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Abstract. In a recent joint paper with S. Sahi and V. Venkateswaran (2025), families
of actions of the double affine Hecke algebra on spaces of quasi-polynomials were intro-
duced. These so-called quasi-polynomial representations led to the introduction of quasi-
polynomial extensions of the nonsymmetric Macdonald polynomials, which reduce to meta-
plectic Iwahori-Whittaker functions in the p-adic limit. In this paper, these quasi-polynomial
representations are extended to Sahi’s 5-parameter double affine Hecke algebra, and the
quasi-polynomial extensions of the nonsymmetric Koornwinder polynomials are introduced.
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1 Introduction

1.1. The double affine Hecke algebra H with adjoint root data depends on a deformation pa-
rameter ¢ and on a number of Hecke parameters. The Hecke parameters are most conveniently
encoded by a multiplicity function, which is an affine Weyl group invariant function on the asso-
ciated reduced affine root system. Cherednik’s polynomial representation is a faithful represen-
tation of H on Laurent polynomials in several variables, given explicitly in terms of Demazure—
Lusztig operators. Up to a multiplicative scalar, the nonsymmetric Macdonald polynomials can
be characterised as the simultaneous eigenfunctions for the action of Bernstein’s [8] commuting
elements Y within the (double) affine Hecke algebra. See the monographs by Cherednik [4]
and Macdonald [10] for details and further references.

If the underlying finite root system is of type C,, then a nonreduced extension of the Chered-
nik—Macdonald theory was developed in [11, 14, 17]. It depends on five Hecke parameters (four
when r = 1), which are encoded by a multiplicity function on Macdonald’s [9] nonreduced affine
root system of type CVC,. The resulting simultaneous polynomial eigenfunctions of the Y* are
Sahi’s [14] nonsymmetric Koornwinder polynomials. Their symmetric versions are the celebrated
Koornwinder polynomials [7], which reduce to Askey—Wilson polynomials [1] for r = 1.

In a joint paper [16] with Sahi and Venkateswaran, a quasi-polynomial extension of the
Cherednik—Macdonald theory was developed when the multiplicity function on the reduced
affine root system is invariant for the action of the extended affine Weyl group (so it depends
on one Hecke parameter if the underlying finite root system has a single Weyl group orbit, and
two otherwise). The role of the polynomial representation is then replaced by explicit families of
H-representations on spaces of quasi-polynomials, which are linear combinations of monomials
with possibly non-integral exponents, with the action given in terms of truncated versions of
Demazure—Lusztig operators. The resulting quasi-polynomial extensions of the nonsymmetric
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Macdonald polynomials are g-analogs of Iwahori-Whittaker functions on metaplectic covers of
reductive groups over non-Archimedean local fields. Metaplectic Iwahori-Whittaker functions
have been studied from the perspective of Hecke algebras in [2, 5, 12, 13, 16]. In this context,
the truncated Demazure-Lusztig operators reduce to metaplectic Demazure operators (see [16]).

In this paper, we will construct the nonreduced extensions of the quasi-polynomial represen-
tations and introduce the quasi-polynomial analogs of the nonsymmetric Koornwinder polyno-
mials. We will proceed by extending the framework for the quasi-polynomial theory in such
a way that it gives the nonreduced quasi-polynomial theory when the underlying finite root
system is of type C,. For other types, it will simply reduce to the quasi-polynomial theory
from [16]. The setup of the extended framework is modelled by the treatment of the twisted
polynomial theory with adjoint root datum from [19].

In the remainder of the introduction, we will explicitly state the main results when the
underlying root system is of type C,. In Section 2, we will introduce affine root systems and
the double affine Hecke algebra H in the general, extended framework. Following [15], we start
Section 3 by introducing an HX-action in terms of truncated Demazure-Lusztig type operators
on the space of all quasi-polynomials, where H¥ is the copy of the affine Hecke algebra inside H
that contains the monomials. This HX-representation is reducible, with subrepresentations
being naturally parametrised by affine Weyl group orbits in the ambient Euclidean space of
the root system. Following [16], we then give for each subrepresentation a multiparameter
extension of the HX-action to an action of the double affine Hecke algebra. It gives the quasi-
polynomial representations from [16, Section 4] as well as the new, nonreduced extensions when
the underlying root system is of type C,. In Section 4, we introduce the quasi-polynomial
extensions of the nonsymmetric Macdonald-Koornwinder polynomials. Finally, in Section 5,
we identify the quasi-polynomial representations with Y-parabolically induced H-modules.

