Symmetry, Integrability and Geometry: Methods and Applications SIGMA 21 (2025), 084, 16 pages

Ultra-Discretization of Yang—Baxter Maps,
Probability Distributions and Independence
Preserving Property

Hiroki KONDO #, Sachiko NAKAJIMA ® and Makiko SASADA P

2) Faculty of Data Science, Shimonoseki City University, Yamaguchi 751-8510, Japan
E-mail: kondo-hi@shimonoseki-cu.ac.jp

) Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo 153-8914, Japan
E-mail: sachiko.nakajima@steam?21.com, sasada@ms.u-tokyo.ac.jp

Received May 02, 2025, in final form October 07, 2025; Published online October 13, 2025
https://doi.org/10.3842/SIGMA.2025.084

Abstract. We study the relationship between Yang—Baxter maps and the independence
preserving (IP) property, motivated by their role in integrable systems, from the perspective
of ultra-discretization. Yang—Baxter maps satisfy the set-theoretic Yang—Baxter equation,
while the IP property ensures independence of transformed random variables. The relation-
ship between these two seemingly unrelated properties has recently started to be studied by
Sasada and Uozumi (2024). Ultra-discretization is a concept primarily used in the context
of integrable systems and is an area of active research, serving as a method for exploring the
connections between different integrable systems. However, there are few studies on how the
stationary distribution for integrable systems changes through ultra-discretization. In this
paper, we introduce the concept of ultra-discretization for probability distributions, and
prove that the properties of being a Yang—Baxter map and having the IP property are both
preserved under ultra-discretization. Applying this to quadrirational Yang—Baxter maps,
we confirm that their ultra-discrete versions retain these properties, yielding new examples
of piecewise linear maps having the IP property. We also explore implications of our results
for stationary distributions of integrable systems and pose several open questions.
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1 Introduction

1.1 Background

Recently, research has begun on the connection between Yang-Baxter maps and the indepen-
dence preserving property [17], which originated from very different fields.

For a bijective function F': X x X — X x X where X is a set, F' is called a Yang—Baxter
map if it satisfies the “set-theoretical” Yang—Baxter equation

Fi9 0 Fi3 0 Fag = Fyz 0 I3 0 Fo, (1.1)

where Fj; acts on the i-th and j-th factors of the product X x X x X.

On the other hand, when X is a measurable set and F' is a measurable bijection, F' is said
to have the independence preserving property (IP property for short) if there is a quadruplet
of (non-Dirac) probability distributions p, v, fi, 7 satisfying F'(u X v) = fi X . In other words,
there exist independent (non-constant) X-valued random variables X, Y such that U, V are
also independent with (U, V) := F(X,Y).
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The background of the study on this new connection lies in the equivalence between the
existence of independent and identically distributed (i.i.d.) stationary distributions for (1 + 1)-
dimensional lattice models, and the IP property of the map that governs the local evolution
of these lattice models [4]. In recent years, the existence of i.i.d. stationary distributions for
various examples of lattice models that define integrable systems has been discovered, and it has
been suggested that there may be a connection between the integrability and the IP property
[4, 5, 6]. Based on this idea, the authors of [17] demonstrated that a class of Yang—Baxter maps
known as quadrirational maps possess the IP property.

Furthermore, the paper [17] suggests that there are possible extensions of the study on the
relationship between Yang—Baxter maps and the IP property, such as ultra-discrete versions and
matrix-valued versions. In this paper, the relationship between Yang—Baxter maps and the IP
property is examined from the perspective of ultra-discretization.

Ultra-discretization is a concept primarily used in the context of integrable systems, and sim-
ilar ideas are referred to as tropicalization in algebraic geometry and the zero-temperature limit
in statistical mechanics. It is an operation that transforms the algebra of addition and multipli-
cation into the algebra of min (or max) and addition. Although there are slight differences in
the choice of signs and other details, these three terms essentially represent the same operation.
One of the simplest examples is that the ultra-discretization of the map F(z,y) = (:U + 1, %)
is Fi(x,y) = (min{z,y},z —y).

The study of ultra-discretization in integrable systems has already been actively pursued. For
instance, it is well-known that when the discrete KdV equation (which is a discretization of the
KdV equation) is ultra-discretized, the box-ball system is obtained [8, 20]. Moreover, research
on the relation between the ultra-discrete integrable systems and tropical geometry is also being
conducted (see [8] and references therein). On the other hand, in statistical mechanics, it is
widely known that the zero-temperature limit of polymer models gives rise to first/last passage
percolation, and there is a substantial body of research on this topic (see [7] and references
therein). Especially, research on stochastic integrable models has been particularly active in
recent years. However, the statistical approach of studying the stationary distribution of discrete
classical (i.e., deterministic) integrable systems has just begun in recent years, and studies
on how the stationary distribution changes through ultra-discretization has still been scarcely
conducted. This present paper lays the foundation for such studies in this direction.

1.2 Results

Our main result consists of general theorems on ultra-discretization and concrete results con-
cerning the case of quadrirational maps.

First, as general theorems, we show that the properties of being a Yang—Baxter map and hav-
ing the IP property are both preserved under ultra-discretization in an appropriate sense (Propo-
sition 2.6 and Theorem 3.4) . In particular, we introduce the concept of ultra-discretization for
a class of probability distributions and formulate the ultra-discretization of the IP property.
Based on the newly introduced definition, for example, the ultra-discretization of the gamma
distribution is a shifted exponential distribution (Proposition 3.5), and the ultra-discretization of
the generalized inverse Gaussian distribution is a shifted and truncated exponential distribution
(Theorem 3.7).

