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Abstract. In a recent joint paper with S. Sahi and V. Venkateswaran (2025), families
of actions of the double affine Hecke algebra on spaces of quasi-polynomials were intro-
duced. These so-called quasi-polynomial representations led to the introduction of quasi-
polynomial extensions of the nonsymmetric Macdonald polynomials, which reduce to meta-
plectic Iwahori–Whittaker functions in the p-adic limit. In this paper, these quasi-polynomial
representations are extended to Sahi’s 5-parameter double affine Hecke algebra, and the
quasi-polynomial extensions of the nonsymmetric Koornwinder polynomials are introduced.
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1 Introduction

1.1. The double affine Hecke algebra H with adjoint root data depends on a deformation pa-
rameter q and on a number of Hecke parameters. The Hecke parameters are most conveniently
encoded by a multiplicity function, which is an affine Weyl group invariant function on the asso-
ciated reduced affine root system. Cherednik’s polynomial representation is a faithful represen-
tation of H on Laurent polynomials in several variables, given explicitly in terms of Demazure–
Lusztig operators. Up to a multiplicative scalar, the nonsymmetric Macdonald polynomials can
be characterised as the simultaneous eigenfunctions for the action of Bernstein’s [8] commuting
elements Y λ within the (double) affine Hecke algebra. See the monographs by Cherednik [4]
and Macdonald [10] for details and further references.

If the underlying finite root system is of type Cr, then a nonreduced extension of the Chered-
nik–Macdonald theory was developed in [11, 14, 17]. It depends on five Hecke parameters (four
when r = 1), which are encoded by a multiplicity function on Macdonald’s [9] nonreduced affine
root system of type C∨Cr. The resulting simultaneous polynomial eigenfunctions of the Y λ are
Sahi’s [14] nonsymmetric Koornwinder polynomials. Their symmetric versions are the celebrated
Koornwinder polynomials [7], which reduce to Askey–Wilson polynomials [1] for r = 1.

In a joint paper [16] with Sahi and Venkateswaran, a quasi-polynomial extension of the
Cherednik–Macdonald theory was developed when the multiplicity function on the reduced
affine root system is invariant for the action of the extended affine Weyl group (so it depends
on one Hecke parameter if the underlying finite root system has a single Weyl group orbit, and
two otherwise). The role of the polynomial representation is then replaced by explicit families of
H-representations on spaces of quasi-polynomials, which are linear combinations of monomials
with possibly non-integral exponents, with the action given in terms of truncated versions of
Demazure–Lusztig operators. The resulting quasi-polynomial extensions of the nonsymmetric
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Macdonald polynomials are q-analogs of Iwahori–Whittaker functions on metaplectic covers of
reductive groups over non-Archimedean local fields. Metaplectic Iwahori–Whittaker functions
have been studied from the perspective of Hecke algebras in [2, 5, 12, 13, 16]. In this context,
the truncated Demazure–Lusztig operators reduce to metaplectic Demazure operators (see [16]).

In this paper, we will construct the nonreduced extensions of the quasi-polynomial represen-
tations and introduce the quasi-polynomial analogs of the nonsymmetric Koornwinder polyno-
mials. We will proceed by extending the framework for the quasi-polynomial theory in such
a way that it gives the nonreduced quasi-polynomial theory when the underlying finite root
system is of type Cr. For other types, it will simply reduce to the quasi-polynomial theory
from [16]. The setup of the extended framework is modelled by the treatment of the twisted
polynomial theory with adjoint root datum from [19].

In the remainder of the introduction, we will explicitly state the main results when the
underlying root system is of type Cr. In Section 2, we will introduce affine root systems and
the double affine Hecke algebra H in the general, extended framework. Following [15], we start
Section 3 by introducing an HX -action in terms of truncated Demazure–Lusztig type operators
on the space of all quasi-polynomials, where HX is the copy of the affine Hecke algebra inside H
that contains the monomials. This HX -representation is reducible, with subrepresentations
being naturally parametrised by affine Weyl group orbits in the ambient Euclidean space of
the root system. Following [16], we then give for each subrepresentation a multiparameter
extension of the HX -action to an action of the double affine Hecke algebra. It gives the quasi-
polynomial representations from [16, Section 4] as well as the new, nonreduced extensions when
the underlying root system is of type Cr. In Section 4, we introduce the quasi-polynomial
extensions of the nonsymmetric Macdonald–Koornwinder polynomials. Finally, in Section 5,
we identify the quasi-polynomial representations with Y -parabolically induced H-modules.

In [16, Section 6], various additional properties of the quasi-polynomial extensions of the
nonsymmetric Macdonald polynomials were derived, such as creation formulas, (anti)symmetric
versions of the quasi-polynomials, and orthogonality relations. It is straightforward to derive
the analogous results for the nonreduced extension of the type Cr quasi-polynomials using the
intertwiners of Sahi’s [14] nonreduced extension of the double affine Hecke algebra, but we will
not discuss the details in this paper. We also do not discuss the theory for extended lattices,
which follows quite easily from the theory for adjoint root data, cf. [16, Section 7].

1.2. Let F be a field of characteristic zero. The algebra of quasi-polynomials [16] in r variables
over F is the group algebra F[Rr] of the Euclidean space Rr, viewed as additive group. We
write xy for the standard basis element in F[Rr] associated to the vector y = (y1, . . . , yr) ∈ Rr,
so that

F[Rr] =
⊕
y∈Rr

Fxy, xyxy
′
= xy+y′ , x0 = 1.

Denote by {ϵi}ri=1 the standard orthonormal basis of Rr. Then xy = xy11 · · ·xyrr with

xξi := xξϵi ∈ F[Rr] for ξ ∈ R.

We call xy the quasi-monomial with quasi-exponent y ∈ Rr.
Consider the hyperoctahedral group Sr ⋉ (±1)r. It is a Coxeter group with Coxeter system

{s1, . . . , sr} given by the simple neighboring transpositions si = (i, i + 1) for 1 ≤ i < r and
sr = (1, . . . , 1,−1) (we identify Sr and (±1)r with the corresponding subgroups in Sr ⋉ (±1)r).
The Coxeter generators satisfy the type Cr braid relations

sisi+1si = si+1sisi+1, 1 ≤ i < r − 1,

sr−1srsr−1sr = srsr−1srsr−1, sisi′ = si′si if |i− i′| > 1. (1.1)
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The formulas

siy := (y1, . . . , yi−1, yi+1, yi, yi+2, . . . , yr), 1 ≤ i < r,

sry := (y1, . . . , yr−1,−yr) (1.2)

define a linear action of the hyperoctahedral group Sr⋉ (±1)r on Rr. The action (1.2) naturally
gives rise to a Sr ⋉ (±1)r-action by algebra automorphisms on F[Rr] by letting sj act on the
quasi-exponents of the quasi-monomials xy according to (1.2). The subalgebra F

[
x±1

]
of F[Rr]

spanned xµ, µ ∈ Zr, is the algebra of Laurent polynomials in the variables xi := x1i = xϵi ,
1 ≤ i ≤ r, which inherits a Sr ⋉ (±1)r-action from F[Rr].

For ξ ∈ R, write

⌊ξ⌋ for the largest integer ≤ ξ,

⌊ξ⌋e for the largest even integer ≤ ξ,

⌊ξ⌋o for the largest odd integer ≤ ξ.

Definition A. For 1 ≤ i < r, let ∇i, ∇e
r, ∇o

r be the linear operators on F[Rr] defined by

∇i(x
y) :=

(
1− (xi+1/xi)

⌊yi−yi+1⌋

1− xi/xi+1

)
xy,

∇e
r(x

y) :=

(
1− x

−⌊2yr⌋e
r

1− x2r

)
xy, ∇o

r(x
y) :=

(
xr − x

−⌊2yr⌋o
r

1− x2r

)
xy

for y ∈ Rr.

Note that the ∇i are well defined because of the truncation by floor functions of the exponents
in the numerator. For y = µ ∈ Zr, the ∇i reduce to divided difference operators

∇i(x
µ) =

xµ − xsiµ

1− xi/xi+1
, ∇e

r(x
µ) =

xµ − xsrµ

1− x2r
= x−1

r ∇o
r(x

µ). (1.3)

For a subset B in a set X, we denote by

χB : X → {0, 1}

the indicator function of B. We use the shorthand notations χe and χo for the indicator function
of the even and odd integers inside R.

Theorem B. For k, kr, ur ∈ F×, the linear operators T1, . . . , Tr on F[Rr] defined by

Ti(xy) := kχZ(yi−yi+1)xsiy +
(
k − k−1

)
∇i(x

y) for 1 ≤ i < r,

Tr(xy) := kχe(2yr)
r uχo(2yr)

r xsry +
(
kr − k−1

r

)
∇e

r(x
y) +

(
ur − u−1

r

)
∇o

r(x
y)

satisfy the type Cr braid relations (1.1) and the quadratic Hecke relations

(Ti − k)
(
Ti + k−1

)
= 0 for 1 ≤ i < r,

(Tr − kr)
(
Tr + k−1

r

)
= 0.

Theorem B will be proven in Section 3.1 (it is the special case of Theorem 3.3 when the
underlying finite root system is of type Cr). When kr = ur, Theorem B was obtained before
in [16, 15]. Following [16], we call the operators Ti, 1 ≤ i ≤ r, truncated Demazure–Lusztig
operators.
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Theorem B provides a representation of the 2-parameter Hecke algebra H0 = H0(k, kr) of
type Cr on F[Rr]. Using the natural F

[
x±1

]
-module structure on F[Rr], the H0-action on F[Rr]

extends to a representation of the 3-parameter affine Hecke algebra H̃ = H(ur, k, kr) of type Cr(
this uses the Bernstein presentation of H̃

)
. Note that the Tj preserve C

[
x±1

]
, in which case

they reduce to the operators

Ti(xµ) = kxsiµ + (k − k−1)

(
xµ − xsiµ

1− xi/xi+1

)
= kxµ + k−1 1− k2xi/xi+1

1− xi/xi+1

(
xsiµ − xµ

)
,

Tr(xµ) = krx
srµ +

((
kr − k−1

r

)
+
(
ur − u−1

r

)
xr
)(xµ − xsrµ

1− x2r

)
= krx

r + k−1
r

(1− axr)(1− bxr)

1− x2r

(
xsrµ − xµ

)
(1.4)

for µ ∈ Zr and 1 ≤ i < r by (1.3), with {a, b} =
{
krur,−kru−1

r

}
. These Demazure–Lusztig type

operators on C
[
x±1

]
arise in the definition of the polynomial representation of the double affine

Hecke algebra of type C∨Cr, see [11, 14].

1.3. The affine extension of Theorem B depends on various additional parameters. First of all,
it depends on a dilation parameter q

1
2 ∈ F×, which naturally appears in the following affine

extension of the Sr ⋉ (±1)r-action on F
[
x±1

]
.

The affine Weyl group of type Cr is W := (Sr ⋉ (±1)r)⋉ Zr, with the rightmost semidirect
product defined in terms of the action (1.2) restricted to Zr. It acts by algebra automorphisms
on F

[
x±1

]
by

(sip)(x) = p(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xr), 1 ≤ i < r,

(srp)(x) = p
(
x1, . . . , xr−1, x

−1
r

)
,

(τ(λ)p)(x) = p(q−λ1x1, . . . , q
−λrxr), λ ∈ Zr, (1.5)

for p(x) = p(x1, . . . , xr) ∈ F
[
x±1

]
, with τ(λ) the affine Weyl group element corresponding

to λ ∈ Zr. Regarding F
[
x±1

]
as the algebra of regular functions on the F-torus

T := (F×)r, (1.6)

we may view (1.5) as the W -action on F
[
x±1

]
contragredient to the left W -action

sit := (t1, . . . , ti−1, ti+1, ti, ti+2, . . . , tr), 1 ≤ i < r,

srt :=
(
t1, . . . , tr−1, t

−1
r

)
,

τ(λ)t :=
(
qλ1t1, . . . , q

λr tr
)

on t = (t1, . . . , tr) ∈ T.

The affine Weyl group W is a Coxeter group with Coxeter system {s0, s1, . . . , sr} containing
the extra simple reflection

s0 := τ(ϵ1)sϵ1 , sϵ1 := s1 · · · sr−1srsr−1 · · · s1.

The simple reflection s0 acts on F
[
x±1

]
by

(s0p)(x) = p
(
qx−1

1 , x2, . . . , xr
)
.
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The braid relations involving s0 are

s0s1s0s1 = s1s0s1s0, s0si = sis0, 1 < i ≤ r. (1.7)

The linear Sr ⋉ (±1)r-action (1.2) on Rr extends to an affine linear W -action with τ(λ),
λ ∈ Zr, acting on Rr as translation operators,

τ(λ)y := y + λ, y ∈ Rr.

The alcove

C+ :=
{
y ∈ Rr | 0 < yr < yr−1 < · · · < y1 <

1
2

}
is the intersection of the half-spaces {y ∈ Rr | αj(y) > 0}, 0 ≤ j ≤ r, where the affine linear
functionals αj : Rr → R are defined by

α0(y) := 1− 2y1, αi(y) := yi − yi+1, 1 ≤ i < r, αr(y) := 2yr.

The closure C+ of C+ in Rr is a fundamental domain for the W -action on Rr. For a W -orbit O
in Rr we denote by cO the unique vector in O∩C+. Note that Zr is aW -orbit in Rr, and cZ

r
= 0.

For a W -orbit O in Rr, consider the free F
[
x±1

]
-submodule

F[O] :=
⊕
y∈O

Fxy

of F[Rr] of finite rank. The operators Ti, 1 ≤ i ≤ r, preserve F[O], and we write

T O
i := Ti|F[O]

for the resulting linear operators on F[O]. We now define a linear operator T O
0 on F[O] that

will provide the local affine extension of Theorem B (‘local’ in the sense that the operators
should be restricted to F[O]). The operator T O

0 will depend on additional parameters that lie
in an O-dependent affine subtorus TO of T. We define the affine subtorus TO now first.

Consider the simple co-roots α∨
j ∈ Zr × 1

2Z, defined by

α∨
0 =

(
−ϵ1, 12

)
, α∨

i = (ϵi − ϵi+1, 0), 1 ≤ i < r, α∨
r := (ϵr, 0).

The (affine) subtorus TO is then given by

TO :=
{
t ∈ T | tα

∨
j = 1 for j ∈ {0, . . . , r} satisfying αj

(
cO
)
= 0
}
, (1.8)

where

t(µ,ℓ) := qℓtµ = qℓtµ1
1 · · · tµr

r for (µ, ℓ) ∈ Zr × 1
2Z.

Note that TO = T if O is a regular W -orbit, while TZr = {1T}.
For y ∈ Rr, let gy ∈W be the unique element of minimal length such that g−1

y y ∈ C+.

