|
SIGMA 21 (2025), 085, 35 pages arXiv:1712.07097
https://doi.org/10.3842/SIGMA.2025.085
Categorical Fermionic Actions and Minimal Modular Extensions
César Galindo and César F. Venegas-Ramírez
Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia
Received March 12, 2025, in final form October 04, 2025; Published online October 13, 2025
Abstract
We define fermionic actions of finite super-groups on fermionic fusion categories and establish necessary and sufficient conditions for their existence. Our main result characterizes when a braided fusion category admits a minimal non-degenerate extension in terms of cohomological obstructions. This characterization for braided fusion categories with non-Tannakian Müger center involves the fermionic structures and fermionic actions introduced in this work.
Key words: modular categories; minimal modular extensions.
pdf (606 kb)
tex (43 kb)
References
- Bruguières A., Catégories prémodulaires, modularisations et invariants des variétés de dimension 3, Math. Ann. 316 (2000), 215-236.
- Bruillard P., Galindo C., Hagge T., Ng S.-H., Plavnik J.Y., Rowell E.C., Wang Z., Fermionic modular categories and the 16-fold way, J. Math. Phys. 58 (2017), 041704, 31 pages, arXiv:1603.09294.
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
- Cui S.X., Galindo C., Plavnik J.Y., Wang Z., On gauging symmetry of modular categories, Comm. Math. Phys. 348 (2016), 1043-1064, arXiv:1510.03475.
- Deligne P., Catégories tensorielles, Mosc. Math. J. 2 (2002), 227-248.
- Drinfeld V., Gelaki S., Nikshych D., Ostrik V., On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), 1-119, arXiv:0906.0620.
- Eilenberg S., Mac Lane S., On the groups $H(\Pi,n)$, I, Ann. of Math. 58 (1953), 55-106.
- Eilenberg S., Mac Lane S., On the groups $H(\Pi,n)$, II: Methods of computation, Ann. of Math. 60 (1954), 49-139.
- Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., Vol. 205, American Mathematical Society, Providence, RI, 2015.
- Etingof P., Nikshych D., Ostrik V., Fusion categories and homotopy theory, Quantum Topol. 1 (2010), 209-273, arXiv:0909.3140.
- Etingof P., Nikshych D., Ostrik V., Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 (2011), 176-205, arXiv:0809.3031.
- Galindo C., Clifford theory for tensor categories, J. Lond. Math. Soc. 83 (2011), 57-78, arXiv:0902.1088.
- Galindo C., On braided and ribbon unitary fusion categories, Canad. Math. Bull. 57 (2014), 506-510, arXiv:1209.2022.
- Galindo C., Coherence for monoidal $G$-categories and braided $G$-crossed categories, J. Algebra 487 (2017), 118-137, arXiv:1604.01679.
- Galindo C., Hong S.-M., Rowell E.C., Generalized and quasi-localizations of braid group representations, Int. Math. Res. Not. 2013 (2013), 693-731, arXiv:1105.5048.
- Gelaki S., Nikshych D., Nilpotent fusion categories, Adv. Math. 217 (2008), 1053-1071, arXiv:math.QA/0610726.
- Gordon R., Power A.J., Street R., Coherence for tricategories, Mem. Amer. Math. Soc. 117 (1995), vi+81 pages.
- Johnson-Freyd T., Reutter D., Minimal nondegenerate extensions, J. Amer. Math. Soc. 37 (2024), 81-150, arXiv:2105.15167.
- Joyal A., Street R., Braided tensor categories, Adv. Math. 102 (1993), 20-78.
- Kitaev A., Fault-tolerant quantum computation by anyons, Ann. Physics 303 (2003), 2-30, arXiv:quant-ph/9707021.
- Kitaev A., Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006), 2-111, arXiv:cond-mat/0506438.
- Lan T., Kong L., Wen X.-G., Modular extensions of unitary braided fusion categories and $2+1{\rm D}$ topological/SPT orders with symmetries, Comm. Math. Phys. 351 (2017), 709-739, arXiv:1602.05936.
- Moore G., Seiberg N., Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), 177-254.
- Müger M., Galois theory for braided tensor categories and the modular closure, Adv. Math. 150 (2000), 151-201, arXiv:math.CT/9812040.
- Müger M., On the structure of modular categories, Proc. Lond. Math. Soc. 87 (2003), 291-308, arXiv:math.CT/0201017.
- Ostrik V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), 177-206, arXiv:math.QA/0111139.
- Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
- Schauenburg P., Turning monoidal categories into strict ones, New York J. Math. 7 (2001), 257-265.
- Tambara D., Representations of tensor categories with fusion rules of self-duality for abelian groups, Israel J. Math. 118 (2000), 29-60.
- Tambara D., Invariants and semi-direct products for finite group actions on tensor categories, J. Math. Soc. Japan 53 (2001), 429-456.
- Wang Z., Topological quantum computation, CBMS Reg. Conf. Ser. Math., Vol. 112, American Mathematical Society, Providence, RI, 2010.
- Wen X.G., Topological orders in rigid states, Internat. J. Modern Phys. B 4 (1990), 239-271.
- Witten E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399.
|
|