In [16, Section 6], various additional properties of the quasi-polynomial extensions of the
nonsymmetric Macdonald polynomials were derived, such as creation formulas, (anti)symmetric
versions of the quasi-polynomials, and orthogonality relations. It is straightforward to derive
the analogous results for the nonreduced extension of the type C, quasi-polynomials using the
intertwiners of Sahi’s [14] nonreduced extension of the double affine Hecke algebra, but we will
not discuss the details in this paper. We also do not discuss the theory for extended lattices,
which follows quite easily from the theory for adjoint root data, cf. [16, Section 7].

1.2. Let F be a field of characteristic zero. The algebra of quasi-polynomials [16] in r variables
over F is the group algebra F[R"] of the Euclidean space R", viewed as additive group. We

write a¥ for the standard basis element in F|R"] associated to the vector y = (y1,...,y,) € R",
so that
F[R"] = @ FaY, aVa¥ = gyt 20 =1.
yeRT

Denote by {€;}7_; the standard orthonormal basis of R". Then ¥ = z¥' - - z}" with
:Uf = 1% € F[R'] for{ € R.

We call ¥ the quasi-monomial with quasi-exponent y € R".

Consider the hyperoctahedral group S, x (£1)". It is a Coxeter group with Coxeter system
{s1,...,8,} given by the simple neighboring transpositions s; = (i,7 + 1) for 1 < i < r and
sp=(1,...,1,—1) (we identify S, and (£1)" with the corresponding subgroups in S, x (£1)").
The Coxeter generators satisfy the type C, braid relations

$iSi+18i = Si+15iSi+1, 1<i<r—1,

. . ./
Sr_1878r_18r = SpSp_18pSr_1, SiSiy = SyS; if i —4'| > 1. (1.1)
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The formulas

SiY ‘= (yla s Yi1, Yit 1, Yir Yit2, - "yr)a 1 S 1< T,
SrlY 1= (ylv sy Yr—1, _yT) (12)

define a linear action of the hyperoctahedral group S, x (+1)" on R". The action (1.2) naturally
gives rise to a S, x (1)"-action by algebra automorphisms on F[R"] by letting s; act on the

quasi-exponents of the quasi-monomials ¥ according to (1.2). The subalgebra F [xil] of F[R"]

spanned x*, u € Z", is the algebra of Laurent polynomials in the variables z; := x} = 2,

(2
1 < <r, which inherits a S, x (£1)"-action from F[R"].
For £ € R, write
|£]| for the largest integer < &,
|€ e for the largest even integer < &,
|€], for the largest odd integer < .

Definition A. For 1 <i < r,let V;, V&, V2 be the linear operators on F[R"] defined by

1— (2 ;) Wi—vi+]
Vi(aY) := ( (915 ilﬁc/;ﬂ >$y’

—[2yr e —2yr]o
1- T r — dr
Vi) = (b)xﬂ VO (V) = <H>xy

for y € R".
Note that the V; are well defined because of the truncation by floor functions of the exponents

in the numerator. For y = p € Z", the V; reduce to divided difference operators

ok — Sk L A

Vi(at) =

Vi(zh) = ,
Z(a: ) 1_~75i/$z'+1 1—%‘%

=z, 1V (zh). (1.3)

For a subset B in a set X, we denote by
XB*: X = {07 1}

the indicator function of B. We use the shorthand notations y. and x, for the indicator function
of the even and odd integers inside R.

Theorem B. For k,k,,u, € F*, the linear operators Ty, ..., T, on F[R"] defined by
Ti(2Y) = Xz Wi—yiv1) psiy | (k _ k:fl)Vz-(a;y) forl1<i<r,
To(@¥) = kXe@uryXo@umgsry 4 (b, — k"N VE(aY) + (uy — uy ) V(2Y)

satisfy the type C, braid relations (1.1) and the quadratic Hecke relations

(Ti—k)(Ti+kY)=0  forl<i<r,
(Tr — k) (Tr + k1) = 0.

