|
SIGMA 21 (2025), 086, 42 pages arXiv:2405.10609
https://doi.org/10.3842/SIGMA.2025.086
Quasi-Polynomial Extensions of Nonsymmetric Macdonald-Koornwinder Polynomials
Jasper Stokman
KdV Institute for Mathematics, University of Amsterdam, Science Park 105-107, 1098 XG Amsterdam, The Netherlands
Received March 26, 2025, in final form October 06, 2025; Published online October 14, 2025
Abstract
In a recent joint paper with S. Sahi and V. Venkateswaran (2025), families of actions of the double affine Hecke algebra on spaces of quasi-polynomials were introduced. These so-called quasi-polynomial representations led to the introduction of quasi-polynomial extensions of the nonsymmetric Macdonald polynomials, which reduce to metaplectic Iwahori-Whittaker functions in the $\mathfrak{p}$-adic limit. In this paper, these quasi-polynomial representations are extended to Sahi's $5$-parameter double affine Hecke algebra, and the quasi-polynomial extensions of the nonsymmetric Koornwinder polynomials are introduced.
Key words: double affine Hecke algebras; Macdonald-Koornwinder polynomials.
pdf (672 kb)
tex (43 kb)
References
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), iv+55 pages.
- Brubaker B., Buciumas V., Bump D., Friedberg S., Hecke modules from metaplectic ice, Selecta Math. (N.S.) 24 (2018), 2523-2570, arXiv:1704.00701.
- Cherednik I., Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald's operators, Int. Math. Res. Not. 1992 (1992), 171-180.
- Cherednik I., Double affine Hecke algebras, London Math. Soc. Lecture Note Ser., Vol. 319, Cambridge University Press, Cambridge, 2005.
- Chinta G., Gunnells P.E., Puskás A., Metaplectic Demazure operators and Whittaker functions, Indiana Univ. Math. J. 66 (2017), 1045-1064, arXiv:1408.5394.
- Humphreys J.E., Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., Vol. 29, Cambridge University Press, Cambridge, 1990.
- Koornwinder T.H., Askey-Wilson polynomials for root systems of type $BC$, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, American Mathematical Society, Providence, RI, 1992, 189-204.
- Lusztig G., Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599-635.
- Macdonald I.G., Affine root systems and Dedekind's $\eta $-function, Invent. Math. 15 (1972), 91-143.
- Macdonald I.G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Math., Vol. 157, Cambridge University Press, Cambridge, 2003.
- Noumi M., Macdonald-Koornwinder polynomials and affine Hecke rings, Sūrikaisekikenkyūsho Kōkyūroku 919 (1995), 44-55.
- Patnaik M., Puskás A., On Iwahori-Whittaker functions for metaplectic groups, Adv. Math. 313 (2017), 875-914, arXiv:1509.01594.
- Patnaik M.M., Puskás A., Metaplectic covers of Kac-Moody groups and Whittaker functions, Duke Math. J. 168 (2019), 553-653, arXiv:1703.05265.
- Sahi S., Nonsymmetric Koornwinder polynomials and duality, Ann. of Math. 150 (1999), 267-282, arXiv:q-alg/9710032.
- Sahi S., Stokman J.V., Venkateswaran V., Metaplectic representations of Hecke algebras, Weyl group actions, and associated polynomials, Selecta Math. (N.S.) 27 (2021), 47, 42 pages, arXiv:1808.01069.
- Sahi S., Stokman J.V., Venkateswaran V., Quasi-polynomial representations of double affine Hecke algebras, Forum Math. Sigma 13 (2025), e73, 131 pages, arXiv:2204.13729.
- Stokman J.V., Koornwinder polynomials and affine Hecke algebras, Int. Math. Res. Not. 2000 (2000), 1005-1042, arXiv:math.QA/0002090.
- Stokman J.V., Connection coefficients for basic Harish-Chandra series, Adv. Math. 250 (2014), 351-386, arXiv:1208.6145.
- Stokman J.V., Macdonald-Koornwinder polynomials, in Encyclopedia of Special Functions: The Askey-Bateman Project. Vol. 2. Multivariable Special Functions, Cambridge University Press, Cambridge, 2021, 258-313, arXiv:1111.6112.
|
|