As a second result, by applying the previous general theorems, we confirmed that the ultra-
discretization of quadrirational Yang—Baxter maps are also Yang—Baxter maps, and further, that
they have the IP property (Theorems 2.12 and 3.9). As a result, a large number of examples
of piecewise linear functions that having the IP property have been obtained. Such examples
were previously very few, such as Fiyp (2, y) := (min{z, y}, 2 —y), which satisfies the IP property
with the exponential distributions and geometric distributions. By constructing a general theory,
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we are able to systematically provide many such examples. Moreover, in special cases, the result
implies that the continuous-valued version of the box-ball system, or its generalization, has an
independent and identically distributed (i.i.d.) stationary distribution. The IP property for
piecewise linear functions is also related to results concerning the stationary distribution of the
zero-temperature limit of polymer models [7].

1.3 Structure of the rest of this paper

In Section 2, we formulate the ultra-discretization of rational maps and show that the property
of being (parametrized) Yang—Baxter maps is preserved under the ultra-discretization (Propo-
sition 2.6). Then we recall the definition of quadrirational maps and explicitly calculate their
ultra-discretization. In Section 3, we formulate the ultra-discretization for a family of probability
distributions and show that the independence preservation property is preserved under ultra-
discretization in an appropriate sense (Theorem 3.4). Furthermore, we explicitly compute the
ultra-discretization for several specific probability distributions (Theorem 3.7). Finally, we show
that the ultra-discretization of quadrirational maps, obtained in Section 2, has the IP property
(Theorem 3.9). In Section 4, we discuss the relation of our result to various integrable systems
and address several open problems. A particularly important open question is the direct relation
between being a Yang—Baxter map (or a member of Yang-Baxter maps with parameters) and
having the IP property. Combining the results of the paper [17] and the current one suggests
a deeper relationship, but a direct mathematical connection has not yet been obtained.

2 Ultra-discretization of rational maps

2.1 Formulation and abstract results

Fore € Ry ={z € R| z > 0}, define S.: R — Ry by S.(z) = exp(—&~'z) and S?: R" — R by
SH(x1, ..y xn) = (Se(x1), ..., Se(zp)).

These are bijections with S (z) = —elogz and (S2)~*(21,...,2n) = (S2H(z1), ..., S (zn))
their inverses. In the following, we simply write S, instead of ST

Let Ry(x1,...,2,) denote the semi-ring of rational functions of form f = g, where P and Q)
are polynomials of x1,...,x, with positive real coefficients.

For f € Ry(z1,...,x,), denote by f, the function on R"™ which is obtained by replac-
ing (4, x)-algebra with (min, +)-algebra, i.e., f — f, is the semi-ring homomorphism from

Ry(x1,...,2p) to the semi-ring of functions R” — R endowed with operations (min,+) which
satisfies
c— 0, T; — Ty, 1=1,....,n,

where ¢ € R, is any positive constant function.

Example 2.1. If we define f € Ry(z,y) by f(z,y) = % where a,b,c,d > 0 and

k,l,m,n € N, we have f.(x,y) = min{kz, fy} — min{mz, ny}.
The function fy is the wltra-discretization of f in the following sense.

Proposition 2.2. For f € Ry (z1,...,2,), (S:) 1o foS.: R = R converges uniformly on R’}
to fr as el 0.
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Proof. Since we have (S:)"to foS. = (S:)"toPoS. —(S:)"toQoS,, it is sufficient to
show that (S.)~! o P o S. converges to P, when P is a polynomial of z1,...,x, with positive
coefficients.

Let P =3, g;, where each g; is a monomial with coefficient ¢; > 0. Then P, = min;{gj.}
and we can write

Se_l oPoS.=—clog <Z Cj eXp(—E_lgj*)>

J

=P, —¢log <ch + Z Cj exp(—s_l(gj* - P*)))a
J#Jo
where the index jo = jo(x1,...,2n) with Po(21,...,2,) = gjox(T1,...,2p). Since gj — P, >0
and c; are positive, we obtain

mjin c; < ¢jy+ Z Cj exp(—s_l(gj* - P*)) < chv
J#Jo J

which implies the uniform convergence on R'}. |

We will only use the uniform convergence on compact subsets of R”}. Note that the ultra-
discretization here is also called the tropicalization or the zero-temperature limit in other liter-
ature.

Remark 2.3. Note that the map f — fx is not injective even if we identify polynomials that
differ only in their coefficients. For example, if we define f, g € R, (x,y) by f(x,y) = 22 +xy+1?
and g(x,y) = 2% + y2, we have fi(r,y) = min{2x,z + y,2y} and g.(z,y) = min{2z, 2y}, which
are the same as functions on R2.

Remark 2.4. If we use S_. instead of S., we will have the image in the (max,+) algebra as
the limit in Proposition 2.2.

Let F: X x X — X x X be a Yang—Baxter map on a set X, i.e., F satisfies the Yang—Baxter
equation (1.1) in Section 1.1. If S: X — X is a bijection and we denote S: X x X — X x X
by the map which acts as S on each component, then clearly S~ o F o S is also a Yang-Baxter
map.

Combining this with Proposition 2.2, we have the following.