Theorem B will be proven in Section 3.1 (it is the special case of Theorem 3.3 when the
underlying finite root system is of type C,). When k, = wu,, Theorem B was obtained before
in [16, 15]. Following [16], we call the operators 7;, 1 < i < r, truncated Demazure-Lusztig
operators.
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Theorem B provides a representation of the 2-parameter Hecke algebra Hy = Hy(k, k) of
type C, on F[R"]. Using the natural F [z*!]-module structure on F[R], the Ho-action on F[R']
extends to a representation of the 3-parameter affine Hecke algebra H = H (u,, k, k,) of type C,
(this uses the Bernstein presentation of H ) Note that the 7; preserve (C[:L’il], in which case
they reduce to the operators

H_ pSilk
Ti(a") = ka*i# + (k — k1) <1"” . /”; >
— L/ Li41

20

1— /T
oH — pSrH
To(@h) = kya™ 4 (ke = k1) + (up = u, ") 2y) < T1-a2 )
e L] G 1)) (a"H — ) (1.4)

2
1— 2z

for p € Z" and 1 < i < r by (1.3), with {a,b} = {kyu,, —kyu;'}. These Demazure-Lusztig type
operators on C [azil] arise in the definition of the polynomial representation of the double affine
Hecke algebra of type CVC,, see [11, 14].

1.3. The affine extension of Theorem E13 depends on various additional parameters. First of all,
it depends on a dilation parameter q2 € F*, which naturally appears in the following affine
extension of the S, x (+1)"-action on F[z*!].

The affine Weyl group of type C, is W := (S, x (£1)") x Z", with the rightmost semidirect
product defined in terms of the action (1.2) restricted to Z". It acts by algebra automorphisms
on F[:):ﬂ} by

(Sip)(a:) = p(xl, ey L1, T 1y Ly T2y v - - 71-7")7 1<i< T,
(5:0)(@) = (a1, - o1, 2L,
(r(Wp)() =plg M. May),  AEL, (1.5)

for p(x) = p(x1,...,2,) € F[CC:H], with 7(A) the affine Weyl group element corresponding
to A € Z". Regarding F [xﬂ} as the algebra of regular functions on the F-torus

T := (F*)", (1.6)
we may view (1.5) as the W-action on F[z*!] contragredient to the left W-action

S;t == (tl, . ,ti_l,ti+1,ti,ti+2, . ,tr), 1< < r,
st = (t1,. .. tr—1, 8 0),
T(A)t := (q>‘1t1, . ,qATt,«)
ont=(ty,...,t;) € T.
The affine Weyl group W is a Coxeter group with Coxeter system {sg, s1,...,s,} containing
the extra simple reflection
S0 = T(€1)Se, 5 Sey = S1°**Sp—1SpSp—1- " S1.

The simple reflection sy acts on F[a:ﬂ] by

(sop)(x) = p(q$1_1, To,. .. ,a:r).
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The braid relations involving sg are
80818051 = 81505150, 808; = 8;80, 1<i<r. (1.7)

The linear S, x (£1)"-action (1.2) on R" extends to an affine linear W-action with 7(\),
A € Z", acting on R” as translation operators,

TNy =y + A, yeR".
The alcove
Ci ={yeR |0<y, <yr1 < - <y1 <3}

is the intersection of the half-spaces {y € R" | oj(y) > 0}, 0 < j < 7, where the affine linear
functionals a;: R” — R are defined by

ao(y) :==1—2y1, a;(y) =y — yir1, 1<i<m, ar(y) == 2yy.

The closure Cy of Cy in R” is a fundamental domain for the W-action on R". For a W-orbit O
in R” we denote by ¢© the unique vector in ONC,.. Note that Z" is a W-orbit in R”, and ¢ = 0.
For a W-orbit O in R", consider the free F[xil}—submodule

F[O] := (P Fa¥

yeO

of F[R"] of finite rank. The operators 7;, 1 < i < r, preserve F[O], and we write
TC = Tilr(o)

for the resulting linear operators on F[O]. We now define a linear operator 7.° on F[O] that

will provide the local affine extension of Theorem B (‘local’ in the sense that the operators

should be restricted to F[O]). The operator 7,° will depend on additional parameters that lie

in an O-dependent affine subtorus Ty of T. We define the affine subtorus T» now first.
Consider the simple co-roots oz]v eZ" x %Z, defined by

af = (—61, %), o = (6 —€41,0), 1<i<m, a) = (e,0).
The (affine) subtorus T is then given by

To:={teT |t =1forje{0,...,r} satisfying a;j(c°) = 0}, (1.8)
where

1) = fet = gttt for (u,f) € Z" x %Z.