Definition C. Let O be a W -orbit in Rr. For k0, u0 ∈ F× and t ∈ TO, let T O
0 be the linear

operator on F[O] defined by

T O
0 (xy) := k

χe(2y1)
0 u

χo(2y1)
0 (gyt)

ϵ1sϵ1(x
y) +

(
k0 − k−1

0

)
∇e

0(x
y) +

(
u0 − u−1

0

)
∇o

0(x
y)

for y ∈ O, where ∇e
0, ∇o

0 are the linear operators on F[Rr] defined by

∇e
0(x

y) :=

(
1−

(
q−

1
2x1
)⌊−2y1⌋e

1− qx−2
1

)
xy, ∇o

0(x
y) :=

(
q

1
2x−1

1 −
(
q−

1
2x1
)⌊−2y1⌋o

1− qx−2
1

)
xy

for y ∈ Rr.
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It is straightforward to check that T O
0 is a well-defined linear operator on F[O]. Furthermore,

in case of the W -orbit O = Zr we have gµ1T = (qµ1 , . . . , qµr) for µ ∈ Zr, and hence T Zr

0

reduces to

T Zr

0 (xµ) = k0s0(x
µ) +

((
k0 − k−1

0

)
+
(
u0 − u−1

0

)
q

1
2x−1

1

)(xµ − s0(x
µ)

1− qx−2
1

)
= k0x

µ + k−1
0

(
1− cx−1

1

)(
1− dx−1

1

)
1− qx−2

1

(s0(x
µ)− xµ) (1.9)

for µ ∈ Zr with {c, d} =
{
q

1
2k0u0,−q

1
2k0u

−1
0

}
, which is the Demazure–Lusztig operator associ-

ated to the affine simple reflection s0 appearing in the polynomial representation of the double
affine Hecke algebra of type C∨Cr, see [11, 14].

Theorem D. For q
1
2 , k0, u0, k, kr, ur ∈ F× and t ∈ TO, the operators T O

0 , . . . , T O
r satisfy the

affine type Cr braid relations (1.1) and (1.7) and the Hecke relations(
T O
0 − k0

)(
T O
0 + k−1

0

)
= 0,(

T O
i − k

)(
T O
i + k−1

)
= 0,(

T O
r − kr

)(
T O
r + k−1

r

)
= 0

for 1 ≤ i < r.

Theorem D will be proven in Section 3.3 (it is the special case of Theorem 3.13 when the
underlying finite root system is of type Cr). In Section 5, we will also show that the quasi-
polynomial representation is isomorphic to a Y -parabolically induced H-module. These results
were obtained before in [16] when k0 = u0 = kr = ur.

Theorem D gives rise to a representation of the 3-parameter Hecke algebra H := H(k0, k, kr)
of type Cr on F[O] (using now the Coxeter presentation of the affine Hecke algebra H). Adding
the action of F

[
x±1

]
by multiplication operators yields a representation of Sahi’s [14] double

affine Hecke algebra H = H
(
k0, u0, k, kr, ur; q

1
2

)
of type C∨Cr on F[O], which depends on t ∈ TO.

We call it the quasi-polynomial representation of H. By (1.4) and (1.9), the quasi-polynomial
representation for O = Zr is the polynomial representation of H from [11, 14], which governs
the Koornwinder polynomials.

When k0 = u0 = kr = ur, a particular reparametrisation of the extra parameters t ∈ TO in
terms of so-called g-parameters allows to glue the quasi-polynomial representations from The-
orem D into a family of H-representations on F[Rr] with the Coxeter type generators of H
acting by global g-dependent truncated Demazure–Lusztig type operators. This is an impor-
tant intermediate step in establishing the link to representation theory of metaplectic covers of
symplectic groups over non-Archimedean local fields when taking the p-adic limit q → ∞ (the
g-parameters are then given in terms of Gauss sums). In this metaplectic context the global
truncated Demazure–Lusztig operators reduce to the type Cr metaplectic Demazure–Lusztig
operators from [2, 5, 12, 13]. See [16] for details. It is unknown how Theorem D for arbitrary
parameters k0, u0, kr, ur relates to representation theory of metaplectic covers of symplectic
groups over non-Archimedean local fields.

1.4. The quasi-polynomial extensions of the monic nonsymmetric Koornwinder polynomials are
defined as follows. For y′, y ∈ Rr, write

y′ ≤ y

if y′ and y lie in the same W -orbit and gy′ ≤B gy, where ≤B is the Bruhat order on W . For
a W -orbit O and an element y ∈ O, the subset {y′ ∈ Rr | y′ ≤ y} of O is finite, and cO is its
unique minimal element.
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We say that p(x) ∈ F[Rr] is a quasi-polynomial of degree y ∈ Rr if

p(x)− dxy ∈
⊕
y′<y

Fxy
′

for some d ∈ F×. We then say that d is the leading term of p(x), and p(x) is said to be monic
if d = 1. If p(x) is of degree y with y lying in the W -orbit O, then p(x) ∈ F[O].

Fix a W -orbit O in Rr and fix t ∈ TO. Consider the invertible linear operators

YO
i :=

(
T O
i−1

)−1 · · ·
(
T O
1

)−1T O
0 T O

1 · · · T O
r−1T O

r T O
r−1 · · · T O

i , 1 ≤ i ≤ r,

on F[O]. These operators are the images under πO of the commuting elements Y ϵi ∈ H in the
Bernstein presentation of H (cf. Section 2.4). In particular,[

YO
i ,YO

j

]
= 0 for 1 ≤ i, j ≤ r.

Theorem E. Fix a W -orbit O and fix generic parameters q
1
2 , k0, u0, k, kr, ur ∈ F× and t ∈ TO.

For each y ∈ O, there exists a unique quasi-polynomial

EO
y (x) = EO

y

(
x; k0, u0, k, kr, ur, t; q

1
2
)
∈ F[O]

satisfying the following two properties:

(1) EO
y (x) is a monic quasi-polynomial of degree y.

(2) EO
y (x) is a joint eigenfunction of the commuting operators YO

i , 1 ≤ i ≤ r.

We will prove Theorem E in Section 4 (it is the special case of Theorem 4.9 when the
underlying finite root system is of type Cr). It was derived before in [16] when k0 = u0 = kr = ur.
The main step in proving Theorem E is showing that the YO

i , 1 ≤ i ≤ r, are triangular operators
relative to the partially ordered quasi-monomial basis {xy}y∈O of F[O], with the partial order
on {xy}y∈O induced from the partial order ≤ on the corresponding set O of quasi-exponents.
Concretely, we will show that YO

i (xy) ∈ F[O] is a quasi-polynomial of degree y with leading
term γOi (y) ∈ F× given explicitly by

γOi (y) =
(
gy
(
sOt
))−1

i
,

sO :=
(
(k0kr)

−χe(2cO1 )(u0ur)
χo(2cO1 )kn

O
1 , . . . , (k0kr)

−χe(2cOr )(u0ur)
χo(2cOr )kn

O
r
)
,

where

nOi :=
r∑

j=i+1

(
η
(
cOi − cOj

)
+ η
(
cOi + cOj

))
+

i−1∑
j=1

(
η
(
cOj + cOi

)
− η
(
cOj − cOi

))
and η := χZ>0 − χZ≤0

. Then

YO
i (Ey(x)) = γOi (y)Ey(x) for 1 ≤ i ≤ r and y ∈ O,

and the generic conditions on the parameters in Theorem E boil down to the requirement that
the map

O → T, y 7→
(
γO1 (y), . . . , γOr (y)

)
is an embedding.

The EZr

λ (x) ∈ F
[
x±1

]
, λ ∈ Zr, are Sahi’s [14] monic nonsymmetric Koornwinder polynomials

(recall that in this case necessarily t = 1T). Hence the EO
y (x) (y ∈ O) may be viewed as

quasi-polynomial generalisations of the nonsymmetric Koornwinder polynomials, depending on
the extra parameters t ∈ TO. If O and O′ are two W -orbits in Rr intersecting C+ in the
same face, then the corresponding families of quasi-polynomials are essentially the same (cf. [16,
Theorem 6.2 (4)]).
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2 Preliminaries

2.1 Reduced affine root systems

Let (E, ⟨·, ·⟩) be an Euclidean space of dimension r. Transferring the inner product ⟨·, ·⟩ on E
to E∗ through the linear isomorphism E

∼−→ E∗, y 7→ ⟨y, ·⟩, is turning E∗ into an Euclidean
space. We denote its inner product again by ⟨·, ·⟩, and its norm by ∥ · ∥.

Let Φ0 be an irreducible reduced root system in E∗ with Weyl group W0. Its dual root
system Φ∨

0 = {α∨}α∈Φ0 in E consists of the co-roots α∨ ∈ E (α ∈ Φ0), which are the vectors
in E satisfying

〈
y, α∨〉 = 2α(y)

∥α∥2
(2.1)

for all y ∈ E.

Consider the corresponding reduced affine root system

Φ := Φ0 × Z ⊂ E∗ × R.

We will view an element (ϕ, ξ) ∈ E∗×R in the ambient space as an affine linear functional on E
by y 7→ ϕ(y) + ξ for y ∈ E.

The projection E∗ × R → E∗ on the first component will be denoted by

f 7→ f.

It restricts to a surjective map Φ ↠ Φ0. Furthermore, we have a = (a, a(0)) for a ∈ Φ.
Throughout the paper, we will identify a root α ∈ Φ0 with (α, 0) ∈ Φ.

For a ∈ Φ, denote by sa : E → E the orthogonal reflection in the affine root hyperplane
a−1(0) ⊂ E. Then

sa(y) = y − a(y)a∨

for y ∈ E. The affine Weyl group W of Φ is the subgroup of affine linear transformations of E
generated by the orthogonal reflections sa, a ∈ Φ. The finite Weyl group W0 is the subgroup
generated by sα, α ∈ Φ0.

For y ∈ E, let τ(y) : E → E be the translation map z 7→ z + y. Then

sa = sa τ
(
a(0)a∨

)
(2.2)

for a ∈ Φ. Consequently, W ≃W0 ⋉Q∨ with Q∨ = ZΦ∨
0 the co-root lattice of Φ0.

The linear, contragredient W -action on the space E∗ × R of affine linear functionals on E
restricts to a W -action on Φ. It satisfies

sa(b) = b− b
(
a∨
)
a =

(
sa(b), b(0)− a(0)b

(
a∨
))
,

τ(λ)b =
(
b, b(0)− b(λ)

)
(2.3)

for a, b ∈ Φ and λ ∈ Q∨.

We fix an ordered basis ∆0 = {α1, . . . , αr} of the root system Φ0 once and for all. We will
choose the ordering such that the following convention holds true.

Convention 2.1. The simple root αr is a long root.
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If all the roots in Φ0 have the same root length, then all roots are considered to be long as
well as short. We denote by Φ+

0 the set of positive roots in Φ0 relative to ∆0. The corresponding
set of negative roots is denoted by Φ−

0 := −Φ+
0 .

The Weyl group W0 is a Coxeter group with Coxeter generators {s1, . . . , sr} given by the
simple reflections si := sαi , 1 ≤ i ≤ r. The closure of the positive Weyl chamber

E+ :=
{
y ∈ E | α(y) > 0 ∀α ∈ Φ+

0

}
is a fundamental domain for the W0-action on E.

The ordered basis ∆0 of Φ0 extends to an ordered basis ∆ = {α0, . . . , αr} of Φ with the
additional affine simple root

α0 = (−φ, 1),

where φ is the highest root of Φ0 relative to ∆0. The corresponding sets of positive and negative
roots are denoted by Φ+ and Φ−, respectively. The affine Weyl groupW is a Coxeter group with
Coxeter generators {s0, . . . , sr} the simple reflections sj := sαj , 0 ≤ j ≤ r. By (2.2), we have

s0 = sφτ
(
−φ∨) = τ

(
φ∨)sφ.

The closure C+ of the fundamental alcove

C+ := {y ∈ E+ | α0(y) > 0}

is a fundamental domain for the action of W ≃ W0 ⋉Q∨ on E by reflections and translations.
For a W -orbit O in E, we denote by cO the unique vector in O ∩ C+.

Since α0 = (−φ, 1), we have the following alternative description:

C+ =
{
y ∈ E | 0 < α(y) < 1 ∀α ∈ Φ+

0

}
of the fundamental alcove. Note furthermore that⋃

w∈W0

w
(
C+

)
= {y ∈ E | |α(y)| ≤ 1 ∀α ∈ Φ0}. (2.4)

2.2 Nonreduced extensions and multiplicity functions

For a ∈ Φ such that a
(
Q∨) = Z, we have

Wa =W0a× Z

by (2.3). A case by case inspection of the Dynkin diagrams shows that α
(
Q∨) = Z for α ∈ Φ0

unless α ∈ Φ0 is long and Φ0 is of type Cr, r ≥ 1, in which case α
(
Q∨) = 2Z (note that C1 = A1

and C2 = B2). If Φ0 is of type Cr, r ≥ 1, then αr is the only long simple root in ∆0 in view of
convention 2.1.

The W -orbits in Φ can now be described as follows:

(1) If all the roots in Φ0 have the same root length but Φ0 is not of type A1, then W acts
transitively on Φ.

(2) If Φ0 is of type C1 = A1, then Φ =Wα0 ⊔Wα1 and

Wα0 = Φ0 × Zo, Wα1 = Φ0 × Ze

with Zo (resp. Ze) the set of odd (resp. even) integers.
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(3) If Φ0 is of type Cr, r ≥ 2, then Φ = Wα0 ⊔Wα1 ⊔Wαr and αi ∈ Wα1 for all 1 ≤ i < r.
Furthermore,

Wα0 = Φℓ
0 × Zo, Wα1 = Φs

0 × Z, Wαr = Φℓ
0 × Ze

with Φℓ
0 (resp. Φs

0) the long (resp. short) roots in Φ0.

(4) If Φ0 is of type Br, r ≥ 3, F4 or G2 and if αi ∈ ∆0, 1 ≤ i < r, is a short simple root, then
Φ =Wα0 ⊔Wαi and

Wα0 = Φℓ
0 × Z =Wαr, Wαi = Φs

0 × Z.

The set

Φnr := Φ ⊔
{
a/2 | a ∈ Φ such that a

(
Q∨) = Ze

}
forms an affine root system in the affine space E∗ ×R (see [9]). If Φ0 is of type Cr, r ≥ 1, then
Φnr is the nonreduced irreducible affine root system of type C∨Cr (see [9]). In this case, Φnr has
five W -orbits Wα0, W

α0
2 , Wα1, Wαr, W

αr
2 when r ≥ 2, and four W -orbits Wα0, W

α0
2 , Wα1,

W α1
2 when r = 1. If Φ0 is not of type Cr, r ≥ 1, then Φnr = Φ.
Let F be a field of characteristic zero. We call a W -invariant function

k : Φnr → F×, a 7→ ka

a multiplicity function. Denote by K the set of multiplicity functions. In order to obtain uniform
notations, we extend a multiplicity function k : Φnr → F× to a W -invariant function

k : Φ ⊔ 1
2Φ → F×

by declaring ka
2
:= ka when a

2 ̸∈ Φnr. Note that for any root α ∈ Φ0,

kα = k(α,1) = kα
2
= k(α

2
, 1
2
) if Φ0 is not of type Cr, r ≥ 1. (2.5)

For the value of a multiplicity function k at a simple root αj and at
αj

2 , we will use the shorthand
notations

kj := kαj , uj := kαj
2

.

If Φ0 has rank r = 1, then the multiplicity function k is determined by the four parameters
k0, u0, k1, u1, which can be chosen arbitrarily. If Φ0 has rank r > 1, then k is determined by
the five parameters k0, u0, k := ki, kr, ur, where 1 ≤ i < r is such that αi is a short root. These
parameters can be chosen arbitrarily when Φ0 is of type Cr, r ≥ 2. If Φ0 is not of type Cr,
r ≥ 1, then k0 = u0 = kr = ur by (2.5), hence K ≃ F× if all the roots in Φ0 have the same
length and K ≃ (F×)2 otherwise (i.e., if Φ0 is of type Br, r ≥ 3, F4 or G2).