Proposition 2.5. If f1, fo € Ry(z,y) and F = (f1, f2): RL — R% is a Yang-Bazter map, then
Fy = (fix, fox) is a Yang—Bazter map on R2.

Next, we also consider the ultra-discretization of Yang—Baxter maps with parameters. Let
FoP: X x X — X x X be a family of maps with parameters «, 3. We say that (FO‘”B) satisfies
the Yang—Baxter property if the Yang—Baxter equation

Ffé’ﬁ o Flog'y o ng"y = FQ%’7 ) Floé’ﬁ’ o FIQQ’B
holds for any («, 3,7). If (Fa’ﬁ) also satisfies
Fl® o FEP = id,

(Fo‘ﬂ ) is called a reversible Yang—Baxter family.
We can prove the Yang-Baxter property for the ultra-discretization with parameters in the
same way as the theorem above.
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Proposition 2.6. If f' o f2 b ¢ Ry(z,y,a, B) and the family of maps (F“’ )a,BeR+’ where
Fob = (f o, Sy B) R2 — R , satisfies the Yang—Baxter property, then 7
(Ff’ﬁ)a BER (fl* , fan )a,BGR

satisfies the Yang-Baxter property on R2. Moreover, if (FO‘”B) 1s a reversible Yang-Baxter
family, then (Ff’ﬁ) s also a reversible Yang—Baxter family.

Remark 2.7. In the preceding proposition, the quantities «, 8 were temporarily treated as
variables of F' and reinterpreted as parameters after ultra-discretization. Accordingly, their
domain in F} has changed from R4 to R.

Note that if we treat fla’ﬁ, f;’ﬁ as functions in Ry (z,y) of fixed parameters «, 5 and perform
ultra-discretization, the information about the parameters can be lost, and we cannot obtain
the ultra-discretized Yang—Baxter maps with parameters.

Remark 2.8. The strategy to use the ultra-discretization to obtain piecewise linear Yang—
Baxter maps was also studied in [9, 10] in the context of discrete integrable systems.

2.2 Quadrirational maps

In this subsection, we review the quadrirational maps studied in [1, 15, 17], and consider the

ultra-discretization of them.

A map F: CP! x CP! — CP! x CP!; (z,%) — (u,v) is said to be quadrirational if both F and
its companion map F: CP! x CP! — CP! x CP!;(x,v) — (u,y) are birational, where CP" is
the one-dimensional complex projective space. In [1], it is shown that any quadrirational map
F(z,y) = (u(z,y),v(z,y)) has the form

a(y)z + b(y)
c(y)z +d(y)’

A(x)y + B(x)

(@, y) = C(z)y + D(z)’

U(l’, y) =
where a, b, ¢, d, A, B, C, D are polynomials whose degrees are at most two. The authors of [1]
also showed that, any quadrirational map such that the highest degree of the coefficients in the
representations of both u and v is 2 is Mdobius equivalent to any of the five families of maps
= (FIO"B),FH = (FIOI"ﬂ), LRy = (F{;"B), where o and 3 are complex parameters.

Although the representative maps F, ..., Fy are reversible Yang—Baxter maps, not all quadri-
rational maps satisfy the Yang—Baxter property because Mo6bius actions do not preserve the
Yang-Baxter property.

In [15], it is shown that there are additional 5 families of quadrirational Yang—Baxter maps
up to YB equivalence, named Hiy, Hiyy, HIH, HIH and Hvy, and all of them are reversible. Here
two families of quadrirational maps (Fo‘ B ) and (FO‘ B ) are YB equivalent if there exists a family
of bijection ¢(ar) in CP! such that F8 = ()™t x ¢(B)71) o F¥F o (¢(a) x ¢(8)) holds.

It is also shown in [15] that H; and Hy have subtraction-free representatives named HIJr
and Hﬁ respectively, and Hﬁ‘l and HI% are originally subtraction-free:

B )_<yﬁ+ax+5y+oz,8xy xa+ax+5y+aﬁa;y>
I Y a l+z+y+Bzy B 14+zx+y+axy

H+°‘B < y B+ ax + By xa—i—aw—l—ﬂy)
a l+az+y "B 1+ax+y )’
HAaﬁ :<yaﬂc+ﬁy $0190+5y>
we T e ey 8 ety )
HBO"ﬁ B 1+ Bxy 1+aa:y
m \HY) =1Y :
1+ axy’ 1+ﬂxy
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In what follows, we restrict the variables x, y and the parameters «, [ of these maps to lie
in R, for applying ultra-discretization.
Define bijections I,0,: Ry — Ry by I(z) = 2 and 64(z) = az for a € R;. As mentioned

in [17], Hff; and HE; have the following relationship:
Hifi™? = (I 0 0a) x id) o Hyji™” o (id x (I 0 5)),

in particular they are Mobius equivalent.

Note that we can consider naturally the limit of HHf %8 when a or B tend to 0, while it is
not possible for Hﬂllo‘ #. We will introduce Yang Baxter families with similar property which
are Mobius equivalent to H; 8 and Hg b

We define G1 = (G ) by
GSP = ((I08,) xid) o Hy"™" o (id x (I 0 8p)).