Note that To = T if O is a regular W-orbit, while Tz = {17}. o
For y € R", let g, € W be the unique element of minimal length such that g, lyecC,.

Definition C. Let O be a W-orbit in R". For kg,ug € F* and t € Tp, let 760 be the linear
operator on F[O] defined by

TP (@) = kPP (g, ) s, (%) + (ko — ko 1) Vi (2¥) + (uo — up 1) V§(a¥)

for y € O, where V§, V{§ are the linear operators on F[R"] defined by

_1 [—2y1]e 1 —1 [—2y1]0
1 _ p—
Vi (z¥) ;:< (‘f o) >my, Vi(a¥) = <q““’1 ) )ﬂ
—qr, 1—gxy

fory e R".
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It is straightforward to check that 7,° is a well-defined linear operator on F[O]. Furthermore,
in case of the W-orbit O = Z" we have g,17 = (¢",...,¢"") for p € Z", and hence TE
reduces to

T (a) = koso(z") + (ko — ko t) + (uo — up V) g2y ) (W)

(1 — cxfl) (1 — dxfl)

1- qazfz

= kozt + k! (so(z") — ) (1.9)

for p € Z" with {c,d} = {q%kouo, —q%koual}, which is the Demazure—Lusztig operator associ-
ated to the affine simple reflection sy appearing in the polynomial representation of the double
affine Hecke algebra of type CVC,, see [11, 14].

Theorem D. For q%,ko,uo,kz,kr,ur € F* and t € Tp, the operators 760, ., T.O satisfy the
affine type C, braid relations (1.1) and (1.7) and the Hecke relations

(767 = ko) (To” + k¢ ") =0,
(T° = k)(TC + k1) =0,
(7.0 = k) (TP + K1) =0

for1 <i<r.

Theorem D will be proven in Section 3.3 (it is the special case of Theorem 3.13 when the
underlying finite root system is of type C,). In Section 5, we will also show that the quasi-
polynomial representation is isomorphic to a Y-parabolically induced H-module. These results
were obtained before in [16] when ky = ug = k, = u,.

Theorem D gives rise to a representation of the 3-parameter Hecke algebra H := H(ko, k, k)
of type C, on F[O] (using now the Coxeter presentation of the affine Hecke algebra H). Adding
the action of F[:cﬂ] by multiplication operlators yields a representation of Sahi’s [14] double
affine Hecke algebra H = H(kg, ug, k, ky, Ur; qi) of type CVC, on F[O], which depends on t € To.
We call it the quasi-polynomial representation of H. By (1.4) and (1.9), the quasi-polynomial
representation for @ = Z" is the polynomial representation of H from [11, 14], which governs
the Koornwinder polynomials.

When ko = ug = k, = u,, a particular reparametrisation of the extra parameters t € Ty in
terms of so-called g-parameters allows to glue the quasi-polynomial representations from The-
orem D into a family of H-representations on F[R"] with the Coxeter type generators of H
acting by global g-dependent truncated Demazure-Lusztig type operators. This is an impor-
tant intermediate step in establishing the link to representation theory of metaplectic covers of
symplectic groups over non-Archimedean local fields when taking the p-adic limit ¢ — oo (the
g-parameters are then given in terms of Gauss sums). In this metaplectic context the global
truncated Demazure—Lusztig operators reduce to the type C, metaplectic Demazure-Lusztig
operators from [2, 5, 12, 13]. See [16] for details. It is unknown how Theorem D for arbitrary
parameters kg, ug, k-, u, relates to representation theory of metaplectic covers of symplectic
groups over non-Archimedean local fields.

1.4. The quasi-polynomial extensions of the monic nonsymmetric Koornwinder polynomials are
defined as follows. For ¢/, y € R", write

y <y
if " and y lie in the same W-orbit and g, <p g, where <p is the Bruhat order on W. For

a W-orbit O and an element y € O, the subset {3/ € R" | 3 < y} of O is finite, and ¢© is its
unique minimal element.
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We say that p(x) € F[R"] is a quasi-polynomial of degree y € R" if
p(z) —da¥ € @ FaV'
y'<y
for some d € F*. We then say that d is the leading term of p(z), and p(z) is said to be monic
if d=1. If p(z) is of degree y with y lying in the W-orbit O, then p(z) € F[O].
Fix a W-orbit O in R" and fix ¢t € Tp. Consider the invertible linear operators
Vo= (1) (T0) OO TOTOTS - T, 1<is<m,

on F[O]. These operators are the images under 7 of the commuting elements Y% € H in the
Bernstein presentation of H (cf. Section 2.4). In particular,

[yzo7y](9] — O fOI' 1 S 7/7] S T.

