization would be possible
for their ultra-discrete versions. In particular, whether the Yang–Baxter property for HI,⋆, HII,⋆

and HIII,⋆ can be understood by tropical geometry is an important open question. Moreover, it
would be exciting if the IP property can be also understood geometrically in a certain sense.

Finally, a more practical problem would be the following. In this paper, we have taken the
approach of considering an ultra-discrete version of what was known about the relationship
between Yang–Baxter property and the IP property. As mentioned in [17], there could be
an approach to consider a higher dimensional version, especially a matrix version, instead of the
ultra-discrete version. In fact, part of this work is in progress.
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