Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 085, 35 pages      arXiv:1712.07097      https://doi.org/10.3842/SIGMA.2025.085

Categorical Fermionic Actions and Minimal Modular Extensions

César Galindo and César F. Venegas-Ramírez
Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia

Received March 12, 2025, in final form October 04, 2025; Published online October 13, 2025

Abstract
We define fermionic actions of finite super-groups on fermionic fusion categories and establish necessary and sufficient conditions for their existence. Our main result characterizes when a braided fusion category admits a minimal non-degenerate extension in terms of cohomological obstructions. This characterization for braided fusion categories with non-Tannakian Müger center involves the fermionic structures and fermionic actions introduced in this work.

Key words: modular categories; minimal modular extensions.

pdf (606 kb)   tex (43 kb)  

References

  1. Bruguières A., Catégories prémodulaires, modularisations et invariants des variétés de dimension 3, Math. Ann. 316 (2000), 215-236.
  2. Bruillard P., Galindo C., Hagge T., Ng S.-H., Plavnik J.Y., Rowell E.C., Wang Z., Fermionic modular categories and the 16-fold way, J. Math. Phys. 58 (2017), 041704, 31 pages, arXiv:1603.09294.
  3. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
  4. Cui S.X., Galindo C., Plavnik J.Y., Wang Z., On gauging symmetry of modular categories, Comm. Math. Phys. 348 (2016), 1043-1064, arXiv:1510.03475.
  5. Deligne P., Catégories tensorielles, Mosc. Math. J. 2 (2002), 227-248.
  6. Drinfeld V., Gelaki S., Nikshych D., Ostrik V., On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), 1-119, arXiv:0906.0620.
  7. Eilenberg S., Mac Lane S., On the groups $H(\Pi,n)$, I, Ann. of Math. 58 (1953), 55-106.
  8. Eilenberg S., Mac Lane S., On the groups $H(\Pi,n)$, II: Methods of computation, Ann. of Math. 60 (1954), 49-139.
  9. Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., Vol. 205, American Mathematical Society, Providence, RI, 2015.
  10. Etingof P., Nikshych D., Ostrik V., Fusion categories and homotopy theory, Quantum Topol. 1 (2010), 209-273, arXiv:0909.3140.
  11. Etingof P., Nikshych D., Ostrik V., Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 (2011), 176-205, arXiv:0809.3031.
  12. Galindo C., Clifford theory for tensor categories, J. Lond. Math. Soc. 83 (2011), 57-78, arXiv:0902.1088.
  13. Galindo C., On braided and ribbon unitary fusion categories, Canad. Math. Bull. 57 (2014), 506-510, arXiv:1209.2022.
  14. Galindo C., Coherence for monoidal $G$-categories and braided $G$-crossed categories, J. Algebra 487 (2017), 118-137, arXiv:1604.01679.
  15. Galindo C., Hong S.-M., Rowell E.C., Generalized and quasi-localizations of braid group representations, Int. Math. Res. Not. 2013 (2013), 693-731, arXiv:1105.5048.
  16. Gelaki S., Nikshych D., Nilpotent fusion categories, Adv. Math. 217 (2008), 1053-1071, arXiv:math.QA/0610726.
  17. Gordon R., Power A.J., Street R., Coherence for tricategories, Mem. Amer. Math. Soc. 117 (1995), vi+81 pages.
  18. Johnson-Freyd T., Reutter D., Minimal nondegenerate extensions, J. Amer. Math. Soc. 37 (2024), 81-150, arXiv:2105.15167.
  19. Joyal A., Street R., Braided tensor categories, Adv. Math. 102 (1993), 20-78.
  20. Kitaev A., Fault-tolerant quantum computation by anyons, Ann. Physics 303 (2003), 2-30, arXiv:quant-ph/9707021.
  21. Kitaev A., Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006), 2-111, arXiv:cond-mat/0506438.
  22. Lan T., Kong L., Wen X.-G., Modular extensions of unitary braided fusion categories and $2+1{\rm D}$ topological/SPT orders with symmetries, Comm. Math. Phys. 351 (2017), 709-739, arXiv:1602.05936.
  23. Moore G., Seiberg N., Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), 177-254.
  24. Müger M., Galois theory for braided tensor categories and the modular closure, Adv. Math. 150 (2000), 151-201, arXiv:math.CT/9812040.
  25. Müger M., On the structure of modular categories, Proc. Lond. Math. Soc. 87 (2003), 291-308, arXiv:math.CT/0201017.
  26. Ostrik V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), 177-206, arXiv:math.QA/0111139.
  27. Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  28. Schauenburg P., Turning monoidal categories into strict ones, New York J. Math. 7 (2001), 257-265.
  29. Tambara D., Representations of tensor categories with fusion rules of self-duality for abelian groups, Israel J. Math. 118 (2000), 29-60.
  30. Tambara D., Invariants and semi-direct products for finite group actions on tensor categories, J. Math. Soc. Japan 53 (2001), 429-456.
  31. Wang Z., Topological quantum computation, CBMS Reg. Conf. Ser. Math., Vol. 112, American Mathematical Society, Providence, RI, 2010.
  32. Wen X.G., Topological orders in rigid states, Internat. J. Modern Phys. B 4 (1990), 239-271.
  33. Witten E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399.

Previous article  Next article  Contents of Volume 21 (2025)