The extended affine Weyl group is the subgroup

W ext :=W0τ
(
P∨)

of the group of affine linear transformations of E, with P∨ the co-weight lattice of Φ0. The
linear, contragredient W ext-action on the space E∗×R of affine linear functionals on E restricts
to a W ext-action on Φ. The explicit formulas for this action are again given by (2.3), now with
λ ∈ P∨ in the second formula.

Write Kres ⊆ K for the subset of multiplicity functions k satisfying the following two addi-
tional conditions:
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(1) k is W ext-invariant,

(2) ka
2
= ka for all a ∈ Φ.

By (2), a restricted multiplicity function k ∈ Kres is uniquely determined by its values on Φ, and
ka = ka for a ∈ Φ. Its value kα at α ∈ Φ0 only depends on the length of α. Hence Kres ≃ F× if
all roots in Φ0 have the same length and Kres ≃ (F×)2 otherwise, which implies that

Kres = K if Φ0 is not of type Cr, r ≥ 1.

In particular, for k ∈ Kres formula (2.5) holds true for root systems Φ0 of any type,

k0 = u0 = kr = ur if k ∈ Kres.

Define an involution

K ∼−→ K, k 7→ k̃

by interchanging the values k0 and ur of k on the W -orbits Wα0 and W αr
2 . We call it the

duality involution. Note that it is the identity unless Φ0 is of type Cr, r ≥ 1. Furthermore, its
restriction to Kres is the identity for all types.

The standard Cherednik–Macdonald theory for parameters k ∈ Kres admits an extension
to parameters k ∈ K [11, 14]. It only gives new results when Φ0 is of type Cr, r ≥ 1, since
otherwise K = Kres. The resulting theory is sometimes referred to as the Koornwinder case(
since the associated analogs of the symmetric Macdonald polynomials are the Koornwinder
polynomials [7]

)
, or as the C∨Cr case (since K is the natural set of multiplicity functions on the

nonreduced root system of type C∨Cr). It is common in the literature on Koornwinder
(
C∨Cr

)
extensions of the Cherednik–Macdonald theory to develop the theory directly using the following
explicit realisation of the root system Φ0 of type Cr, r ≥ 1, see, e.g., [7, 11, 14, 17]:

� E = Rr with orthonormal basis {ϵi}ri=1,

� Φs
0 = {±(ϵi±ϵj)}1≤i<j≤r (= ∅ when r = 1) and Φℓ

0 = {±2ϵi}ri=1, where we identify E ≃ E∗

via the scalar product
(
in particular, Q∨ =

⊕r
i=1 Zϵi

)
,

� αi = ϵi − ϵi+1, 1 ≤ i < r, and αr = 2ϵr.

Note that φ = 2ϵ1 is the highest root, hence α0 = (−2ϵ1, 1). With these choices, the type Cr

results presented in Sections 1.2–1.4 follow immediately from the general results as discussed
below. In the remainder of the paper, k will be a multiplicity function in K unless stated
explicitly otherwise.

Remark 2.2. The setup in this subsection follows [18, 19]. In terms of the initial data D
from [18, Section 1.1], we are considering the case of twisted adjoint root data D = (R0, t,Λ,Λ)
with Λ the root lattice of R0. Then (Φ0,Φ

nr) corresponds to
(
R∨

0 , R(D)∨
)
, with R(D)∨ the dual

of the (possibly non-reduced) affine root system R(D) from [18, Section 1.1]. All nonreduced
cases of the Cherednik–Macdonald theory as described in Macdonald’s book [10] can be recovered
from the case that Φ0 is of type Cr by appropriate specialisations of the multiplicity parameters,
see, e.g., [19, Section 9.2.3] for details.

2.3 Quasi-polynomials

The space of quasi-polynomials [16] is the group algebra

F[E] =
⊕
y∈E

Fxy
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of E, viewed as abelian additive group. Here we denote the canonical basis elements xy, y ∈ E,
of F[E] multiplicatively, so xyxy

′
= xy+y′ and x0 is the unit element. We call xy the quasi-

monomial with quasi-exponent y ∈ E. The Weyl group W0 acts on F[E] by F-algebra automor-
phisms by

w(xy) := xwy

for w ∈W0 and y ∈ E.
For any subset Z ⊆ E, we write

F[Z] :=
⊕
y∈Z

Fxy

for the subspace of F[E] spanned by the quasi-monomials xy, y ∈ Z.
The subspace F[P∨] is a W0-stable subalgebra of F[E], which we call the subalgebra of Lau-

rent polynomials in F[E]. For µ ∈ P∨, we say that xµ is a monomial with exponent µ ∈ P∨.
For generic multiplicity parameter k ∈ Kres, the nonsymmetric Macdonald polynomials form
a basis of F[P∨]. In this paper, we are focussing on the theory for the extended set K of mul-
tiplicity parameters, in which case the corresponding nonsymmetric Macdonald–Koornwinder
polynomials form a basis of the W0-stable subalgebra F

[
Q∨] of F[P∨].

Let E/W be the set of W -orbits in E. For a W -orbit O ∈ E/W , we denote by cO the unique
point in the intersection of O and the closure C+ of the fundamental alcove. Note that the
W -orbit in E containing the origin is Q∨. A W -orbit O in E has a finite number of τ

(
Q∨)-

orbits τ
(
Q∨)yi, 1 ≤ i ≤ N , hence the corresponding space F[O] of quasi-polynomials with

quasi-exponents in O is a free F
[
Q∨]-module of finite rank,

F[O] =
N⊕
i=1

F
[
Q∨]xyi . (2.6)

Furthermore, the space F[E] of quasi-polynomials decomposes as

F[E] =
⊕

O∈E/W

F[O]. (2.7)

For generic multiplicity functions k ∈ Kres and an arbitrary W -orbit O, quasi-polynomial
extensions of the nonsymmetric Macdonald polynomials were introduced in [16]. They depend
on a generic dilation parameter qφ ∈ F× and additional O-dependent representation parameters,
and they form a basis of F[O]. For O = Q∨, they are the nonsymmetric Macdonald polynomials.
The goal of this paper is to extend this result to multiplicity functions k in K.

This boils down to introducing the Koornwinder
(
C∨Cr

)
analogs of the quasi-polynomial

extensions of the type Cr nonsymmetric Macdonald polynomials from [16]. They will now
depend on five (four in case of r = 1) multiplicity parameters instead of two (one in case
of r = 1). To stay close to the notations and results from [16], we will give a uniform treatment
of the theory for multiplicity functions k ∈ K when the root system Φ0 is of arbitrary type. For
type Cr, the results are made more concrete in Sections 1.2–1.4.

2.4 The affine Hecke algebra

The affine Hecke algebra H = H(k) is the unital associative F-algebra with generators Tj ,
0 ≤ j ≤ r, and relations

(a) The (W, {s0, . . . , sr})-braid relations for T0, . . . , Tr,

(b) (Tj − kj)
(
Tj + k−1

j

)
= 0 for j = 0, . . . , r.
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Here (a) means

TiTjTi · · · = TjTiTj · · · , 0 ≤ i ̸= j ≤ r,

with on each side mij terms, where mij is the order of sisj in W .

A reduced expression of g ∈ W is an expression g = sj1 · · · sjℓ(g) of g as product of simple
reflections with ℓ(g) minimal. The length function ℓ : W → Z≥0 satisfies ℓ(g) = #Π(g), with

Π(g) := Φ+ ∩ g−1Φ−.

The braid relations ensure that the element

Tg := Tj1 · · ·Tjℓ(g)

in H does not depend on the choice of reduced expression g = sj1 · · · sjℓ(g) , and {Tg}g∈W is
a basis of H.

The finite Hecke algebra H0 = H0(k) is the subalgebra of H generated by T1, . . . , Tr. The
defining relations of H0 in terms of T1, . . . , Tr are the (W0, {s1, . . . , sr})-braid relations and the
quadratic relations (Ti − ki)

(
Ti + k−1

i

)
= 0 for i = 1, . . . , r. For w ∈ W0 ⊂ W , a reduced

expression w = si1 · · · siℓ in W can be chosen with simple reflections from W0, i.e., with 1 ≤
ij ≤ r. Furthermore, Π(w) = Φ+

0 ∩ w−1Φ−
0 for w ∈W0, and {Tw}w∈W0 is a basis of H0.

Define χ : Φ0 → {±1} by

χ(α) :=

{
1 if α ∈ Φ+

0 ,

−1 if α ∈ Φ−
0 .

(2.8)

In other words, χ = χ+ − χ− with

χ± := χΦ±
0
: Φ0 → {0, 1}

the indicator function of Φ±
0 in Φ0. For j = 0, . . . , r and g ∈W , we have

ℓ(sjg) = ℓ(g) + χ
(
g−1αj

)
,

and hence

TjTg = χ−
(
g−1αj

)(
kj − k−1

j

)
Tg + Tsjg (2.9)

in the affine Hecke algebra H.

We now describe the Bernstein decomposition of H (see [8] for details). Let H× be the group
of units in H. There exists a unique group homomorphism

Q∨ → H×, λ 7→ Y λ

such that Y λ = Tτ(λ) for λ ∈ E+ ∩Q∨. The resulting algebra map

F
[
Q∨] ↪→ H, p 7→ p(Y ), (2.10)

mapping xλ to Y λ for all λ ∈ Q∨, is injective. The image of the embedding is denoted by FY

[
Q∨].

The multiplication map of H restricts to a linear isomorphism

H0 ⊗ FY

[
Q∨] ∼−→ H.
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The commutation relations between elements in H0 and FY

[
Q∨] are described (and determined)

by the Bernstein–Lusztig cross relations

Y λTi − TiY
siλ =

(
k̃αi − k̃−1

αi
+
(
k̃αi

2
− k̃−1

αi
2

)
Y −α∨

i

1− Y −2α∨
i

)(
Y λ − Y siλ

)
(2.11)

for i = 1, . . . , r and λ ∈ Q∨.
The right-hand side of (2.11) appears to be in the quotient field FY

(
Q∨) of FY

[
Q∨], but it

lies in FY

[
Q∨]. Indeed, if αi

(
Q∨) = Z, then k̃αi

2
= k̃αi = ki, hence the right-hand side of (2.11)

reduces to(
ki − k−1

i

)(Y λ − Y siλ

1− Y −α∨
i

)
=
(
ki − k−1

i

)
Y λ

(
1− Y −αi(λ)α

∨

1− Y −α∨
i

)
,

which lies in FY

[
Q∨] since αi(λ) ∈ Z. If αi

(
Q∨) = Ze, then Φ0 is of type Cr, r ≥ 1, and i = r,

in view of our convention that αr is a long root. The right-hand side of (2.11) then reads

(
kr − k−1

r +
(
k0 − k−1

0

)
Y −α∨

r
)
Y λ

(
1− Y −αr(λ)α∨

r

1− Y −2α∨
r

)
,

which lies in FY

[
Q∨] since αr(λ) ∈ Ze.

Denote by

F
[
Q∨]W0 ⊂ F

[
Q∨]

the subalgebra of W0-invariant elements in F
[
Q∨], and FY

[
Q∨]W0 for its image in H under the

embedding (2.10). Then

Z(H) = FY

[
Q∨]W0 ,

where Z(H) denotes the center of H.

2.5 The double affine Hecke algebra

Fix a parameter qφ ∈ F× and set

qα := q∥φ∥
2/∥α∥2

φ for α ∈ Φ0.

It equals either qφ, q
2
φ or q3φ (see [6, Section 9.4, Table 1]), and qwα = qα for all α ∈ Φ0. We

like to think of qφ as being equal to q2/∥φ∥
2
for q in some field extension of F (this is done

in Sections 1.2–1.4, where we described the results explicitly for Φ0 of type Cr). To circumvent
field extensions, we will introduce instead a group homomorphism q : 2

∥φ∥2Z → F×, m 7→ qm,
with

qm := qm∥φ∥2/2
φ for m ∈ 2

∥φ∥2Z.

Note that qm ∈ F is meaningful for m ∈
〈
Q∨, Q∨〉 since 〈Q∨, Q∨〉 ⊆ 2

∥φ∥2Z.

Definition 2.3. We denote by T the F-torus of rank r consisting of the group homomor-
phisms Q∨ → F×.

The abelian group structure on T is by pointwise multiplication,

(st)µ := sµtµ, s, t ∈ T, µ ∈ Q∨,

where tµ ∈ F× denotes the value of t ∈ T at µ ∈ Q∨.
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Remark 2.4. Consider the root system Φ0 = {±(ϵi ± ϵj)}1≤i<j≤r ∪ {±2ϵi}ri=1 of type Cr,
with {ϵ1, . . . , ϵr} the standard orthonormal basis of Rr. Its co-root lattice Q∨ equals Zr. In the
introduction, we identified the corresponding F-torus T with (F×)r by the isomorphism

T
∼−→ (F×)r, t 7→ (tϵ1 , . . . , tϵr),

cf. (1.6) and (1.8).

For λ ∈ Q∨, we define the torus element

qλ ∈ T

by µ 7→ q⟨λ,µ⟩, µ ∈ Q∨. Then T admits a left W -action by

(wt)µ := tw
−1µ,

(τ(λ)t)µ := (qλt)µ = q⟨λ,µ⟩tµ (2.12)

for t ∈ T, w ∈W0 and λ, µ ∈ Q∨.
We will view a polynomial p =

∑
µ dµx

µ ∈ F
[
Q∨] as regular function on T by

p(t) :=
∑
µ

dµt
µ for t ∈ T.

The formula

(gp)(t) := p
(
g−1t

)
for p ∈ F

[
Q∨], g ∈W and t ∈ T then turns F

[
Q∨] into a W -module, with W acting by algebra

automorphisms. Concretely, the action on the basis of monomials is given by

w(xµ) = xwµ, τ(λ)(xµ) = q−⟨µ,λ⟩xµ (2.13)

for w ∈W0 and λ, µ ∈ Q∨.
Note that by (2.2),

sa(x
µ) = q

−a(0)a(µ)
a xsaµ (2.14)

for a ∈ Φ and µ ∈ Q∨. In particular,

s0(x
µ) = qφ(µ)φ xsφµ.

In various computations, it is convenient to use co-roots of affine roots and incorporate q-
powers in the exponents of the monomials. The co-root b∨ of b ∈ Φ is defined by

b∨ :=

(
b
∨
,
2b(0)

∥b∥2

)
∈ E × R.

The resulting set Φ∨ := {b∨}b∈Φ of co-roots is an affine root system in E × R [9]. Note that

(sab)
∨ = b∨ − a

(
b
∨)
a∨ for a, b ∈ Φ (2.15)

in view of (2.3) and the fact that 2
∥β∥2β(α

∨) = 2
∥α∥2α(β

∨) for α, β ∈ Φ0 (indeed, both sides are
equal to ⟨α∨, β∨⟩ by (2.1)).

We set

xµ̂ := qmxµ ∈ F
[
Q∨] for µ̂ = (µ,m) ∈ Q∨ × 2

∥φ∥2Z
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and we write tµ̂ for the evaluation of xµ̂ ∈ F
[
Q∨] at t ∈ T

(
so in particular, tµ̂ = qmtµ

)
. Note

that Φ∨ ⊂ Q∨ × 2
∥φ∥2Z, hence x

b∨ makes sense for all b ∈ Φ. Concretely,

xb
∨
:= q

b(0)

b
xb

∨
∈ F

[
Q∨], (2.16)

which reduces to the monomial xβ
∨
in case b = (β, 0).