The map G?’ﬁ can be written explicitly as

o8 14+ Bx+pPy+ PBry 1+ ax+ ay+ axy
Gy (z,y) = |y

,T
l+ax+By+axy’ 1+ ax+ By+ Bry
We also define Gy = (GIO‘I”B) by

G?‘Iﬁ = (-1 X 9571) o Hf;’a_l’ﬁ_l o (0, X Hﬂ)_

The map G?I’B can be written explicitly as

1+ Bx+ l+axr+ o
Gyl (w,y) = <y bz + By y)

, T
l4+ax+ By 1+ax+ By
Proposition 2.9. Maps G1 and Gr1 satisfy the Yang—Baxter property, and both are reversible.

Proof. The map Gy is a (reparametrization of a) Yang-Baxter equivalent family of H. H,
thus Gy clearly satisfies the Yang—Baxter property.

For Gy, note that HIJr is a reversible Yang—Baxter family (as well as Hﬁ‘l). We also have by
direct calculation that

((I00a) x (I003)) 0 H ™" o ((I06a) x (I005)) = H™".

Now the result follows from [15, Proposition 2]. The reversibility also follows by the same
argument. [}

Remark 2.10. For Gy, similar construction as Gp does not work, namely, the family (((I o
0,) xid) o H;Ir’a’ﬂ o(id x (I o6p))) does not satisfy the Yang-Baxter property. In particular, the
same argument as the proposition above cannot be applied to Hﬁr because

((T00a) x (Io03)) 0 Hy™" o ((I00a) x (I 005)) # Hp™”.

Remark 2.11. The map GH’E 1s the same function as 1, g in [13], where all the distributions
satisfying the IP property for G{y P are characterized. Also, in [11], a family of non-commutative
Yang-Baxter maps KCqp, . was 1ntr0duced and the map G} %8 is YB equivalent to the commu-
tative version of Ky 1,—;. Similarly, Giy fis YB equivalent to the map Ko1 1.

We can apply Proposition 2.6 to the subtraction-free Yang Baxter families H;", Gy, H H,
G, Hf‘%I and HI%:
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Theorem 2.12. Let Hf*, G1xs Hf‘i*, Gl %, Hﬁll’* and HIJ?L* be the ultra-discretization of H;',

Gy, Hff , G, Hf‘I‘I and HI% respectively. Then these families satisfy the Yang—Bazxter property
on R?. Moreover, they are reversible.

The maps in Theorem 2.12 can be written as follows:

Hﬂ:aﬁ(afay) =(y—a+min{f,a+z,+y,a+ B+ x+y} —min{0,z,y, 8+ z + y},
r—f+min{a,a+z,8+y,a+f+z+y} —min{0,z,y,a+z +y}),
G?f’f(w,y) = (y+min{0,8+xz,8+y,8+x+y} —min{0,a+z,8+y,a+z+y},
r+min{0,a +z,a+y,a+z+y} —min{0,a +z,8+y,B+z+y}),
Hp P (2,y) = (y — o+ min{B,a + z, 8 + y} — min{0, z,y},
r — B+ min{a,a+z, 8+ y} — min{0, z,y}),
Giil(@,y) = (y+min{0, B+, B +y} —min{0,a +z, 8 +y},

.%'—FmiH{0,0é‘i‘.T,Oé‘i‘y} - min{(),oa—i—%ﬁ%—y}),

A . .
HIII’?:B(xa y) = (y —a+ mln{a + 2, /8 + 3/} - Hlln{{E, y}a

T — ﬁ+m1n{a +x, B +y} - min{xay})v
Hﬁf,o;ﬁ(wvy) = (y + min{0, 8 + = + y} — min{0, o + = + y},
r + min{0,« + z + y} — min{0, B + = + y}).

These functions are piecewise linear and the Yang—Baxter property of them could be proved di-
rectly, but our framework provides an alternative method for verifying the Yang—Baxter property
for these maps.

Remark 2.13. For Gy, G, and HI% ,» we can naturally consider the limit when a or 3
tend to co. Hence, similarly as summarized in the figure at [17, p. 4] for the subtraction-free
rational maps, we can consider special cases with a or 5 = oo, which are ultra-discretization of
special cases of subtraction-free rational maps with a or 8 = 0. This limiting procedure is also
applicable for the IP property discussed in the latter sections.

Remark 2.14. If we use S_. instead of S. (in other words, min is replaced by max), some
different Yang—Baxter families are obtained. However, it can be shown that the Yang—Baxter

families obtained in this way from HIJr and G are the same as Gp, and HI+ .» respectively.

Remark 2.15. The map Hﬁl’a’ﬁ is known to define the local dynamics of the modified discrete
KdV equation [16] and it is well known that up to the change of signs of variables, Hﬁffi’ﬂ define
the ultra-discrete KdV equation [9, 10]. In particular, when «, 5 € NU{oco} and we restrict the
possible values of the variables so that € {0,1,...,a}and y € {0,1,..., 5}, then the dynamics
associated with the map Hgf’oi’ﬂ (up to the signs again) corresponds to the box-ball system with

box capacity « and carrier capacity .

3 Ultra-discretization of probability distributions
and the independence preserving property

3.1 Formulation and abstract results

In this subsection, we introduce an ultra-discretization of probability distributions, which is new
as far as we know. Then we prove that the IP property is conserved under the ultra-discretization
in a proper sense.
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Definition 3.1. Let (). be probability distributions on R indexed by & > 0. When S=*(p),
the pushforward measure of y. by S-!, converges weakly to a probability measure y on R, then
we say that p is the ultra-discretization of (uc)e.