Theorem E. Fiz a W-orbit O and fix generic parameters q%, ko, uo, k, kr,ur € F* and t € To.
For each y € O, there exists a unique quasi-polynomial

1
ED(z) = ES (2 ko, uo, k, kr, ur, t;q2) € F[O]
satisfying the following two properties:
(1) Ef(x) s a monic quasi-polynomial of degree y.
(2) Eg)(x) is a joint eigenfunction of the commuting operators Y©, 1 <i <r.

We will prove Theorem E in Section 4 (it is the special case of Theorem 4.9 when the
underlying finite root system is of type C,). It was derived before in [16] when ky = ug = k, = u,.
The main step in proving Theorem E is showing that the y;? , 1 <17 < r, are triangular operators
relative to the partially ordered quasi-monomial basis {z¥},co of F[O], with the partial order
on {zY},co induced from the partial order < on the corresponding set O of quasi-exponents.

Concretely, we will show that Y©(2¥) € F[O] is a quasi-polynomial of degree y with leading
term 77 (y) € F* given explicitly by

72 (y) = (gy(s°1));

59 = ((koky) XCD) (ugu, Yo PO L (koky) X0 (ugu, o 2R,
where
r i—1
=D (e = ef) + (e +7) + D (n(ef + ) = n(cf =)
j=it1 =1

and 7 := Xz., — Xz,- Then
yZO(Ey(x)) = 'ylo(y)Ey(az) forl1<i<randyeO,

and the generic conditions on the parameters in Theorem E boil down to the requirement that
the map

O-T, y— (W.....72W)

is an embedding.

The EZ" (z) € F[z*!], X € Z", are Sahi’s [14] monic nonsymmetric Koornwinder polynomials
(recall that in this case necessarily ¢ = 1r). Hence the Eg) () (y € O) may be viewed as
quasi-polynomial generalisations of the nonsymmetric Koornwinder polynomials, depending on
the extra parameters t € Tp. If O and O’ are two W-orbits in R” intersecting C in the
same face, then the corresponding families of quasi-polynomials are essentially the same (cf. [16,
Theorem 6.2 (4)]).
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2 Preliminaries

2.1 Reduced affine root systems

Let (E,(-,-)) be an Euclidean space of dimension r. Transferring the inner product (-,-) on E
to E* through the linear isomorphism E — E*, y + (y,-), is turning E* into an Euclidean
space. We denote its inner product again by (-, -), and its norm by || - ||.

Let ®¢ be an irreducible reduced root system in E* with Weyl group W;. Its dual root
system ®Y = {a"}aca, in E consists of the co-roots oV € F (a € @), which are the vectors
in F satisfying

for all y € E.
Consider the corresponding reduced affine root system

:=PyxZ C E* xR,

We will view an element (¢, &) € E* x R in the ambient space as an affine linear functional on E
by y— ¢(y) + ¢ fory € E.
The projection E* x R — E* on the first component will be denoted by

fef

It restricts to a surjective map ® — ®p. Furthermore, we have a = (a,a(0)) for a € ®.
Throughout the paper, we will identify a root o € ®y with («,0) € ®.

For a € ®, denote by s,: £ — FE the orthogonal reflection in the affine root hyperplane
a~1(0) C E. Then

—V

sa(y) =y —a(y)a

for y € E. The affine Weyl group W of @ is the subgroup of affine linear transformations of £
generated by the orthogonal reflections s,, a € ®. The finite Weyl group Wy is the subgroup
generated by s, a € P.

For y € E, let 7(y): E — E be the translation map z + z +y. Then

sq = sz7(a(0)a") (2.2)

for a € ®. Consequently, W ~ Wy x QY with Q¥ = Z®{ the co-root lattice of Py.
The linear, contragredient W-action on the space E* x R of affine linear functionals on F
restricts to a W-action on ®. It satisfies

sa(b) =b—b(a")a = (sz(b),b(0) — a(0)b(a")),
T(A\)b = (b,b(0) — b(N)) (2.3)

for a,b € ® and \ € QV.
We fix an ordered basis Ay = {a1,..., .} of the root system ®( once and for all. We will
choose the ordering such that the following convention holds true.