Formula (2.14) can then be rewritten as

sa(x
µ) = xµ−a(µ)a∨ . (2.17)

We furthermore have

g(xb
∨
) = x(gb)

∨
for g ∈W and b ∈ Φ. (2.18)

Indeed, it suffices to check (2.18) for w = sa, a ∈ Φ. By (2.16) and (2.17), we have

sa
(
xb

∨)
= xb

∨−a(b
∨
)a∨

which equals x(sab)
∨
by (2.15).

Definition 2.5 ([3, 14]). The double affine Hecke algebra H = H(k; qφ) is the unital associative
F-algebra generated by Tj , 0 ≤ j ≤ r, and xµ, µ ∈ Q∨, subject to the following relations:

(a) the (W, {s0, . . . , sr})-braid relations for T0, . . . , Tr,

(b) the quadratic relations (Tj − kj)
(
Tj + k−1

j

)
= 0 for j = 0, . . . , r,

(c) xµxν = xµ+ν , µ, ν ∈ Q∨, and x0 is the unit element of H,

(d) the cross relations

Tjx
µ − sj(x

µ)Tj =

(
kj − k−1

j +
(
uj − u−1

j

)
xα

∨
j

1− x2α
∨
j

)
(xµ − sj(x

µ)) (2.19)

for j = 0, . . . , r and µ ∈ Q∨.

The Poincaré–Birkhoff–Witt (PBW) theorem for H states that the canonical algebra maps
H → H and F

[
Q∨] → H are embeddings, and that the multiplication map of H restricts to

a linear isomorphism

F
[
Q∨]⊗H

∼−→ H.

By the Bernstein presentation of the affine Hecke algebra (see Section 2.4), the subalgebra

HX ⊂ H

generated by F
[
Q∨] and H0 is isomorphic to the affine Hecke algebra H̃ := H(k̃).

The double affine Hecke algebra with dual multiplicity parameters will be denoted by

H̃ := H
(
k̃, qφ

)
.

To keep the notations manageable, we will use the same notations Tj , Tg, Y
µ, xµ in both H

and H̃.
The duality anti-isomorphism [4, 14] is the unique anti-algebra isomorphism

δ = δk : H ∼−→ H̃

satisfying

δ(Ti) = Ti, δ
(
Y λ
)
= x−λ, δ(xµ) = Y −µ

for i = 1, . . . , r and λ, µ ∈ Q∨. Its inverse is δ̃ := δ
k̃
.
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3 Quasi-polynomial representations

3.1 The quasi-polynomial representation of HX

In this subsection, we introduce the quasi-polynomial representation of the dual affine Hecke
algebra HX . In case k ∈ Kres, the representation we obtain was derived before in [16, 15].

Let

⌊·⌋ : R → Z

be the floor function, so ⌊s⌋ is the largest integer ≤ s. We denote by

⌊·⌋e : R → Ze, ⌊·⌋o : R → Zo

the functions which map s ∈ R to the smallest even and odd integer ≤ s, respectively. Note that

⌊s⌋e := 2⌊s/2⌋, ⌊s⌋o = ⌊s+ 1⌋e − 1

for s ∈ R.

Definition 3.1. For a ∈ Φ, define the even and odd truncated divided difference operator
∇a = ∇a(k) ∈ End(F[E]) by

∇e
a(x

y) :=

(
1− x−⌊a(y)⌋ea∨

1− x2a∨

)
xy,

∇o
a(x

y) :=

(
xa

∨ − x−⌊a(y)⌋oa∨

1− x2a∨

)
xy (3.1)

for y ∈ E. We furthermore write ∇e
j := ∇e

αj
and ∇o

j := ∇o
αj

for j = 0, . . . , r.

Truncation in Definition 3.1 refers to the fact that the real numbers a(y) in formula (3.1)
are truncated using the even and odd floor operations. These truncations are necessary to turn
the two quotients in (3.1) into well defined elements in F

[
Q∨]. Note that ∇e

a and ∇o
a depend

on qφ when a ∈ Φ\Φ0, in view of (2.16). In this subsection, we only need the truncated divided
difference operators for a ∈ Φ0, and there will be no dependence on qφ.

We write

∇a := ∇e
a +∇o

a (3.2)

for the sum of the even and odd truncated divided difference operator, and ∇j := ∇αj for
j = 0, . . . , r. Then

∇a(x
y) =

(
1− x−⌊a(y)⌋a∨

1− xa∨

)
xy (3.3)

for y ∈ E since

{⌊s⌋e, ⌊s⌋o} = {⌊s⌋, ⌊s⌋ − 1}

as unordered 2-sets for any s ∈ R. The truncated difference operator ∇a ∈ End(F[E]) was
introduced before in [16, Section 4.2].

The link of the various truncated divided difference operators to the usual divided difference
operator is as follows (the first part of the lemma was observed before in [16, Lemma 4.4]).
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Lemma 3.2.

(1) If a ∈ Φ, then

∇a(x
µ) =

xµ − sa(x
µ)

1− xa∨

for µ ∈ Q∨.

(2) If Φ0 is of type Cr, r ≥ 1, and if a ∈ Φ is an affine root such that a ∈ Φℓ
0 (in other words,

a ∈Wα0 ⊔Wαr), then

∇e
a(x

µ) =
xµ − sa(x

µ)

1− x2a∨
= x−a∨∇o

a(x
µ)

for µ ∈ Q∨.

Proof. (1) This is immediate from (2.17) and the fact that a
(
Q∨) ⊆ Z.

(2) Under these assumptions, we have a
(
Q∨) = Ze, hence

⌊a(µ)⌋e = a(µ) = ⌊a(µ)⌋o + 1

and the result follows again from (2.17). ■

We will often make use of the indicator functions χZe , χZo : R → {0, 1} of the subsets of even
and odd integers, respectively. We will denote them by χe and χo, respectively.

Theorem 3.3. The formulas

π(xµ)xy := xy+µ,

π(Ti)x
y := k

χe(αi(y))
i u

χo(αi(y))
i xsiy +

(
ki − k−1

i

)
∇e

i (x
y) +

(
ui − u−1

i

)
∇o

i (x
y) (3.4)

for µ ∈ Q∨, i ∈ {1, . . . , r} and y ∈ E define a representation π : HX → End(F[E]).

Proof. Formula (3.4) uniquely defines linear operators π(xµ) and π(Ti) on F[E], which in turn
restrict to linear operators

πO(xµ) := π(xµ)|F[O], πO(Ti) := π(Ti)|F[O] (3.5)

on F[O] for every W -orbit O in E. In view of (2.7) it thus suffices to show that the linear
operators (3.5) define a representation πO = π(·)|F[O] : H

X → End(F[O]).

Consider HX as left regular HX -module. By (2.9) and (2.19) the HX -action can be written
down explicitly relative to the basis{

xλTw | λ ∈ Q∨, w ∈W0

}
of HX . The resulting formulas are

xµxλTw = xλ+µTw,

Tix
λTw = xsiλTsiw +

(
ki − k−1

i

)(1− x(2χ−
(
w−1αi

)
−αi(λ))α

∨
i

1− x2α
∨
i

)
xλTw

+ (ui − u−1
i )

(
xα

∨
i − x(1−αi(λ))α

∨
i

1− x2α
∨
i

)
xλTw (3.6)

for λ, µ ∈ Q∨, w ∈W0 and i = 1, . . . , r.
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Let κOw ∈ F×, w ∈W0, be a collection of nonzero scalars. Consider the surjective linear map

ψO : HX ↠ F[O], ψO(xλTw) := κOwx
λ+wcO , λ ∈ Q∨, w ∈W0. (3.7)

We will fine tune the scalars κOw ∈ F×, w ∈ W0, in such a way that the kernel of ψO is a left
ideal in HX . This will allow us to push the left regular HX -action through ψO, giving rise to
a HX -action on F[O]. We then show that the resulting action of xµ and Ti on F[O] is by the
linear operators πO(xµ) and πO(Ti), which completes the proof of the theorem.

For any choice of scalars κOw ∈ F×, w ∈W0, the kernel of ψO is invariant under left multipli-
cation by F

[
Q∨]. Note that the kernel ψO is invariant under left multiplication by Ti if there

exists a linear operator DO
i ∈ End(F[O]) such that

DO
i

(
ψO(h)

)
= ψO(Tih)

for all h ∈ HX . By (3.6), we have

ψO(TixλTw) = κOsiwsi
(
xλ+wcO

)
+ κOw

(
ki − k−1

i

)(1− x(2χ−
(
w−1αi

)
−αi(λ))α

∨
i

1− x2α
∨
i

)
xλ+wcO

+ κOw
(
ui − u−1

i

)(xα∨
i − x(1−αi(λ))α

∨
i

1− x2α
∨
i

)
xλ+wcO , (3.8)

so we look for conditions on the scalars κOw such that (3.8) can be expressed as a linear operator

DO
i ∈ End(F[O]) acting on ψO(xλTw) = κOwx

λ+wcO for all λ ∈ Q∨ and w ∈W0.
To simplify notations, we write

y = λ+ wcO

with w ∈W0 and λ ∈ Q∨. We first prove that

1

κOw
ψO(TixλTw) = (κOsiw

κOw
+
(
ki − k−1

i

)
χ−
(
w−1αi

)
χe

(
αi

(
wcO

))
+
(
ui − u−1

i

)
χ+

(
w−1αi

)
χo(αi

(
wcO

)
)

)
xsiy

+
(
ki − k−1

i

)
∇e

i (x
y) +

(
ui − u−1

i

)
∇o

i (x
y) (3.9)

by rewriting the two quotients in (3.8) in terms of the odd and even truncated difference oper-
ators.

We first consider the proof of (3.9) when αi

(
Q∨) = Ze, i.e., when Φ0 is of type Cr, r ≥ 1,

and i = r. Then (2.4) and αr

(
Q∨) = Ze imply that

2χ−
(
w−1αr

)
− αr(λ) =

{
2− ⌊αr(y)⌋e if w−1αr ∈ Φ−

0 and αr

(
wcO

)
= 0,

−⌊αr(y)⌋e otherwise.

By (2.4), this can be reformulated as

2χ−
(
w−1αr

)
− αr(λ) =

{
2− ⌊αr(y)⌋e if χ−

(
w−1αr

)
χe

(
αr

(
wcO

))
= 1,

−⌊αr(y)⌋e if χ−
(
w−1αr

)
χe

(
αr

(
wcO

))
= 0.

This allows us to rewrite the second line of (3.8) for Φ0 of type Cr and i = r in terms of the
even truncated divided difference operator,(

1− x(2χ−(w−1αr)−αr(λ))α∨
r

1− x2α∨
r

)
xy = ∇e

r(x
y) + χ−

(
w−1αr

)
χe

(
αr

(
wcO

))
xsry (3.10)
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in case χ−

(
w−1αr

)
χe

(
αr

(
wcO

))
= 1 use the fact that ⌊αr(y)⌋e = αr(y)

)
. To rewrite the third

line of (3.8) for Φ0 of type Cr and i = r, note that

1− αr(λ) =

{
2− ⌊αr(y)⌋o if αr

(
wcO

)
= 1,

−⌊αr(y)⌋o otherwise,

which can be reformulated as

1− αr(λ) =

{
2− ⌊αr(y)⌋o if χ+

(
w−1αr

)
χo

(
αr

(
wcO

))
= 1,

−⌊αr(y)⌋o if χ+

(
w−1αr

)
χo

(
αr

(
wcO

))
= 0

in view of (2.4). It follows that(
xα

∨
r − x(1−αr(λ))α∨

r

1− x2α∨
r

)
xy = ∇o

r(x
y) + χ+

(
w−1αr

)
χo

(
αr

(
wcO

))
xsry (3.11)

(in case χ+(w
−1αr)χo(αr

(
wcO

)
) = 1 use the fact that ⌊αr(y)⌋o = αr(y)). Substituting (3.10)

and (3.11) into formula (3.8) for i = r, we obtain (3.9) for Φ0 of type Cr and for i = r.
We now prove (3.9) when αi

(
Q∨) = Z. Then ki = ui and using that{

2χ−
(
w−1αi

)
− αi(λ), 1− αi(λ)

}
=
{
χ−
(
w−1αi

)
− αi(λ), 1 + χ−

(
w−1αi

)
− αi(λ)

}
as unordered 2-sets, formula (3.8) simplifies to

ψO(Tix
λTw) = κOsiwx

siy + κOw
(
ki − k−1

i

)(1− x(χ−
(
w−1αi

)
−αi(λ))α

∨
i

1− xα
∨
i

)
xy. (3.12)

Using (2.4), we have for w−1αi ∈ Φ−
0 that

χ−
(
w−1αi

)
− αi(λ) =

{
−⌊αi(y)⌋ if χe

(
αi

(
wcO

))
= 0,

1− ⌊αi(y)⌋ if χe

(
αi

(
wcO

))
= 1

and for w−1αi ∈ Φ+
0 that

χ−
(
w−1αi

)
− αi(λ) =

{
−⌊αi(y)⌋ if χo

(
αi

(
wcO

))
= 0,

1− ⌊αi(y)⌋ if χ0

(
αi

(
wcO

))
= 1.

This leads to the formula(
1− x(χ−

(
w−1αi

)
−αi(λ))α

∨
i

1− xα
∨
i

)
xy

= ∇i(x
y) +

(
χ−
(
w−1αi

)
χe

(
αi

(
wcO

))
+ χ+

(
w−1αi

)
χo

(
αi

(
wcO

)))
xsiy.

Substituting into (3.12) and using the formulas (3.2) and (3.3), we now also obtain (3.9) in case
αi

(
Q∨) = Z.
The next step is choosing the normalization factors κOw , w ∈ W0, in such a way that the

coefficient of xsiλ in (3.9) only depends on y = λ+ wcO. We will show that this is the case for
the scalars

κOw :=
∏

α∈Π(w)

kχe(α(cO))
α k

−χo(α(cO))
α/2 (3.13)
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(a small computation using (2.4) shows that κOw reduces for k ∈ Kres to the normalization
factor [16, (4.11)]). Since Π(w) = Φ+

0 ∩ w−1Φ−
0 for w ∈W0, we have

Π(siw) =

{
Π(w) ∪

{
w−1αi

}
if χ+

(
w−1αi

)
= 1,

Π(w) \
{
− w−1αi

}
if χ−

(
w−1αi

)
= 1.