Next, we prove a general result concerning the weak convergence of pushforward of weakly
converging probability distributions by compactly converging functions.

Lemma 3.2. Let m,¢ € N and D C R™ be an open set. Let (pin)nen be a sequence of probability
distributions on D and (f,)nen be a sequence of continuous functions from D to RY. Assume
that there exist a probability distribution p on D and a continuous function f: D — R? such that

W — 1 weakly, fn — f uniformly on any compact set K C D

as n goes to co. Then we have limy, o0 fr(n) = f(p) weakly.

Proof. We prove that for any bounded continuous function ¢: R — R,

lim Elg(fn(Xn))] = Elg(f(X))]

n—o0

if X,, ~ pn, and X ~ p. Since p, — p weakly, we have

lim Elg(f(X,))] = Elg(f(X))].

n—o0

Hence, we only need to prove that

lim |E[g(f(Xn))] = Elg(f2(Xn))]| = 0. (3.1)

n—o0

Now, we prove that g o f, — g o f uniformly on any compact set K C D. Fix a compact set
K C D and suppose that g o f,|x does not converge uniformly to g o f|x. Then there exist
d > 0, a sequence (zx)reny C K and an increasing sequence ng — 0o (k — 00) such that

|9(fri (1)) — 9(f (2x))| > 6

for any k € N. Since K is compact, we can even assume that xj converges to some o € K
by passing to a subsequence if necessary. Then, since f, converges to f uniformly on K,

limy o0 fr, (k) = f(2s) and so
1 (g (24)) — 9(7(@1)) = 9(7(2:0)) — 9(F () = 0

gives the contradiction.

Having this uniform convergence g o f,, — g o f on compact sets, it is straightforward to
prove (3.1). In fact, assuming ||g|loc # 0, for any § > 0, since p,, — p weakly, there exists
a compact set K5 C D such that sup,, P(X,, ¢ Kj) < 4“9%. Also, there exists ns such that for

any n > ng and z € Ky, |g(fn(x)) — g(f(x))] < g. Hence,

|Elg(fn(Xn))] = Elg(f(Xu)]| < Ellg(f2(Xn)) = g(f(Xn))]]

< E[2||9lloLx,¢r,] + E[lg(fn(Xn) = 9(f(Xn))1x,eK,]

§ 0
<§+§—5.

Hence, the lemma follows. |

Remark 3.3. The above lemma is essentially the same as [17, Lemma 4.3]. In this paper,
we only need to consider the case where £ =m = 2 and D = R?, while in [17], the case D = R%
is considered, with the codomains of the functions f and f, also being R?. Although the proof
is essentially the same, we provide it here as well for the sake of completeness.
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The next theorem is the main result of this subsection, which states that the IP property
is inherited to the ultra-discretization if such limits exist both for functions and probability
distributions.

Theorem 3.4. For a family of continuous functions F: Ri — Ri and probability distributions
e, Ve, fle, Ve on Ry indezxed by e > 0, suppose that Fe(pue. X v:) = [ic X Ve holds for any sufficiently
small e > 0. If S-1 o F. o S. converges to F: R? — R? uniformly on any compact set and p, v,
i, U are the ultra-discretization of (pe)e, (Ve)e, (fle)e, (Pe)e, Tespectively, then F(u X v) = i X D.

Proof. Let F. := S;! o F. 0 S.. By assumption, F. (S (pe) x So1(ve)) = S2H(fe) x S H(we).
Since u, v, ji, U are the ultra-discretization of pe, ve, fic, e, respectively, S=!(ue) x S=1(ve)
converges weakly to puxv and S=1(jic) x S-1(#) converges weakly to fix 7. Then, by Lemma 3.2,
F. (S (ue) x S71(v.)) converges weakly to F(u x v), and it is also the weak limit of S (fi.) x
S=Y(.), hence we conclude F(u x v) = ji X . [

3.2 Examples of probability distributions

In this subsection, we give concrete examples of ultra-discretization of probability distributions.

First, as a simple example for the ultra-discretization of probability distributions, we show
that the shifted exponential distribution is the ultra-discretization of the sequence of gamma
distributions. To state this result, we introduce gamma distributions and shifted exponential
distributions.

Gamma distribution. For \,a > 0, the gamma distribution with parameters (A, a), which
we denote Ga(\, a), has density

%xk_le_a$lz>0a

where Z is a normalizing constant.

Shifted exponential distribution. For A > 0, a € R, the shifted exponential distribution
with parameters (A, a), which we denote sExp(A, a), has density

1

—Azr
Ee 1x>a’

where Z is a normalizing constant.

Proposition 3.5. Let u. be the probability distribution Ga(Ae, Sc(a)) for A > 0,a € R. Then
sExp(\, —a) is the ultra-discretization of (pe)e.

Proof. Let p. := Ga(Ae, Sc(a)). Then, since the normalizing constant of Ga(\,a) is %, the

density of St (ue) is

Fe(;i)g exp(—Az) exp<_ exp(—x u a))

Since lim._,o I'(Ae)e :% and lim._,o exp(— exp(—xsﬂ)) =140 g+e11my, as e — 0, the

above density function converges almost everywhere to

e M@ exp(—Az)lys_q,
which is the density function of sExp(\, —a). By Scheffé’s lemma, we conclude the proof. |

We symbolically denote this situation as Ga, = sExp.
Next, we consider three classes of probability distributions on Ry with two positive param-
eters p,q > 0, which are introduced in [17]. In that paper, unnecessary extra parameters have
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been introduced for the Kummer distribution of Type 2 and the generalized inverse Gaussian
distribution, but they were deliberately used to provide a unified notation for how the three dis-
tributions relate concerning scale transformation and weak convergence. In the present paper,
we keep the same parametrization as the use of such a parametrization makes the statement of
main theorem unified and is also the key to understanding ultra-discretization of them.