Convention 2.1. The simple root «, is a long root.
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If all the roots in ®g have the same root length, then all roots are considered to be long as
well as short. We denote by <I>ar the set of positive roots in ®( relative to Ag. The corresponding
set of negative roots is denoted by ®, := —@g.

The Weyl group Wy is a Coxeter group with Coxeter generators {si,...,s,} given by the
simple reflections s; := sq,, 1 <@ < r. The closure of the positive Weyl chamber

Ei={ycE|aly) >0Vaecd]}

is a fundamental domain for the Wy-action on E.
The ordered basis Ay of &y extends to an ordered basis A = {«ag,...,q,} of & with the
additional affine simple root

Qo = (_Sov 1)7

where ¢ is the highest root of ®( relative to Ag. The corresponding sets of positive and negative
roots are denoted by ®* and ®~, respectively. The affine Weyl group W is a Coxeter group with
Coxeter generators {so, ..., s,} the simple reflections s; := s,,, 0 < j <r. By (2.2), we have

50 = $oT(—¢") =7(¢") -
The closure C; of the fundamental alcove
Cy:={y € B4 | ao(y) > 0}

is a fundamental domain for the action of W ~ Wy x QY on E by reflections and translations.
For a W-orbit O in E, we denote by ¢ the unique vector in O N C.
Since ag = (—¢, 1), we have the following alternative description:

Cy={yeFE|0<aly) <lVaecd}
of the fundamental alcove. Note furthermore that

U w(CY) ={y € E||a(y)| <1 Va € 0} (2.4)
weWp
2.2 Nonreduced extensions and multiplicity functions

For a € ® such that a(Q") = Z, we have
Wa=Wya X Z

by (2.3). A case by case inspection of the Dynkin diagrams shows that a(Qv) = Z for a € ¥
unless a € ¢ is long and Pq is of type C,., r > 1, in which case a(Qv) = 2Z (note that C; = Ay
and Co = By). If @ is of type C,, 7 > 1, then a, is the only long simple root in Ay in view of
convention 2.1.

The W-orbits in ® can now be described as follows:

(1) If all the roots in @y have the same root length but ®( is not of type Aj, then W acts
transitively on ®.

(2) If @y is of type C; = Aj, then & = Wap U Way and
WO(O = @0 X Zo, Wozl = ‘1)0 X Ze

with Z, (resp. Z.) the set of odd (resp. even) integers.
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(3) If @ is of type C,, r > 2, then ® = Way Ll Way UWa, and o; € Way forall 1 < i <.
Furthermore,

Wag = O x Z, Way = & x Z, Wa, = & x Z

with ®f (resp. @) the long (resp. short) roots in ®.

(4) If ®g is of type By, r > 3, Fy or G and if a; € Ay, 1 < i < r, is a short simple root, then
b =WaoldWa; and

Wag =05 x Z=Wa,, Wa; =] xZ.

The set
™ := ® U {a/2|a € ® such that a(Q") = Z}

forms an affine root system in the affine space E* x R (see [9]). If @y is of type Cy, 7 > 1, then
™ is the nonreduced irreducible affine root system of type CVC, (see [9]). In this case, @™ has
five W-orbits Wag, WS, Way, Wa,, WS when r > 2, and four W-orbits Wag, WS, Way,
WSt when r = 1. If ®q is not of type C,., r > 1, then ®" = ®.

Let F be a field of characteristic zero. We call a W-invariant function

k: o S F*, amk,

a multiplicity function. Denote by K the set of multiplicity functions. In order to obtain uniform
notations, we extend a multiplicity function k: ®** — F* to a W-invariant function

k: oU %tI) — F~
by declaring k% :=k, when § ¢ ®"". Note that for any root a € ®o,

ko = k(1) = ke = k(%’%) if ®q is not of type C,, r > 1. (2.5)

%
For the value of a multiplicity function k at a simple root a; and at %, we will use the shorthand
notations

kj = ka;, uj =Koy .

If &y has rank r = 1, then the multiplicity function k is determined by the four parameters
ko, ug, k1, w1, which can be chosen arbitrarily. If ®y has rank r > 1, then k is determined by
the five parameters kg, uo, k := k;, k-, u,, where 1 < ¢ < r is such that «a; is a short root. These
parameters can be chosen arbitrarily when @ is of type C,, r > 2. If &y is not of type C,,
r > 1, then ky = ug = k, = wu, by (2.5), hence £ ~ F* if all the roots in &y have the same
length and K ~ (F*)? otherwise (i.e., if ®q is of type B,, r > 3, Fj or Ga).