Combined with the fact that χe, χo : R → {0, 1} are even functions, we obtain

κOsiw
κOw

=

{
k
χe(αi(wcO))
i u

−χo(αi(wcO))
i if χ+

(
w−1αi

)
= 1,

k
−χe(αi(wcO))
i u

χo(αi(wcO))
i if χ−

(
w−1αi

)
= 1,

and hence

κOsiw
κOw

+
(
ki − k−1

i

)
χ−
(
w−1αi

)
χe

(
αi

(
wcO

))
+
(
ui − u−1

i

)
χ+

(
w−1αi

)
χo

(
αi

(
wcO

))
= k

χe(αi

(
wcO
)
)

i u
χo(αi

(
wcO
)
)

i

for w ∈W0 and i = 1, . . . , r. So formula (3.9) reduces for the specific choice (3.13) of κOw to

1

κOw
ψO(TixλTw) = k

χe(αi(wcO))
i u

χo(αi(wcO))
i xsiy

+
(
ki − k−1

i

)
∇e

i (x
y) +

(
ui − u−1

i

)
∇o

i (x
y). (3.14)

Now note that the map

E → F×, y 7→ k
χe(αi(y))
i u

χo(αi(y))
i (3.15)

is τ
(
Q∨)-invariant. This is trivial when Φ0 is of type Cr, r ≥ 1, and i = r, since in this case

αr

(
Q∨) = Ze. In all other cases, αi

(
Q∨) = Z hence ki = ui, in which case it follows from

the fact that the function (3.15) reduces to y 7→ k
χZ(αi(y))
i . In (3.14), we may thus replace the

coefficient

k
χe(αi(wcO))
i u

χo(αi(wcO))
i

of xsiy by k
χe(αi(y))
i u

χo(αi(y))
i .

In conclusion, for κOw given by (3.13) the associated linear map ψO (3.7) satisfies

ψO(Tih) = DO
i

(
ψO(h)

)
∀h ∈ HX

with DO
i ∈ End(F[O]) defined by

DO
i (x

y) := k
χe(αi(y))
i u

χo(αi(y))
i xsiy +

(
ki − k−1

i

)
∇e

i (x
y) +

(
ui − u−1

i

)
∇o

i (x
y)

for y ∈ O. The kernel of ψO : HX ↠ F[O] thus is a left-ideal, and F[O] inherits a HX -action
from HX/ker

(
ψO) with Ti acting by DO

i = πO(Ti) and xµ acting by πO(xµ). This completes
the proof of the theorem. ■

Remark 3.4. The proof of Theorem 3.3 involves a particular choice of normalisation factors
κOw ∈ F× (w ∈ W0). Any choice of κOw , w ∈ W0, such that the coefficient of xsiy, y = λ+ wcO,
in (3.9) only depends on the coset w{v ∈ W0 | vcO = cO} for all y = λ+ wcO ∈ O and
i ∈ {1, . . . , r} will lead to an explicit HX -representation on F[O] involving truncated Demazure–
Lusztig type operators. The present choice (3.13) corresponds to a natural class of parabolically
induced HX -modules, see Section 3.2 for details.
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Corollary 3.5.

(1) F[E] =
⊕

O∈E/W F[O] is a decomposition of F[E] in HX-submodules.

(2) Let O ∈ E/W . Then

π
(
xλTw

)
xc

O
= κOwx

λ+wcO

for λ ∈ Q∨ and w ∈W0, with κ
O
w defined by (3.13).

Proof. (1) This was remarked in the first paragraph of the proof of Theorem 3.3.
(2) By the last paragraph of the proof of Theorem 3.3, the epimorphism ψO : HX ↠ F[O],

mapping xλTw to κOwx
λ+wcO for λ ∈ Q∨ and w ∈ W0, is H

X -linear for the special choice (3.13)
of the scalars κOw . Hence

π
(
xλTw

)
xc

O
= π

(
xλTw

)
ψO(1) = ψO(xλTw) = κOwx

λ+wcO

for λ ∈ Q∨ and w ∈W0. ■

For the upgrade of Theorem 3.3 to the double affine Hecke algebra H (see Section 3.3), it is
useful to introduce the notation

πO(·) := π(·)|F[O]

for the representation map of the HX -submodule F[O] (as we in fact already have done in the
proof of Theorem 3.3). The reason for this is that the extension of πO : HX → End(F[O]) to
a H-representation on F[O] involves additional O-dependent representation parameters.

Remark 3.6.

1. By (3.2), we have

π(Ti)x
y = k

χZ(αi(y))
i xsiy +

(
ki − k−1

i

)
∇i(x

y) if ki = ui,

from which it follows that the HX -representation πO for k ∈ Kres is the restriction to HX

of the quasi-polynomial H-representation defined in [16, Theorem 1.1].

2. Let Λ ⊂ E be a W0-invariant lattice containing Q∨. Then F[Λ] is a π
(
HX

)
-submodule,

and the action of π(Ti)|F[Λ] can be written in terms of metaplectic Demazure–Lusztig type
operators when ki = ui, see [16]. The resulting HX -representation π(·)|F[Λ] for k ∈ Kres

is essentially the one introduced in [15, Theorem 3.7]. The proof of Theorem 3.3 basically
follows the same strategy as the proof of [15, Theorem 3.7].

3.2 Parabolic data and parabolically induced modules

We show in this subsection that the representation πO is a parabolically induced HX -module
when α0

(
cO
)
̸= 0.

For a subset I ⊆ {1, . . . , r}, write

� W0,I for the parabolic subgroup of W0 generated by si, i ∈ I,

� W I
0 for the minimal coset representatives of W0/W0,I ,

� H0,I for the subalgebra of H0 generated by Ti, i ∈ I.

The finite Hecke algebra H0 is a free right H0,I -module with basis {Tv}v∈W I
0
, since

ℓ(vw) = ℓ(v) + ℓ(w) for v ∈W I
0 and w ∈W0,I . (3.16)

Here is an immediate lift to the affine Hecke algebra HX .
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Lemma 3.7.

(1) {τ(λ)v}(λ,v)∈Q∨×W I
0
is a complete set of representatives of W/W0,I .

(2) HX is a free right H0,I-module with basis
{
xλTv

}
(λ,v)∈Q∨×W I

0
.

Proof. The first part is a consequence of the fact that (λ,w) 7→ τ(λ)w defines a bijection
Q∨ ⋊ W0

∼−→ W . For the second part, note that the multiplication map of HX restricts to
a linear isomorphism F

[
Q∨]⊗H0

∼−→ HX . ■

The more familiar parabolic structures on W and on the associated affine Hecke algebra H
arise from their Coxeter type presentations. In this case it depends on a subset J of {0, . . . , r}.
We write

� WJ for the parabolic subgroup of W generated by sj , j ∈ J ,

� W J for the minimal coset representatives of W/WJ ,

� HJ for the subalgebra of H generated by Tj , j ∈ J .

The length identity (3.16) now also holds true for v ∈W J and w ∈WJ . As a consequence, H is
a free right HJ -module with basis {Tg}g∈WJ .

The closure C+ of the fundamental alcove C+ splits in a disjoint union of facets

C+ =
⊔

J⊊{0,...,r}

CJ
+,

with CJ
+ the set of vectors y ∈ C+ for which αj(y) = 0 if and only if j ∈ J . For y ∈ E denote

by Wy ⊂W the subgroup of W fixing y. It is well known that

Wc =WJ for c ∈ CJ
+.

Definition 3.8. For a W -orbit O in E, we write J(O) for the subset of {0, . . . , r} such that

cO ∈ C
J(O)
+ . We furthermore write

I(O) := J(O) ∩ {1, . . . , r}.

Note that I(O) = J(O) if and only if α0

(
cO
)
̸= 0. We will use the shorthand notations

CO
+ , nWO, W

O, HO, . . .

for C
J(O)
+ ,WJ(O),W

J(O), HJ(O), . . . and

W0,O, W
O
0 , H0,O, . . .

forW0,I(O),W
I(O)
0 , H0,I(O), . . . . The following lemma refines the decomposition (2.6) of the space

of quasi-polynomials F[O] as F
[
Q∨]-module when α0

(
cO
)
̸= 0.

Lemma 3.9. If O is a W -orbit such that α0

(
cO
)
̸= 0, then F[O] decomposes as

F[O] =
⊕

v∈WO
0

F
[
Q∨]xvcO . (3.17)

Proof. The assignment gW0,O 7→ gcO gives rise to a bijection

W/W0,O
∼−→ O,

since WcO =WO =W0,O by the assumption on O, and WO
0 is a complete set of representatives

of the double coset space τ
(
Q∨)\W/W0,O by Lemma 3.7(1). Hence {vcO}v∈WO

0
= W0c

O is
a complete set of representatives of the τ

(
Q∨)-orbits in O, and the lemma follows. ■
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For a W -orbit O in E, let F1O the trivial HO-module, defined by

Tj1
O = kj1

O for j ∈ J(O).

We will also view F1O as H0,O-module by restricting the action to H0,O. Consider the induced
HX -module

IndH
X

H0,O

(
F1O

)
= HX ⊗H0,O F1O

and write

1O = 1⊗H0,O 1O

for its canonical cyclic vector.

Proposition 3.10. There exists a unique HX-linear epimorphism

IndH
X

H0,O

(
F1O

)
↠
(
F[O], πO

)
(3.18)

mapping 1O to xc
O
. It is an isomorphism when α0

(
cO
)
̸= 0.

Proof. For the first statement, we need to show that the assignment h1O 7→ π(h)xc
O

for
h ∈ HX is well defined. It suffices to note that

π(Ti)x
cO = kix

cO for i ∈ I(O).

But for i ∈ I(O), we have sic
O = cO, and hence

π(Ti)x
cO = κOsix

sic
O
= kix

cO

by Corollary 3.5 (2) and (3.13).
For the second statement, note first that{

xλTv1
O | (λ, v) ∈ Q∨ ×WO

0

}
(3.19)

is a basis of IndH
X

H0,O

(
F1O

)
. By Corollary 3.5 (2), the basis element xλTv1

O is mapped by the
epimorphism (3.18) to

π(xλTv)x
cO = κOv x

λ+vcO .

By Lemma 3.9, we conclude that the epimorphism (3.18) maps the basis (3.19) of IndH
X

H0,O

(
F1O

)
to a basis of F[O], which concludes the proof of the second statement. ■

The natural analog of Proposition 3.10 for W -orbits O with α0

(
cO
)
= 0 (i.e., with 0 ∈ J(O))

requires the extension of the HX -action πO on F[O] to an action of the double affine Hecke
algebra H. This will be the subject of the next subsection.

3.3 The quasi-polynomial representation of H

We now promote the quasi-polynomial representation πO of the affine Hecke algebra HX to
a family of representations of the double affine Hecke algebra H. The number of additional pa-
rameters depends on the facet C

J(O)
+ containing cO. For k ∈ Kres the extended representations

are the quasi-polynomial H-representations πcO,t introduced in [16, Theorem 1.1]. For k ∈ K
and Φ0 of type Cr, r ≥ 1, they will give quasi-polynomial extensions of the polynomial repre-
sentation of the type C∨Cr double affine Hecke algebra H [11, 14].
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Recall the definition of the F-torus T (see Definition 2.3). For J ⊊ {0, . . . , r}, consider its
affine subtori

TJ :=
{
t ∈ T | tα

∨
j = 1 ∀j ∈ J

}
.

For a W -orbit O in E, write

TO := TJ(O).

Note that

sat = t
(
t−a∨

)a
for a ∈ Φ and t ∈ T, (3.20)

where t
(
t−a∨

)a ∈ T is viewed as character of Q∨ by λ 7→ tλ
(
t−a∨

)a(λ)
for λ ∈ Q∨. By (3.20),

we have sat = t if ta
∨
= 1, and so

TJ ⊆ TWJ := {t ∈ T | gt = t ∀g ∈WJ}. (3.21)

Note that TJ and TWJ are sub-tori of T when 0 ̸∈ J .
In [16, Lemma 4.2], the W0-action on F[O] was extended to a family of W -actions on F[O],

parametrised by t ∈ TO. These actions are compatible with the W -action (2.13) on F
[
Q∨] by

q-dilations and reflections. The definition of this action requires the following definition.

Definition 3.11. For y ∈ E, write gy ∈W for the unique element of shortest length in W such
that g−1

y y ∈ C+.

Note that if y lies in the W -orbit O of E, then gy is the unique element in WO such that
y = gyc

O.

Lemma 3.12. Let O be a W -orbit in E. For t ∈ TO, the formulas

wtx
y := w(xy) = xwy, w ∈W0,

τ(λ)tx
y := (gyt)

−λxy, λ ∈ Q∨ (3.22)

for y ∈ O define a linear left W -action on F[O] satisfying

gt(pf) = (gp)(gtf) (3.23)

for g ∈W , p ∈ F
[
Q∨] and f ∈ F[O].

It is instructive to recall the proof of (3.23) for g = τ(λ), λ ∈ Q∨. First note that by (3.21),
we may replace gy in (3.22) by any other representative of the coset gyWO. We then have
for µ ∈ Q∨,

τ(λ)tx
µ+y = (gµ+yt)

−λxµ+y

= (τ(µ)gyt)
−λxµ+y

= q−⟨λ,µ⟩(gyt)
−λxµ+y

=
(
q−⟨λ,µ⟩xµ

)(
(gyt)

−λxy
)
, (3.24)

where we used gy+µWO = τ(µ)gyWO for the second equality, and (2.12) for the third equality.
The last line in (3.24) clearly equals (τ(λ)xµ)(τ(λ)tx

y). Note in particular that the family of
W -actions (3.22) depends on q via the W -action (2.12) on T.

Note that by (3.24) we have the formula

τ(λ)t|F[Q∨]xy = (gyt)
−λ(xy ◦ τ(λ) ◦ x−y)|F[Q∨]xy ,

where x±y are regarded as multiplication operators on F[E].
The following result extends [16, Theorem 1.1] to multiplicity functions k ∈ K.
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Theorem 3.13. Let O be a W -orbit in E and t ∈ TO. The formulas

πOt
(
xλ
)
xy := xy+λ,

πOt (Tj)x
y := k

χe(αj(y))
j u

χo(αj(y))
j sj,tx

y +
(
kj − k−1

j

)
∇e

j(x
y) +

(
uj − u−1

j

)
∇o

j(x
y) (3.25)

for j = 0, . . . , r, λ ∈ Q∨ and y ∈ O define a representation πOt : H → End(F[O]).

Remark 3.14. Note that πOt |HX is the restriction πO of the quasi-polynomial HX -represen-
tation π from Theorem 3.3 to F[O]. Furthermore, for restricted multiplicity parameters k ∈ Kres

we have

πOt (Tj) = k
χZ(αj(y))
j sj,tx

y +
(
kj − k−1

j

)
∇j(x

y)

since kj = uj , hence π
O
t then coincides with the quasi-polynomial representation πcO,t defined

in [16, Theorem 1.1].

Proof. Consider H as left regular H-module. Relative to the F-basis{
xλTwY

µ | λ, µ ∈ Q∨, w ∈W0

}
of H, the H-action is explicitly given by

Tjx
λTwY

µ = sj
(
xλ
)
Tsαj

wY
µ−w−1sj(0)

+
(
kj − k−1

j

)(1− x(2χ−(w−1αj)−αj(λ))α
∨
j

1− x2α
∨
j

)
xλTwY

µ

+
(
uj − u−1

j

)(xα∨
j − x(1−αj(λ))α

∨
j

1− x2α
∨
j

)
xλTwY

µ (3.26)

for w ∈ W0, λ, µ ∈ Q∨ and j = 0, . . . , r. For j ∈ {1, . . . , r}, formula (3.26) follows immedi-
ately from (3.6). For j = 0, formula (3.26) follows by commuting T0 and xλ using the cross
relation (2.19) and then applying the identity

T0Tw = Tsα0
wY

−w−1s0(0) + χ−
(
w−1α0

)(
k0 − k−1

0

)
Tw (3.27)

in H. For the proof of (3.27), first note that it is equivalent to the identity

T
χ(w−1φ)
0 Tsφw = TwY

w−1φ∨
(3.28)

in H since s0(0) = φ∨, α0 = −φ and T−1
0 = T0 − k0 + k−1

0 . For a proof of (3.28) see, for
instance, [10, (3.3.6)].