Generalized beta prime distribution (p, q). For \,a,b € R, —b < % < a, the generalized
beta prime distribution with parameters (), a,b;p,q), which we denote gBe'(\,a,b;p,q), has
density

1 ,_ _a—2 —1\—b+2
Eﬁ Y(1 4 px)~® 2(1+qx 1) T2 1,00,
where Z is a normalizing constant.

Kummer distribution of Type 2 (p,q). For \,b € R, a > 0, —b < %, the Kummer
distribution of Type 2 with parameters (A, a, b; p, q), which we denote K(\, a, b; p, q), has density

1

Efole*“Pff(l + qa:fl)_b 2

+7
2 1JE>07

where Z is a normalizing constant.

Generalized inverse Gaussian distribution (p,q). For A € R, a,b > 0, the generalized
inverse Gaussian distribution with parameters (A, a, b; p, q), which we denote GIG(A, a,b;p, q),
has density

1y 1
E$A le apxr—bqx ]-:1:>0>

where Z is a normalizing constant.

The following three classes of probability distributions are the ultra-discretization of three
classes of probability distributions above with a suitable choice of parameters, which is proved
in Theorem 3.7. In the following, p,q € R.

Mixed exponential distribution of beta type (p,q). For A\ a,b € R, —b < % < a,
the mixed exponential distribution of beta type with parameters (), a, b;p, q), which we denote
mExpB(A, a, b; p, q), has density

%e—m (@ DET, 4 1)) (Lyeg + 0O DE-01,_ ),
where Z is a normalizing constant.

Mixed exponential distribution of Kummer type (p,q). For \,a,b € R, —b < %, the
mixed exponential distribution of Kummer type with parameters (A, a,b; p, q), which we denote
mExpK(\, a, b; p, q), has density
lef)‘xl o (1 _i_e*(b*%)(x*q)l )

A x>—p—al\+tr<q xr>q)»
where Z is a normalizing constant.

Mixed exponential distribution of GIG type (p, q). For A\, a,b € R with a+b+p+q > 0,
the mized exponential distribution of GIG type with parameters (A, a,b;p,q), which we denote
mExpGIG(A, a, b; p, q), has density

1
-
Ee zlx>—p—alz<b+qa

where Z is a normalizing constant.
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Remark 3.6. The mixed exponential distribution of GIG type is a shifted and truncated ex-
ponential distribution.

Theorem 3.7. Fiz p,q € R.

(i) Let pe be the probability distribution Be' (e, ag, be; S=(p), S=(q)) for \,a,b € R, —b< % <a.
Then mExpB(\, a, b; p, q) is the ultra-discretization of (jue)e.

(i1) Let pie be the probability distribution K(Ae, S:(a), be; Se(p), S=(q)) for A\,a,b € R, —=b < 3.
Then mExpK (A, a, b; p, q) is the ultra-discretization of (pe)e-

(791) Let pe be the probability distribution GIG(Ae, S:(a), S:(b); S:(p), S:(q)) for X\,a,b € R.
Assume a+b+p+q > 0. Then mExpGIG(\, a, b; p, q) is the ultra-discretization of (fic)e.

Proof. (i) Let p. = gBe'(\e, ag, be; Sc(p), S:(q)). Then the density of S 1(u.) is

—e(a+3) . —e(b—2)
1exp(—/\x)<1+exp<—p+x>> : <1—|—exp<—q$>> ’
- € €

where

A

—E(CH-A) _ —e(b—3%)
Zgz/exp()\x)<1+exp(p—;x>) ’ (1+exp<q5x>> ’ dz.
R

First, by direct computations, we have

P+ —(at3) N
igno (1 + exp <— - >> = ]-:EerZO + e(p+x)(a+§)1x+p<0

and

qg—z fa(bfé) \
lim (1 + exp <— )) =14_>0 + e(qfx)(bff)lq_xdj.
e—0 £

Hence, we only need to prove that lim._,g Z. = Z, where
2 Za) (b
7 = / eXP(*)@)(lxﬂozo + e(p+z)(a+2)1x+p<0) (1q7120 + ela—2)(® 2)1q7x<0)_
R

Since

fs(aJr%)
<1 e <_p _i?_ $>> < max{l, 276(%%) } (1x+p20 + e(p+x)(a+%)1:c+p<0)v

and

_ —e(b-3)
<1 e <_q £ x>> < max{1,275C" D} (1 4mp + DD, ),

there exists C' > 0 such that for sufficiently small € > 0,

—e(a+3) B —e(b—2)
exp(—)w)(l—i—exp(—pi—x)) ’ <1+exp<—q €x>) i

< Cexp(—\z) (1x+p20 + e(p+m)(a+%)1x+p<0) (1q_x20 + e(q*””)(b*%)lq_x@).
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Since the last expression is integrable over R, by the Lebesgue convergence theorem, we conclude
lim, 0 Z. = Z.
(ii) Let pue = K(Ae, Se(a), be; S=(p), Sc(q)). Then the density of S=1(u.) is

_ —e(b—3)
ieX]D(—/\x) exp(— exp<_a+p+m>> (1 +exp<—q l‘)) 2 7
e e €

where Z; is the normalizing constant. By direct computations,

. a+p+x _
lim exp <_ exXp <_5>> = laipra>o te 11w+p+a:0'

e—0

Hence, by the same argument as (i), the result follows.
(iii) The proof is completed in the same way as in (i) and (ii). |

Based on the result of this theorem, from now on, we denote gBe, = mExpB, K, = mExpK
and GIG, = mExpGIG. We note that gBe’()\, a,b;1,1) is the beta prime distribution Be’ and
mExpB(A, a,b;0,0) is the asymmetric Laplace distribution AL, so as a special case we have the
relation Be, = AL.