The extended affine Weyl group is the subgroup

W= Wor (PY)

of the group of affine linear transformations of E, with PV the co-weight lattice of ®,. The
linear, contragredient W*-action on the space E* x R of affine linear functionals on E restricts
to a Wt-action on ®. The explicit formulas for this action are again given by (2.3), now with
A € PV in the second formula.

Write K™ C K for the subset of multiplicity functions k satisfying the following two addi-
tional conditions:
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(1) k is W invariant,

)
(2) ke =k, for all a € ©.

By (2), a restricted multiplicity function k € K" is uniquely determined by its values on ®, and
k, = kg for a € ®. Its value k, at a € ®( only depends on the length of a. Hence K ~ F* if
all roots in ®¢ have the same length and K™ ~ (F*)? otherwise, which implies that

K =K if ¢ is not of type C,., r > 1.
In particular, for k € K™ formula (2.5) holds true for root systems @ of any type,
ko =uo =k, = u, if k e K.
Define an involution
K-5K,  kek

by interchanging the values ko and wu, of k on the W-orbits Way and W<, We call it the
duality involution. Note that it is the identity unless ®¢ is of type C,, r > 1. Furthermore, its
restriction to K is the identity for all types.

The standard Cherednik—Macdonald theory for parameters k € K™ admits an extension
to parameters k € IC [11, 14]. It only gives new results when ®g is of type C,, r > 1, since
otherwise L = K™, The resulting theory is sometimes referred to as the Koornwinder case
(since the associated analogs of the symmetric Macdonald polynomials are the Koornwinder
polynomials [7]), or as the CVC, case (since K is the natural set of multiplicity functions on the
nonreduced root system of type CVC,.). It is common in the literature on Koornwinder (CVCT)
extensions of the Cherednik—Macdonald theory to develop the theory directly using the following
explicit realisation of the root system ®g of type C,, r > 1, see, e.g., [7, 11, 14, 17]:

e E =R" with orthonormal basis {¢;}]_;,
o &% = {£(e;%€)) bi<icj<r (= @ whenr = 1) and ®f = {£2¢;}7_,, where we identify E ~ E*
via the scalar product (in particular, Q" = @;_, Zei),

e ;=€ — €41, 1 <i<r,and o = 2¢,.

Note that ¢ = 2¢; is the highest root, hence ap = (—2¢1,1). With these choices, the type C,
results presented in Sections 1.2-1.4 follow immediately from the general results as discussed
below. In the remainder of the paper, k will be a multiplicity function in K unless stated
explicitly otherwise.

Remark 2.2. The setup in this subsection follows [18, 19]. In terms of the initial data D
from [18, Section 1.1], we are considering the case of twisted adjoint root data D = (Ry,t, A, A)
with A the root lattice of Ry. Then (®g, ®"") corresponds to (Ry, R(D)"), with R(D)" the dual
of the (possibly non-reduced) affine root system R(D) from [18, Section 1.1]. All nonreduced
cases of the Cherednik—Macdonald theory as described in Macdonald’s book [10] can be recovered
from the case that ®( is of type C,. by appropriate specialisations of the multiplicity parameters,
see, e.g., [19, Section 9.2.3] for details.

2.3 Quasi-polynomials

The space of quasi-polynomials [16] is the group algebra

F(E] = P Fa?

yekR
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of E, viewed as abelian additive group. Here we denote the canonical basis elements z¥, y € E,
of F[E] multiplicatively, so 2Va¥ = 2¥tY and 20 is the unit element. We call z¥ the quasi-
monomial with quasi-exponent y € E. The Weyl group Wy acts on F[E] by F-algebra automor-
phisms by

w(z?) ="
forw e Wy and y € E.
For any subset Z C E, we write

F(Z]:= P Fa?

yezZ

for the subspace of F[E] spanned by the quasi-monomials z¥, y € Z.

The subspace F[PV] is a Wy-stable subalgebra of F[E], which we call the subalgebra of Lau-
rent polynomials in F[E]. For u € PV, we say that z* is a monomial with exponent yu € PV.
For generic multiplicity parameter k € K™, the nonsymmetric Macdonald polynomials form
a basis of F[PV]. In this paper, we are focussing on the theory for the extended set K of mul-
tiplicity parameters, in which case the corresponding nonsymmetric Macdonald—-Koornwinder
polynomials form a basis of the W-stable subalgebra F[Q"] of F[PV].