Let O be a W -orbit in E. Recall the linear epimorphism ψO : HX ↠ F[O], defined by (3.7),
which is an epimorphism of HX -modules by Corollary 3.5 (2). The goal is to find extensions
of ψO to linear epimorphisms H ↠ F[O] such that

(1) their kernels are left ideals in H,

(2) right multiplication by FY

[
Q∨] is turned into multiplication by a linear character of

FY

[
Q∨].

This will upgrade the HX -action on F[O] to a family of H-actions satisfying the additional prop-
erty that the quasi-monomial xc

O
will be a simultaneous eigenvector for the action of FY

[
Q∨].

The family of extended H-actions on F[O] will be natural parametrised by the associated linear
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characters of FY

[
Q∨], which in turn can be described by an affine subtorus of the form sTO for

a specific basepoint s ∈ T, so be determined in due course.

So our starting point will be the desired property (2). Fix t ∈ TO and consider the extension
of ψO to a (t-dependent) linear map ψO

t : H ↠ F[O] by

ψO
t

(
xλTwY

µ
)
:= (st)−µψO(xλTw) = κOw (st)

−µxλ+wcO (3.29)

for w ∈ W0 and λ, µ ∈ Q∨ (recall here that κOw ∈ F× is the explicit scalar defined by (3.13)
)
.

By the first formula of (3.29) and Corollary 3.5 (2), it follows that

ψO
t (hh′) = πOt (h)ψO

t (h′) forh ∈ HX andh′ ∈ H.

In particular, the kernel of ψO
t is a left HX -submodule in H. To meet the first property (1),

we now fine-tune the choice of s ∈ T such that

ψO
t (T0h

′) = D0

(
ψO
t (h′)

)
for all h′ ∈ H

for some D0 ∈ End(F[O]).

Note that for λ ∈ Q∨ and w ∈W0,

s0,tx
λ+wcO = s0

(
xλ
)(
s0,tx

wcO
)
= tw

−1φ∨
s0
(
xλ
)
xsφwcO

and hence, by (3.26),

(st)µ

κOw
ψO
t (T0x

λTwY
µ) =

κOsφw sw
−1φ∨

κOw
s0,tx

λ+wcO

+ (k0 − k−1
0 )

(
1− x(2χ−(w−1α0)−α0(λ))α∨

0

1− x2α
∨
0

)
xλ+wcO

+ (u0 − u−1
0 )

(
xα

∨
0 − x(1−α0(λ))α∨

0

1− x2α
∨
0

)
xλ+wcO . (3.30)

So we need to fine-tune s ∈ T such that the right-hand side of (3.30) can be written D0

(
xλ+wc

)
for some D0 ∈ End(F[O]). We follow the proof of Theorem 3.3, but it requires some necessary
additional computations due to the presence of the additional parameters s and t (compare also
with [16, Section 5], which deals with the case that k ∈ Kres).

We first consider the case that Φ0 is of type Cr, r ≥ 1, so that α0

(
Q∨) = Zo. Fix λ ∈ Q∨

and w ∈W0 and set

y := λ+ wcO.

The second line of (3.30) can then be rewritten using the formula(
1− x(2χ−(w−1α0)−α0(λ))α∨

0

1− x2α
∨
0

)
xy = ∇e

0(x
y) + χ−

(
w−1α0

)
χe

(
α0

(
wcO

))
s0,tx

y. (3.31)

To prove (3.31), note that by (2.4) we have

2χ−
(
w−1α0

)
− α0(λ) =

{
2− ⌊α0(y)⌋e if w−1α0 ∈ Φ−

0 and α0

(
wcO

)
= 0,

−⌊α0(y)⌋e otherwise,
(3.32)
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and that α0

(
wcO

)
= 0 if and only if χe

(
α0

(
wcO

))
= 1. This immediately implies (3.31) unless

w−1α0 ∈ Φ−
0 and α0

(
wcO

)
= 0. So suppose now that w−1α0 ∈ Φ−

0 and α0

(
wcO

)
= 0. Then

sφwc
O = wcO, and hence

s0,tx
y = s0

(
xλ
)(
s0,tx

wcO
)
=
(
xλ−α0(λ)α∨

0
)(
tw

−1φ∨
xwcO

)
= tw

−1φ∨
xλ−α0(λ)α∨

0 +wcO .

But
(
w−1φ

)(
cO
)
= 0, hence

w−1φ∨ ∈ Φ∨
0 ∩

⊕
i∈I(O)

Zα∨
i .

Since t ∈ TO, we conclude that tw
−1φ∨

= 1, so

s0,tx
y = xλ−α0(λ)α∨

0 +wcO . (3.33)

Then (3.31) follows by combining the first case of (3.32) and (3.33).
Similarly, we rewrite the third line of (3.30) using the formula(

xα
∨
0 − x(1−α0(λ))α∨

0

1− x2α
∨
0

)
xy = ∇o

0(x
y) + χ+

(
w−1α0

)
χo

(
α0

(
wcO

))
s0,tx

y. (3.34)

For the proof of (3.34), we now use that

1− α0(λ) =

{
2− ⌊α0(y)⌋o if α0

(
wcO

)
= 1,

−⌊α0(y)⌋o otherwise,
(3.35)

and the observation that α0

(
wcO

)
= 1 is equivalent to χ+

(
w−1α0

)
χo

(
α0

(
wcO

))
=1. Then (3.34)

is immediate if α0

(
wcO

)
̸= 1. So suppose now that α0

(
wcO

)
= 1. Then

s0,tx
y = tw

−1φ∨
xλ−α0(λ)α∨

0 +sφwcO

= qφt
w−1φ∨

xλ−(1+α0(λ))α∨
0 +wcO = xλ−(1+α0(λ))α∨

0 +wcO . (3.36)

The last equality follows from the fact that the affine root a :=
(
w−1φ, 1

)
satisfies a

(
cO
)
= 0,

so a∨ ∈ Φ+ ∩
⊕

j∈J(O) Zα∨
j and hence qφt

w−1φ∨
= ta

∨
= 1 (cf. [16, Lemma 3.4]). Then (3.34)

follows from the first case of (3.35) and (3.36).
Returning now to (3.30), we conclude from (3.31) and (3.34) that

(st)µ

κOw
ψO
t

(
T0x

λTwY
µ
)
= coeffO

ws0,tx
y +

(
k0 − k−1

0

)
∇e

0(x
y) +

(
u0 − u−1

0

)
∇o

0(x
y) (3.37)

with

coeffO
w :=

κOsφws
w−1φ∨

κOw
+
(
k0 − k−1

0

)
χ−(w

−1α0)χe

(
α0

(
wcO

))
+
(
u0 − u−1

0

)
χ+

(
w−1α0

)
χo

(
α0

(
wcO

))
. (3.38)

Formula (3.37) also holds true when Φ0 is not of type Cr. In fact, if Φ0 is not of type Cr then
K = Kres and k0 = u0, and the formula can be recovered from [16, Section 5]. It can also be
derived directly, similarly as the proof of (3.9) when αi

(
Q∨) = Z. So we will now continue the

proof of the theorem for Φ0 of any type, taking (3.37) as the starting point.
Properties of the normalization factors κOw (3.13) were derived in [16] for restricted parameters

k ∈ Kres, which led to an explicit expression of the quotient κOsφw/κ
O
w (see [16, Lemma 5.6 (1)], as
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well as case 2 of the proof of [16, Lemma 5.9]). This can be easily extended to κOw for arbitrary
parameters k ∈ K. It leads to the formula

κOsφw

κOw
= k−χ(w−1φ)χe(φ(wcO))

φ k
χ(w−1φ)χo(φ(wcO))
φ
2

∏
α∈Φ+

0

kχe(α(cO))α(w−1φ∨)
α k

−χo(α(cO))α(w−1φ∨)
α
2

,

where χ is given by (2.8). Hence

coeffO
w = k−χ(w−1φ)χe(φ(wcO))

r uχ(w
−1φ)χo(φ(wcO))

r

(
s
∏

α∈Φ+
0

kχe(α(cO))α
α k

−χo(α(cO))α
α
2

)w−1φ∨

+
(
k0 − k−1

0

)
χ+

(
w−1φ

)
χe

(
φ
(
wcO

))
+
(
u0 − u−1

0

)
χ−
(
w−1φ

)
χo

(
φ
(
wcO

))
,

where the factor in big brackets in the first line is considered as element inT with value at λ ∈ Q∨

given by

sλ
∏

α∈Φ+
0

kχe(α(cO))α(λ)
α k

−χo(α(cO))α(λ)
α
2

.

Now we pick s ∈ T to be

sO :=
∏

α∈Φ+
0

(
kαk(α,1)

)−χe(α(cO))
2

α(
kα

2
k(α

2
, 1
2
)

)χo(α(cO))
2

α
, (3.39)

whose value at λ ∈ Q∨ is

sλO :=
∏

α∈Φ+
0

(
kαk(α,1)

)−χe(α(cO))α(λ)
2

(
kα

2
k(α

2
, 1
2
)

)χo(α(cO))α(λ)
2 .

When α
(
Q∨) = Z, the factor in this product should be read as

k−χe(α(cO))α(λ)
α k

χo(α(cO))α(λ)
α
2

= k(χo(α(cO))−χe(α(cO)))α(λ)
α(

recall that kα = k(α,1) = kα
2
= k(α

2
, 1
2
) when α

(
Q∨) = Z

)
.

For the remainder of the proof, we set s = sO, hence the linear map ψO
t : H ↠ F[O] is now

given by

ψO
t

(
xλTwY

µ
)
= κOw (sOt)

−µxλ+wcO (3.40)

for λ, µ ∈ Q∨ and w ∈W0. We get

coeffO
w = k−χ(w−1φ)χe(φ(wcO))

r uχ(w
−1φ)χo(φ(wcO))

r

×
∏

α∈Φ+
0 :α(Q∨)=Ze

(
kαk

−1
(α,1)

)χe(α(cO))α(w−1φ∨)
2

(
k−1

α
2
k(α

2
, 1
2
)

)χo(α(cO))α(w−1φ∨)
2

+
(
k0 − k−1

0

)
χ+

(
w−1φ

)
χe

(
φ
(
wcO

))
+
(
u0 − u−1

0

)
χ−
(
w−1φ

)
χo

(
φ
(
wcO

))
. (3.41)

Recall that there only exist roots α ∈ Φ0 with α
(
Q∨) = Ze when Φ0 is of type Cr. In this case{

α ∈ Φ0 | α
(
Q∨) = Ze

}
is the set Φ0,ℓ of long roots in Φ0, and{

α ∈ Φ0,ℓ | α
(
w−1φ∨) ̸= 0

}
=
{
w−1φ,−w−1φ

}
.
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We thus have∏
α∈Φ+

0 : α(Q∨)=Ze

(
kαk

−1
(α,1)

)χe(α(cO))α(w−1φ∨)
2

(
k−1

α
2
k(α

2
, 1
2
)

)χo(α(cO))α(w−1φ∨)
2

=
(
k−1
0 kr

)χ(w−1φ)χe(φ(wcO))(
u0u

−1
r

)χ(w−1φ)χo(φ(wcO))
.

Note that this formula is correct for Φ0 of arbitrary type. Indeed, if Φ0 is not of type Cr then
the product on the left-hand side is an empty product, and the right-hand side also reduces to 1.
Substituting (3.3) into (3.41), we see that the dependence on kr and ur drops out, and we end
up with the formula

coeffO
w = k

−χ(w−1φ)χe(φ(wcO))
0 u

χ(w−1φ)χo(φ(wcO))
0

+
(
k0 − k−1

0

)
χ+

(
w−1φ

)
χe

(
φ
(
wcO

))
+
(
u0 − u−1

0

)
χ−
(
w−1φ

)
χo

(
φ
(
wcO

))
.

Now note that

k
−χ(w−1φ)χe(φ(wcO))
0 u

χ(w−1φ)χo(φ(wcO))
0 =

(
k0χ−

(
w−1φ

)
+ k−1

0 χ+

(
w−1φ

))
χe

(
φ
(
wcO

))
+
(
u0χ+

(
w−1φ

)
+ u−1

0 χ−
(
w−1φ

))
χo

(
φ
(
wcO

))
,

and hence

coeffO
w = k0χe

(
φ
(
wcO

))
+ u0χo

(
φ
(
wcO

))
= k

χe(φ(wcO))
0 u

χo(φ(wcO))
0 . (3.42)

Note that y 7→ k
χe(φ(y))
0 u

χo(φ(y))
0 is τ

(
Q∨)-invariant (compare with the proof of Theorem 3.3),

hence (3.37) and (3.42) lead to the formula

(sOt)
µ

κOw
ψO
t

(
T0x

λTwY
µ
)
= D0(x

y)

for y = λ+ wcO ∈ O and µ ∈ Q∨, where D0 is the linear operator on F[O] defined by

D0(x
y) := k

χe(α0(y))
0 u

χo(α0(y))
0 s0,tx

y +
(
k0 − k−1

0

)
∇e

0(x
y) +

(
u0 − u−1

0

)
∇o

0(x
y)

for y ∈ O.
In conclusion, the kernel of ψO

t : H ↠ F[O] (see (3.40)) is a left H-module, and the resulting
isomorphism H/ker

(
ψO
t

) ∼−→ F[O] extends the quasi-polynomial HX -action π on F[O] to an
action of H with T0 ∈ H ⊂ H acting by D0, hence the corresponding representation map is πOt .
This concludes the proof. ■

Remark 3.15. For the W -orbit O = Q∨ containing the origin, we have TQ∨ = {1T} since
J
(
Q∨) = {1, . . . , r}. By Lemma 3.2 and by the fact that g1Tf = g(f) for g ∈W and f ∈ F

[
Q∨]

(see Lemma 3.12), we conclude that

πQ
∨

1T
(Tj)x

µ = kjsj(x
µ) +

(
kj − k−1

j +
(
uj − u−1

j

)
xα

∨
j
)(xµ − sj(x

µ)

1− x2α
∨
j

)
for j = 0, . . . , r and µ ∈ Q∨. Hence πQ

∨

1T
: H → End

(
F
[
Q∨]) is the basic representation of H,

due to Cherednik [3] for k ∈ Kres and due to Noumi [11] and Sahi [14] when k ∈ K and Φ0 is of
type Cr.

Corollary 3.16. We have

πOt
(
xλTwY

µ)xc
O
= κOw (sOt)

−µxλ+wcO

for λ, µ ∈ Q∨ and w ∈W0, with sO ∈ T given by (3.39) and κOw given by (3.13).
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Proof. In the proof of Theorem 3.13, we showed that the epimorphism ψO
t : H ↠ F[O], de-

fined by (3.40), is H-linear. Since ψO
t (1) = xc

O
, the result now follows immediately from for-

mula (3.40), cf. the proof of Corollary 3.5 (2). ■

Remark 3.17. A similar remark as for the proof of Theorem 3.3 (see Remark 3.4) can be made
for the proof of Theorem 3.13. With the κw chosen to be (3.13), the proof of Theorem 3.13
involves choosing some s ∈ T such that the coefficients coeffO

w (see (3.38)) only depends on the
coset wW0,O for all w ∈ W0. For any such choice, one gets explicit realisations of quotients
of cyclic Y -parabolically induced H-modules with the associated induction datum given by st
(cf. Corollary 3.16). This forces s to lie in suitable affine subtori of T. With the present choice
s = sO (see (3.39)) one obtains the explicit realisations of all cyclic Y -parabolically induced
H-modules, see Section 5 for details.