3.3 IP property for ultra-discretization of quadrirational maps

In this subsection, we apply Theorem 3.4 to concrete rational functions and obtain the IP
property for the ultra-discretization of rational functions.

First, as a very classical example, recall that for Fg,(z,y) := (ac—i—y, %), its ultra-discretization
is explicitly computed as Fga.(z,y) = (min{z,y},z — y)(= Fexp(x,y)). Then, applying The-
orem 3.4 and the fact that Ga, = sExp and Be, = AL, from the IP property of gamma
distributions for Fg,, we obtain the IP property of shifted exponential distributions for Fga «
without any direct computation (see also [7, Proposition 5.7]).

In the following, we prove the IP property for the ultra-discretization of quadrirational maps
using the same approach.

Recall that HIJr *’O"ﬁ , Hﬁ'fﬂ and Hﬁll’i’ﬁ are obtained in Theorem 2.12. To obtain the IP
property of these maps, we first recall the IP property for the quadrirational maps obtained
in [17].

Theorem 3.8 ([17, Theorem 1.1]). Let a, 3 > 0. If X andY are RT -valued independent random
variables with the following marginal distributions, then the R™-valued random variables U, V
given by (U, V) = F(X,Y) for each map are independent and have the following marginal
distributions:

y j— +7 75
(i) For F = H{"™",

X ~gBe' () a,b;a,1), Y ~ gBe/ (=, a,b; 8,1),
U~ gBe (=) a,b;a,1), V ~ gBe' (), a,b; 3,1),

where A € R, a,b > 0, —min{a, b} < % < min{a, b}.
(ii) For F = H*",

XNK()‘aavb;aal)a YNK(_)‘7a>b;ﬂa 1)a
U~K(=\a,ba,l), V ~K(\a,b;5,1),

where A € R, a,b>0, —b < 5 <b.
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(iii) For F = H{;*P,

X ~ GIG(\, a,b; 1), Y ~ GIG(=A, a,b; 8, 1),
U~ GIG(=\,a,b;a,1),  V ~GIG(\ a,b;3,1),

where A € R, a,b > 0.

Then, as a consequence of Theorems 3.4, 3.7 and 3.8, we have the following IP property for
the ultra-discretization of quadrirational maps.

Theorem 3.9. Let o, € R. If X and Y are R-valued independent random variables with the
following marginal distributions, then the R-valued random wvariables U, V given by (U, V) =
F(X,Y) for each map are independent and have the following marginal distributions:

(i) For F = Hﬂ:a’ﬁ,

X ~ gBel (A, a,b;a,0), Y ~ gBel(=\,a,b;5,0),
U ~ gBe), (=, a,b;,0), V ~ gBe, (A, a,b; 8,0),

where A € R, a,b > 0, —min{a, b} < % < min{a, b}.
(i) For F = H;®",

X ~Ki(\ a,b;a,0), Y ~ Ki(=\,a,b; 3,0),
UNK*(—)\,a,b;Oé,O), VNK*()‘vaab;ﬁaO),

where a, A\ € R, b > 0, —b<%<b.
(iii) For F = H{i%",

X ~ GIG«(\, a, b; a,0), Y ~ GIG4 (=, a,b; 3,0),
U ~ GIG«(—A\, a,b;,0), V ~ GIG4 (A, a,b; 8,0),

where a,b,\ € R, a 4+ b > max{—a, —(}.

Proof. The proof follows by applying Proposition 2.2, Theorems 3.4, 3.7 and 3.8 for each
quadrirational map and quadruplets of probability distributions. |

Similar to the result of Yang—Baxter property for the ultra-discretization of quadrirational
maps, it is not straightforward to obtain this theorem by direct calculations. Therefore, applying
the general theorem for the ultra-discretization of the IP property (namely, Theorem 3.4) is
a reasonable approach.

Remark 3.10. As discussed in Remark 2.15, for o, f € NU{oo}, it is known that the map Hgﬁ’ﬁ
induces the generalized box-ball system BBS(a, §) [18]. Hence, to understand the stationétry
distributions of BBS(«, §), its IP property with respect to probability distributions supported
on the discrete sets {0,1,2,...,a} for X and {0,1,2,...,3} for Y has been studied in detail
in [5]. Also, for general o, 8 € R, [4] studied the IP property of Hgfi’ﬁ and obtained partial
characterization results. 7

Remark 3.11. Similar to Hﬁl’ojﬁ, for Hfr*’a’ﬁ, HIJI“*O"B and Hﬁii’ﬁ, there should be discrete
probability distributions which also satisfy the IP provperty. We have a guess that the discretized
version of probability distributions Be,, K, and GIG, may satisfy the IP property, but we do
not pursue it here.

Remark 3.12. The IP property with the similar distribution as Theorem 3.9 also holds for G7 4,

G, and HI% , since they are obtained by simple change of variables from HIJr " Hﬁr . and Hﬁ‘l e
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4 Discussion

4.1 Relation to integrable systems

In this subsection, we review relations between the Yang—Baxter maps studied in this paper
and some integrable lattice systems, whose dynamics are deterministic or random. Importantly,
their (special class of) stationary distributions are often characterized by the IP property of the
Yang—Baxter maps.

For deterministic models, the map HI%’O‘”B with special parameters a = 1, § = 0 is known
to define the discrete KdV equation, and its ultra-discretization defines the box-ball system
(cf. [8, 10, 19, 20]). More generally, as mentioned in Remark 2.15, HI%’O"E is related to the
modified discrete KAV equation and its ultra-discretization HI%’O:’B defines the box-ball system
with the box capacity « and the carrier capacity 8 for o, € Nu {o0}. On the other hand,
in [4], under a very general setting, the i.i.d. type stationary distributions associated to the
deterministic lattice dynamics defined by a local map F are shown to be characterized by the
distributions having the IP property for this map F'. Applying this general result, the i.i.d. type
stationary distributions of the discrete KdV equation, the modified discrete KdV equation and
the box-ball systems with/without capacity are partially characterized in [5] and [4] with the
result on the IP property shown in [14]. Other than Hﬁl’i’ﬂ , whether the ultra-discretization of
quadrirational maps correspond to some (ultra-discrete) integrable systems is, at least to our
knowledge, unknown.

For stochastic models, the maps Fg, and Fpe(x,y) := (11—_9331’
relation to positive temperature (1 + 1)-dimensional random polymers [2]. Actually, in [2], the
authors characterize all (1 + 1)-dimensional stationary random polymers having a nice inte-
grable property. For this, the IP property of Fg, and Fge and characterization of the distribu-
tions having the IP property play essential roles. Following the approach of [2, 7] studies the
zero-temperature version of (1 + 1)-dimensional stationary random polymers, which are related
to Fgax and Fpy , where Fpy(z,y) = (ltfiyﬂ, %) is the subtraction-free version of F.. Same
for the positive temperature case, the distributions having the IP property for Fga s+ and Fpe
induce the stationary distributions for random polymers, but the complete characterization of
the zero-temperature version of (14 1)-dimensional stationary random polymers is still missing.

1-— acy) are found to have a close

4.2 Open problems

In this subsection, we mention some open problems.

First, as the most fundamental question, the mathematical relation between the Yang—Baxter
property and the IP property is completely open. Although several similarities between the two
properties have been revealed in the previous study [17] and in this paper, a direct mathematical
connection between them remains to be established, and would be of great interest. In particular,
the Yang-Baxter property considered here is a notion pertaining to a family of maps, whereas
the IP property is defined for individual maps. Furthermore, the IP property is invariant under
arbitrary changes of variables in each component, while the Yang-Baxter property does not
share this invariance. These distinctions highlight the conceptual differences between the two,
and so a precise formalization of their relationship is a challenging open question.

Next, as a problem related only to the Yang—Baxter property, can we classify all the ultra-
discrete quadrirational maps having the Yang—Baxter property, which has been already done for
the quadrirational maps [15]7 Here, the ultra-discrete quadrirational map is a piecewise linear
map from R? to R? whose inverse map is (well-defined and) also a piecewise linear map, and
whose companion map as well as its inverse map are also (well-defined and) piecewise linear.

The characterization of the distributions having the IP property for the ultra-discretization
of quadrirational maps introduced in this paper is almost open. To the best of our knowledge,
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the only case that has been fully characterized is Fryxp = FGax, which was done in [3]. In fact,
in general, for the ultra-discrete versions, there are not only continuous distributions with den-
sity functions, but also discrete distributions that have the IP property. In particular, for the
three functions given in our main theorem, there should also be discrete distributions having the
IP property, but this has not yet been done except for Hﬁl’i’ﬁ , which was studied in [4] and [5].
Furthermore, simply finding examples of discrete distributions is not sufficient for a complete
characterization, and a complete characterization without any condition on the property of the
distribution is considered to be a rather difficult task. We note that for the original quadrira-
tional maps Hy, Hyr and Hyyp in Theorem 3.8, the characterization problem has been completely
resolved in the following order: the case of Hiyy in [14], Hyp in [13], and Hj in [12].

Related to the last subsection, it is also interesting to see whether there is a determinis-
tic/stochastic lattice dynamics induced by the map H;", Hfr " Hﬁ“ and HIJIr e

Given that the quadrirational maps Hy, Hyr and Hypp are derived from a ’fully geometric back-
ground in [1, 15], one would expect that a similar geometric characterization would be possible
for their ultra-discrete versions. In particular, whether the Yang-Baxter property for Hy ., Hir «
and Hipp . can be understood by tropical geometry is an important open question. Moreover, it
would be exciting if the IP property can be also understood geometrically in a certain sense.

Finally, a more practical problem would be the following. In this paper, we have taken the
approach of considering an ultra-discrete version of what was known about the relationship
between Yang-Baxter property and the IP property. As mentioned in [17], there could be
an approach to consider a higher dimensional version, especially a matrix version, instead of the
ultra-discrete version. In fact, part of this work is in progress.
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