4 Quasi-polynomial analogs of the nonsymmetric
Macdonald–Koornwinder polynomials

We fix a W -orbit O in E and t ∈ TO throughout this section.
In the first part of this section, we show that the commuting operators πOt (Y µ), µ ∈ Q∨,

on F[O] are triangular with respect to an appropriate partial order on the basis {xy}y∈O of
quasi-monomials. This will lead to the definition of the quasi-polynomial analogs of the non-
symmetric Macdonald–Koornwinder polynomials as the simultaneous eigenfunctions of the op-
erators πOt (Y µ), µ ∈ Q∨. The techniques in this section again closely follow the paper [16], in
which these results are derived for k ∈ Kres.

We first establish triangularity for a family GO
t (a), a ∈ Φ, of operators closely related to

the πOt (Tj). The linear operator GO
t (a) on F[O] is defined by the formula

GO
t (a)x

y := kχe(a(y))
a k

χo(a(y))
a
2

xy +
(
ka − k−1

a

)(1− x⌊a(y)⌋ea
∨

1− x−2a∨

)
sa,tx

y

+
(
ka

2
− k−1

a
2

)(x−a∨ − x⌊a(y)⌋oa
∨

1− x−2a∨

)
sa,tx

y

for y ∈ O.

Lemma 4.1. We have

(1) GO
t (αj) = sj,tπ

O
t (Tj) for j = 0, . . . , r.

(2) GO
t (ga) = gtG

O
t (a)g

−1
t for g ∈W .

Proof. This follows from a direct computation using (3.23) and (2.18), cf. [16, Section 5.5]. ■

Recall the definition of gy ∈ WO from Definition 3.11. Denote by ≤ the partial order on E
defined by

y ≤ z ⇔ y ∈Wz and gy ≤B gz

with ≤B the Bruhat order of (W, {s0, . . . , sr}). Note that for each z ∈ E,

{y ∈ E | y ≤ z}

is a finite set contained in the W -orbit Wz of z. Various other properties of this partial order
are obtained in [16, Section 5.4].
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Definition 4.2. For f ∈ F[E], we write

f = dxy + l.o.t.

if f ∈ dxy+
⊕

z<y Fx
z with d ∈ F×. We then say that f is of degree y with leading coefficient d.

Define ηe, ηo : R → {−1, 0, 1} by

ηe = χ2Z≥1
− χ2Z≤0

, ηo = χ1+2Z≥0
− χ1+2Z<0 .

We also set

η := ηe + ηo,

which is equal to χZ>0 − χZ≤0
. We have the following extension of [16, Lemma 5.27].

Lemma 4.3. For a ∈ Φ+
0 × Z, we have

GO
t (a)x

y = k−ηe(a(y))
a k

−ηo(a(y))
a
2

xy + l.o.t.

for all y ∈ O.

Proof. This is covered by [16, Lemma 5.27] unless Φ0 is of type Cr. For Φ0 of type Cr, one
checks using [16, Lemma 4.3 (1)], [16, Proposition 5.20] and [16, Lemma 5.24] that for a ∈ Φ+

0 ×Z,(
1− x⌊a(y)⌋ea

∨

1− x−2a∨

)
sa,tx

y = −χ2Z≥1
(a(y))xy + l.o.t.,(

x−a∨ − x⌊a(y)⌋oa
∨

1− x−2a∨

)
sa,tx

y = −χ1+2Z≥0
(a(y))xy + l.o.t.,

and hence

GO
t (a)x

y

=
(
kχe(a(y))
a k

χo(a(y))
a
2

+
(
k−1
a − ka

)
χ2Z≥1

(a(y)) +
(
k−1

a
2

− ka
2

)
χ1+2Z≥0

(a(y))
)
xy + l.o.t.

= k−ηe(a(y))
a k

−ηo(a(y))
a
2

xy + l.o.t.,

as desired. ■

Definition 4.4. For y ∈ E, define sy ∈ T by

sy :=
∏

α∈Φ+
0

(
kαk(1,α)

) ηe(α(y))
2

α(
kα

2
k( 1

2
,α
2
)

) ηo(α(y))
2

α
.

In other words, the value of sy at λ ∈ Q∨ is

sλy :=
∏

α∈Φ+
0

(
kαk(α,1)

) ηe(α(y))α(λ)
2

(
kα

2
k(α

2
, 1
2
)

) ηo(α(y))α(λ)
2 .

If α
(
Q∨) = Ze, then the factors in this product are clearly well defined. If α

(
Q∨) = Z,

then kα = k(α,1) = kα
2
= k(α

2
, 1
2
), and the corresponding factor in the product should be read as

k
η(α(y))α(λ)
α . In particular,

sy =
∏

α∈Φ+
0

kη(α(y))α
α for k ∈ Kres,

which is the base-point considered in [16] (see [16, Definition 5.1]). By [16, Lemma 2.5], the
function E → T, y 7→ sy is constant on the faces of the affine root hyperplane arrangement.
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Remark 4.5. If c ∈ C+, then (2.4) implies that

sc =
∏

α∈Φ+
0

(
kαk(α,1)

)−χe(α(c))
2

α(
kα

2
k(α

2
, 1
2
)

)χo(α(c))
2

α
.

In particular,

scO = sO,

with sO ∈ T the torus element appearing before in Corollary 3.16 (see (3.39)).

Corollary 4.6. For all µ ∈ Q∨ and y ∈ O, we have

πOt (Y µ)xy = (sygyt)
−µxy + l.o.t.

Proof. This is [16, Proposition 5.28] when k ∈ Kres. Using Lemma 4.3 as replacement of [16,
Lemma 5.27], the proof of [16, Proposition 5.28] extends to the case k ∈ K. ■

We now first derive some further properties of the map E → T, y 7→ sy. The following lemma
extends [16, Lemma 5.3].

Lemma 4.7. Let Wy := {w ∈ W | wy = y} be the subgroup of W fixing y ∈ E, and let
j ∈ {0, . . . , r}.

(1) If sj ∈Wy, then

s
α∨
j

y = k̃−1
αj

k̃−1
αj
2

and sαjsy =
(
k̃αj k̃αj

2

)αjsy.

(2) If sj ̸∈Wy, then sαjsy = ssjy.

Proof. We give here the required adjustments to the proof of [16, Lemma 5.3].
For 1 ≤ i ≤ r, we have αi = αi, sαi = si and Π(si) = {αi}, hence

sisy =
(
kαi ,k(αi,1)

)−(ηe(αi(y))+ηe(−αi(y)))
αi
2
(
kαi

2
k(

αi
2
, 1
2
)

)−(ηo(αi(y))+ηo(−αi(y)))
αi
2 sy,

with the obvious interpretation of the right-hand side when αi

(
Q∨) = Z. Then (1) and (2)

follow from the fact that

ηe(z) + ηe(−z) = −2χ{0}(z), ηo(z) + ηo(−z) = 0

for z ∈ R.
We now prove the lemma for s0 when Φ0 is of type Cr (the other types are covered by [16,

Lemma 5.3]). Write Φ±
0,ℓ

(
resp. Φ±

0,s

)
for the positive and negative long (resp. short) roots in Φ0.

Clearly,

Π(sφ) = Πℓ(sφ) ⊔Πs(sφ)

with Πℓ(w) := Φ+
0,ℓ ∩ w

−1Φ−
0,ℓ and Πs(w) := Φ+

0,s ∩ w−1Φ−
0,s for w ∈W0. Furthermore,

Πℓ(sφ) = {φ}, Πs(sφ) =
{
α ∈ Φ+

0,s | α
(
φ∨) = 1

}
,

where we used for the first equality that there are no long positive roots α with α
(
φ∨) = 1,

because Φ0 is of type Cr. Following the proof of [16, Lemma 5.3] and using that

kβ = k(β,1) = kβ
2
= k

(β
2
, 1
2
)
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for β ∈ Φ+
0,s, we get

sφsy = ss0y(k0kr)
−(ηe(φ(y))+ηe(2−φ(y)))φ

2 (u0ur)
−(ηo(φ(y))+ηo(2−φ(y)))φ

2

×
∏

β∈Φ+
0,s : β(φ

∨)=1

k
−(η(−β(sφy))+η(1+β(sφy)))β
β . (4.1)

Now the product in the second line of (4.1) is 1T since η(z) + η(1− z) = 0 for z ∈ R. Applying
the elementary formulas

ηe(z) + ηe(2− z) = 0, ηo(z) + ηo(2− z) = 2χ{1}(z) (4.2)

for z ∈ R to the first line of (4.1), the identity (4.1) reduces to

sφsy = ss0y(u0ur)
−χ{1}(φ(y))φ,

from which the lemma for j = 0 follows immediately. ■

We denote by w ∈ W0 the image of w ∈ W under the group homomorphism W ↠ W0,
vτ(λ) 7→ v, v ∈W0, λ ∈ Q∨. Note that sa = sa for a ∈ Φ.

Corollary 4.8. For y ∈ O, we have

sy = gysO and sygyt = gy(sOt).

Furthermore, s
α∨
j

O = k̃−1
αj

k̃−1
αj
2

for all j ∈ J(O).

Proof. Similar to the proof of [16, Proposition 5.4] and [16, Corollary 5.5]. ■

By Corollary 4.8, we have sOTO = LO with

LO :=
{
γ ∈ T | γα

∨
j = k̃−1

αj
k̃−1

αj
2

∀j ∈ J(O)
}
. (4.3)

Note here that k̃α0 k̃α0
2

= u0ur, k̃αi k̃αi
2
= k2i = k2 for 1 ≤ i < r, and k̃αr k̃αr

2
= k0kr.

Write

T′
O :=

{
t ∈ TO | the map WO → T, g 7→ g(sOt) is injective

}
.

Then T′
O ̸= ∅ for generic q ∈ F× and k ∈ K. We are now in the position to extend the definition

of the quasi-polynomial analogs of the monic nonsymmetric Macdonald polynomials, introduced
in [16, Theorem 6.2] for multiplicity functions k ∈ Kres, to multiplicity functions k ∈ K.

Theorem 4.9. For t ∈ T′
O and y ∈ O, there exists a unique quasi-polynomial

EO
y (x) = EO

y (x;k, t; q) ∈ F[O]

satisfying the following two properties:

(a) EO
y (x) = xy + l.o.t.,

(b) πOt (Y µ)EO
y (x) = (gy(sOt))

−µEO
y (x) for all µ ∈ Q∨.

Proof. This is a direct consequence of Corollaries 4.6 and 4.8. ■
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Only the Koornwinder/C∨Cr-case of Theorem 4.9 is new compared to [16, Theorem 6.2].
In this case, Φ0 is of type Cr, r ≥ 1, and EO

y (x) depends on five multiplicity parameters
k0, u0, kr, ur, k ∈ F× (four in case of r = 1), on the dilation parameter q, and on the representa-
tion parameter t ∈ TO.

To see how Sahi’s [14] monic nonsymmetric Koornwinder polynomials fit into this picture,
consider the special case that O = Q∨. Then J

(
Q∨) = {1, . . . , r} and TQ∨ = {1T}. Then The-

orem 4.9 requires that 1T ∈ T′
{1,...,r}, which amounts to generic conditions on q ∈ F× and k ∈ K

(including, typically, the condition that q is not a root of unity). By Remark 3.15, the resulting
Laurent polynomial

EQ∨
µ (x;k, 1T; q) ∈ F

[
Q∨]

is Sahi’s [14, Theorem 6.2] monic nonsymmetric Koornwinder polynomial Eµ of degree µ ∈ Q∨,
with n and the multiplicity parameters t0, u0, tn, un, ti, i ̸= 0, n, in [14] corresponding to r
and k0, u0, kr, ur, k.

Various properties of the quasi-polynomial generalisations of the Macdonald polynomials ob-
tained in [16] have direct analogs in the Koornwinder case, such as the face limit transitions [16,
Proposition 6.15], the creation formulas [16, Theorem 6.12] in terms of double affine Hecke alge-
bra Y -intertwiners, the orthogonality relations [16, Theorem 6.42], and (anti)symmetrisation [16,
Section 6.6]. We do not give the details here. The quasi-polynomial generalisations of the sym-
metric Macdonald–Koornwinder polynomials will be the topic of an upcoming paper.

5 The quasi-polynomial representation
as Y -parabolically induced module

In this section, O is a W -orbit in E and t ∈ TO. Then sOt ∈ sOTO = LO with LO the
affine subtorus of T defined by (4.3) and sO given by (3.39). Recall the definition of the subset
I(O) ⊆ {1, . . . , r} from Definition 3.8.

Lemma 5.1. The H-module
(
F[O], πOt

)
is cyclic with cyclic vector xc

O
. Furthermore,

πOt (Ti)x
cO = kix

cO , i ∈ I(O),

πOt (Y µ)xc
O
= (sOt)

−µxc
O
, µ ∈ Q∨. (5.1)

Proof. This follows immediately from Corollary 3.16 and the fact that κOsi = ki for i ∈ I(O). ■

Lemma 5.1 prompts the following definition.

Definition 5.2. We write H0,O[Y ] for the subalgebra of the affine Hecke algebra H = H(k)
generated by H0,O and FY

[
Q∨].

By Lemma 5.1, Fxc
O

is a one-dimensional H0,O[Y ]-submodule of
(
F[O], πOt |H0,O[Y ]

)
, with

the action defined by the unique linear character ζOt : H0,O[Y ] → F satisfying

ζOt (Ti) = ki for i ∈ I(O),

ζOt (Y µ) = (sOt)
−µ for µ ∈ Q∨. (5.2)

The existence of the linear character ζOt : H0,O[Y ] → F can also be established without refer-
ence to Lemma 5.1 using the Bernstein presentation of H0,O[Y ] ⊆ H in terms of the algebraic
generators Ti, i ∈ I(O), and Y µ, µ ∈ Q∨. From now on, we write F1Ot for the one-dimensional
H0,O[Y ]-representation with representation map ζOt .
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Proposition 5.3. We have a unique surjection of H-modules

IndHH0,O[Y ]

(
F1Ot

)
↠
(
F[O], πOt

)
mapping 1⊗H0,O[Y ] 1

O
t to xc

O
. It is an isomorphism when α0

(
cO
)
̸= 0 (i.e., when I(O) = J(O)).

Proof. The first statement is immediate from Lemma 5.1.

In view of the PBW theorem for H,{
xλTv ⊗H0,O[Y ] 1

O
t | λ ∈ Q∨, v ∈WO

0

}
is a F-basis of IndHH0,O[Y ]

(
F1Ot

)
. This is mapped to{

κOv x
λ+vcO | λ ∈ Q∨, v ∈WO

0

}
by Corollary 3.16, which is a basis of F[O] when α0

(
cO
)
̸= 0 by Corollary 3.9. ■

Remark 5.4. For an associative F-algebra A, denote by modA the category of left A-modules.
The image of IndHH0,O[Y ]

(
F1Ot

)
under the restriction functor

ResHHX : modH → modHX

is isomorphic to IndH
X

H0,O

(
F1O

)
because IndHH0,O[Y ]

(
F1Ot

)
is already generated by 1Ot as a HX -

module and ζOt |H0,O is the trivial linear character of H0,O. Hence Proposition 3.10 follows from

Proposition 5.3 by applying the restriction functor ResHHX .

We finish this section by realising
(
F[O], πOt

)
as a Y -parabolically induced H-module when

α0

(
cO
)
= 0. For y ∈ E and w ∈W , set

kw(y) :=
∏

α∈Φ+
0

k
ηe(α(wy))−ηe(α(y))

2
α k

ηo(α(wy))−ηo(α(y))
2

α
2

,

which is well defined since the product involves integer powers of the multiplicity parameters.
Indeed, this follows from the observation that

kww′(y) = kw(w
′y)kw′(y) (5.3)

for w,w′ ∈W and the formulas

ksi(y) =

{
k
−ηe(αi(y))
αi k

−ηo(αi(y))
αi
2

if αi(y) ̸= 0,

1 if αi(y) = 0
(5.4)

for i = 1, . . . , r and

ks0(y) =


∏

α∈Π(sφ)
k
−ηe(α(y))
α k

−ηo(α(y))
α
2

if α0(y) ̸= 0,∏
α∈Π(sφ)\{φ} k

−ηe(α(y))
α k

−ηo(α(y))
α
2

if α0(y) = 0,
(5.5)

which in turn follow by a computation in the spirit of Lemma 4.7.

The following result extends Lemma 5.1 (see [16, Lemma 5.11] and [16, Proposition 5.29]).
Recall the definition of the duality anti-algebra isomorphism δ = δk : H → H̃ with inverse δ̃ = δ

k̃
from Section 2.5.
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Proposition 5.5. We have

πOt
(
δ̃(Tj)

)
xc

O
= k̃αjx

cO for j ∈ J(O),

πOt
(
δ̃(Tw−1)

)
xc

O
= kw

(
cO
)
xwcO + l.o.t. for w ∈WO. (5.6)

Note that for j ∈ I(O) we have δ̃(Tj) = Tj and k̃αj = kj , so the first line of (5.6) is consistent
with the first line of (5.1). Before proving Proposition 5.5, let me explain how it leads to the
interpretation of

(
F[O], πOt

)
as a Y -parabolically induced H-module.

Consider the following algebras:

� the subalgebra H̃O of H̃ = H(k̃), generated by Tj , j ∈ J(O),

� the subalgebra Hδ
O := δ̃(H̃O) of H

X ,

� the subalgebra H̃O[X] of H̃, generated by H̃O and F
[
Q∨],

� the subalgebra Hδ
O[Y ] := δ̃

(
H̃O[X]

)
of H.

Note that

Hδ
O = H0,O and Hδ

O[Y ] = H0,O[Y ] when α0

(
cO
)
̸= 0.

On the other hand, if α0

(
cO
)
= 0, then Hδ

O[Y ] is generated as algebra by H0,O[Y ] and

δ̃(T0) = Y −φ∨
T0x

−φ∨
(5.7)(

the equality in (5.7) follows from the fact that Y φ∨
= T0Tsφ

)
. In this case, Hδ

O[Y ] no longer is
a subalgebra of H.

Recall the linear character ζOt : H0,O[Y ] → F, defined by (5.2). By Lemma 5.1 and Proposi-
tion 5.5, we can define the following extension of ζOt to a linear character of Hδ

O[Y ], which we
again denote by ζOt .

Definition 5.6. We write ζOt : Hδ
O[Y ] → F for the unique linear character of Hδ

O[Y ] satisfying

ζOt
(
δ̃(Tj)

)
= k̃αj for j ∈ J(O),

ζOt (Y µ) = (sOt)
−µ for µ ∈ Q∨.

So if α0

(
cO
)
= 0, then ζOt is characterised by (5.2) and the formula

ζOt
(
δ̃(T0)

)
= k̃α0 = ur.

The existence of the linear character ζOt : Hδ
O[Y ]→F can be proven without referring to the quasi-

polynomial representation, but by using instead thatHδ
O[Y ] = δ̃

(
H̃O[X]

)
and the Bernstein-type

presentation of H̃O[X] involving the cross relations (2.19) for j ∈ J(O) and µ ∈ Q∨ with k
replaced by k̃. It is discussed in detail in [16, Section 3.2] when k ∈ Kres, in which case the
duality anti-algebra involution does not affect the multiplicity parameters.

Definition 5.7. We write F1Ot for the one-dimensional Hδ
O[Y ]-module with representation

map ζOt , and

MO
t := IndH

Hδ
O[Y ]

(
F1Ot

)
for the resulting induced H-module.
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Note that MO
t = IndHH0,O[Y ]

(
F1Ot

)
when α0

(
cO
)
̸= 0, which is the induced H-module appear-

ing in Proposition 5.3.
We denote the canonical cyclic vector of MO

t by

1
O
t := 1⊗Hδ

O[Y ] 1
O
t .

The following theorem extends [16, Theorem 4.5 (2)] to multiplicity parameters in K.

Theorem 5.8. With the above notations and conventions, we have a unique isomorphism

MO
t

∼−→
(
F[O], πOt

)
of H-modules mapping 1Ot to xc

O
.

Proof. By Lemma 5.1 and the first line of (5.6), we have a unique epimorphism

MO
t ↠

(
F[O], πOt

)
(5.8)

of H-modules mapping 1Ot to xc
O
. By the PBW theorem for H,{

xµTuTw−1 | µ ∈ Q∨, u ∈WO, w ∈WO}
is a basis of H, and hence

{
δ̃(Tw−1)Hδ

O[Y ] | w ∈WO} is a F-basis of H/Hδ
O[Y ]. The resulting

F-basis
{
δ̃(Tw−1)1Ot | w ∈WO} of MO

t is mapped by the epimorphism (5.8) to{
πOt
(
δ̃(Tw−1)

)
xc

O | w ∈WO},
which is a basis of F[O] due to the second line of (5.6). Hence the map (5.8) is an isomor-
phism. ■

Proof of Proposition 5.5. First line of (5.6). By Lemma 5.1, it suffices to check it for j = 0
when α0

(
cO
)
= 0, which we assume from now on.

By (5.7) and Lemma 5.1, we have

πOt
(
δ̃
(
T−1
0

))
xc

O
= (sOt)

−φ∨
xφ

∨
πOt
(
T−1
0

)
xc

O
. (5.9)

By the explicit expression (3.25) of πOt (T0), we have, since α0

(
cO
)
= −1,

πOt (T0)x
cO = u0s0,tx

cO +
(
k0 − k−1

0

)
xc

O
,

and hence

πOt
(
T−1
0

)
xc

O
= πOt

(
T0 − k0 + k−1

0

)
xc

O
= u0s0,tx

cO .

By (2.2) and (3.22), we then have

πOt
(
T−1
0

)
xc

O
= u0t

φ∨
xsφc

O
= u0t

φ∨
xc

O−φ∨
,

where we used that cO = s0c
O = sφc

O + φ∨ for the second equation. Returning to (5.9), we
conclude that

πOt
(
δ̃
(
T−1
0

))
xc

O
= s−φ∨

O u0x
cO .

But 0 ∈ J(O) by the assumption that α0

(
cO
)
= 0, so

s−φ∨

O = sα0
O = u−1

0 u−1
r

by Corollary 4.8, and we conclude that

πOt
(
δ̃(T0)

)
xc

O
= urx

cO = k̃α0x
cO ,

as desired.
Second line of (5.6). The proof uses the following lemma.
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Lemma 5.9. For j ∈ {0, . . . , r} and y ∈ O with αj(y) > 0, we have

πOt
(
δ̃(Tj)

)
xy = ksj (y)x

sjy + l.o.t.

Proof. The proof we give here deviates from the proof of [16, Proposition 5.29]. We will make
use of Lemma 4.3, which simplifies the computations.

(1) Consider first the case that j = i ∈ {1, . . . , r}. By (5.4), we then have to show that

πOt (Ti)x
y = k−ηe(αi(y))

αi
k
−η0(αi(y))
αi
2

xsiy + l.o.t. (5.10)

for y ∈ O satisfying αi(y) > 0.
For any y ∈ O, we have

πOt
(
T−1
i

)
xy = GO

t (αi)
−1xsiy = kηe(−αi(y))

αi
k
η0(−αi(y))
αi
2

xsiy + l.o.t. (5.11)

by Lemmas 4.1 (1) and 4.3. If in addition αi(y) > 0, then y < siy by [16, Proposition 5.21]
and a direct computation shows that ηe(−αi(y)) = −ηe(αi(y)) and ηo(−αi(y)) = −ηo(αi(y)).
Formula (5.10) for y ∈ O satisfying αi(y) > 0 then follows from (5.11) and the fact that
Ti = T−1

i + ki − k−1
i .

(2) Consider now the case that j = 0. By (5.5), we then have to show that

πOt
(
δ̃(T0)

)
xy =

( ∏
α∈Π(sφ)

k−ηe(α(y))
α k

−η0(α(y))
α
2

)
xs0y + l.o.t. (5.12)

for y ∈ O satisfying α0(y) > 0.
Consider the element

U0 := x−α∨
0 T−1

0 = q−1
φ xφ

∨
TsφY

−φ∨ ∈ H

(the second equality follows from the fact that xα
∨
0 = qφx

−φ∨
and from formula (3.28) for w = 1).

For type Cr, the element U0 was introduced by Sahi [14], who in particular showed that U0

satisfies the Hecke relation (U0 − u0)
(
U0 + u−1

0

)
= 0 (but we are not going to need this here).

By formula (3.28) with w = 1, we have

δ̃(T0) = T−1
sφ x

−φ∨
= q−1

φ Y −φ∨
U−1
0 . (5.13)

So it suffices to focus on the quasi-monomial expansion of πOt
(
U−1
0

)
xy and then use Corollary 4.6.

For the moment, suppose that y ∈ O is arbitrary. We compute, using Lemma 4.1,

πOt
(
U−1
0

)
xy = πOt (T0)

(
xy+α∨

0
)
= GO

t (−α0)s0,t
(
xy+α∨

0
)
. (5.14)

By (3.22) and (3.23), we have

s0,t
(
xy+α∨

0
)
= s0

(
xα

∨
0
)
s0,t(x

y) = x−α∨
0 (gyt)

φ∨
xsφy = q−1

φ (gyt)
φ∨
xs0y.

Substituting in (5.14) then gives

πOt
(
U−1
0

)
xy = q−1

φ (gyt)
φ∨
GO

t (−α0)x
s0y.

Now −α0 ∈ Φ+
0 × Z, so by Lemma 4.3,

πOt
(
U−1
0

)
xy = q−1

φ (gyt)
φ∨
k
−ηe(φ(s0y))
0 u

−η0(φ(s0y))
0 xs0y + l.o.t.
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Combined with (5.13) and Corollary 4.6, we conclude that

πOt
(
δ̃(T0)

)
xy = q−2

φ sφ
∨

s0y(gs0yt)
φ∨

(gyt)
φ∨
k
−ηe(φ(s0y))
0 u

−η0(φ(s0y))
0 xs0y + l.o.t. (5.15)

From now on, we assume that α0(y) > 0. Then sφsy = ss0y by Lemma 4.7 (2), hence
sφ

∨
s0y = s−φ∨

y . Furthermore,

gs0yt = s0gyt = qφ
∨
sφgyt

in T, where we used in the first equality that t ∈ TO ⊆ TWO , hence we may replace gs0y with
any other affine Weyl group element mapping cO to s0y. Hence (gs0yt)

φ∨
= q2φ(gyt)

−φ∨
. So the

leading coefficient in (5.15) reduces to

s−φ∨
y k

−ηe(φ(s0y))
0 u

−η0(φ(s0y))
0 .

Note that φ(s0y) = 2 − φ(y) ̸= 1 since α0(y) > 0, so by (4.2) the leading coefficient in (5.15)
reduces further to

s−φ∨
y k

ηe(φ(y))
0 u

η0(φ(y))
0 .

To complete the proof of (5.12), it thus suffices to show that

sφ
∨

y = k
ηe(φ(y))
0 u

η0(φ(y))
0

∏
α∈Π(sφ)

kηe(α(y))
α k

η0(α(y))
α
2

. (5.16)

By the definition of sy, we have

sφ
∨

y =
∏

α∈Φ+
0

(
kαk(α,1)

) ηe(α(y))α(φ∨)
2

(
kα

2
k(α

2
, 1
2
)

) ηo(α(y))α(φ∨)
2 .

Consider the decomposition of Φ+
0 as the disjoint union of the subsets

Φ+
0 [m] :=

{
α ∈ Φ+

0 | α
(
φ∨) = m

}
, m ∈ Z.

We have Φ+
0 [m] = ∅ unless m = 0, 1, 2, and

Φ+
0 [0] = Φ+

0 \Π(sφ), Φ+
0 [1] = Π(sφ) \ {φ}, Φ+

0 [2] = {φ}.

Hence

sφ
∨

y = (k0kr)
ηe(φ(y))

2 (u0ur)
ηo(φ(y))

2

∏
α∈Π(sφ)

(
kαk(α,1)

) ηe(α(y))
2

(
kα

2
k(α

2
, 1
2
)

) ηo(α(y))
2 .

By (2.5), formula (5.16) immediately follows if Φ0 is not of type Cr, r ≥ 1. If Φ0 is of type Cr,
r ≥ 1, then

Φ+
0 [1] = Π(sφ) \ {φ} = Πs(sφ)

with Πs(sφ) the positive short roots in Φ0 mapped to negative roots by sφ. Hence kα = kα
2
and

kα
2
= k(α

2
, 1
2
) for α ∈ Φ+

0 [1] = Πs(sφ), and we conclude that

sφ
∨

y = (k0kr)
ηe(φ(y))(u0ur)

ηo(φ(y))
∏

α∈Πs(sφ)

(
kαk(α,1)

) ηe(α(y))
2

(
kα

2
k(α

2
, 1
2
)

) ηo(α(y))
2

= (k0kr)
ηe(φ(y))(u0ur)

ηo(φ(y))
∏

α∈Πs(sφ)

kηe(α(y))
α k

ηo(α(y))
α
2

= k
ηe(φ(y))
0 u

ηo(φ(y))
0

∏
α∈Π(sφ)

kηe(α(y))
α k

ηo(α(y))
α
2

,

as desired. ■
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We can now complete the proof of the second line of (5.6) (and hence of Proposition 5.5)
as in [16, Proposition 5.29]: let w ∈ WO and fix a reduced expression w = sj1sj2 · · · sjℓ . Then
Π(w) = {b1, . . . , bℓ} with

bi := sjℓ · · · sji+1αji

(for i = ℓ this should be read as bℓ = αjℓ). Since w ∈ WO, we have wΦ+
O ⊆ Φ+ with Φ+

O
defined by

Φ+
O := Φ+ ∩

( ⊕
j∈J(O)

Zαj

)
,

and hence bi ∈ Φ+ \ Φ+
O for i = 1, . . . , ℓ. Since cO ∈ CO

+ , it follows that

αji

(
sji+1 · · · sjℓc

O) = bi
(
cO
)
> 0

for i = 1, . . . , ℓ. Hence

πOt
(
δ̃(Tw−1)

)
xc

O
= πOt

(
δ̃(Tj1)

)
· · ·πOt

(
δ̃(Tjℓ)

)
xc

O
= kw

(
cO
)
xwcO + l.o.t.

by Lemma 5.9 and (5.3). This completes the proof of the second line of (5.6) (and hence of
Proposition 5.5). ■
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