Let E/W be the set of W-orbits in E. For a W-orbit © € E/W, we denote by c® the unique
point in the intersection of © and the closure C. of the fundamental alcove. Note that the
W-orbit in E containing the origin is QY. A W-orbit O in F has a finite number of T(QV)—
orbits T(Qv)yi, 1 <4 < N, hence the corresponding space F[O] of quasi-polynomials with
quasi-exponents in O is a free F [QV]—module of finite rank,

N
F[O] = PF[Q"]z. (2.6)
i=1
Furthermore, the space F[E] of quasi-polynomials decomposes as
F[E|= € F[O. (2.7)
O€E/W

For generic multiplicity functions k € ' and an arbitrary W-orbit O, quasi-polynomial
extensions of the nonsymmetric Macdonald polynomials were introduced in [16]. They depend
on a generic dilation parameter ¢, € F* and additional O-dependent representation parameters,
and they form a basis of F[O]. For O = @V, they are the nonsymmetric Macdonald polynomials.
The goal of this paper is to extend this result to multiplicity functions k in .

This boils down to introducing the Koornwinder (CVCT) analogs of the quasi-polynomial
extensions of the type C, nonsymmetric Macdonald polynomials from [16]. They will now
depend on five (four in case of » = 1) multiplicity parameters instead of two (one in case
of r = 1). To stay close to the notations and results from [16], we will give a uniform treatment
of the theory for multiplicity functions k € L when the root system ®q is of arbitrary type. For
type C,, the results are made more concrete in Sections 1.2-1.4.

2.4 The affine Hecke algebra

The affine Hecke algebra H = H(k) is the unital associative F-algebra with generators 7T},
0 < j <r, and relations

(a) The (W, {so,...,sr})-braid relations for Ty,..., T},
(b) (Tj —kj)(Tj+k;') =0for j=0,...,r.
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Here (a) means
LTT; - =TT - - - 0<iz#j<m

with on each side m;; terms, where m;; is the order of s;s; in W.
A reduced expression of g € W is an expression g = sj, Sy of g as product of simple
reflections with ¢(¢g) minimal. The length function ¢: W — Z>( satisfies £(g) = #I1(g), with

M(g):=d " Nng'd.
The braid relations ensure that the element

Ty :=Tj - 'Tje(g>
in H does not depend on the choice of reduced expression g = sj, -+ sj,, , and {Ty}gew is
a basis of H.

The finite Hecke algebra Hy = Hy(k) is the subalgebra of H generated by T1,...,T,.. The
defining relations of Hy in terms of 71, ..., T, are the (Wy, {s1,..., s, })-braid relations and the
quadratic relations (7; — k,)(ﬂ + k;l) =0fori=1,...,7. Forw € Wy C W, a reduced
expression w = 8;, ---s;, in W can be chosen with simple reflections from Wy, i.e., with 1 <
i; < r. Furthermore, II(w) = @g Nw=1®, for w € Wy, and {Ty }wew, is a basis of Hy.

Define x: ®9 — {£1} by

vo={ ) e 29
In other words, x = x4+ — x— with

X = Xo# oy — {0,1}
the indicator function of <I>(j)E in ®g. For j =0,...,r and g € W, we have

Usjg) = Ug) +x (97" ),
and hence

TiTy = x— (9 ay) (kj = k") Ty + Tasq (2.9)

in the affine Hecke algebra H.
We now describe the Bernstein decomposition of H (see [8] for details). Let H* be the group
of units in H. There exists a unique group homomorphism

QY - H*, A=Y
such that Y* = T;(y) for A € E4 N QY. The resulting algebra map
F[Q'] = H, p~pY), (2.10)

mapping z* to Y for all A € QV, is injective. The image of the embedding is denoted by Fy [Qv] .
The multiplication map of H restricts to a linear isomorphism

H0®Fy[Qv] 5 H.
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The commutation relations between elements in Hy and Fy [QV] are described (and determined)
by the Bernstein—Lusztig cross relations

ko, — k! + (E% —~ E;})Y_%Y
2
1—y—2

YT, — Tyt = ( ) (Y* — vyt (2.11)

fori=1,...,r and A € Q.

The right-hand side of (2.11) appears to be in the quotient field Fy (QV) of Fy [QV], but it
lies in Fy [Q"]. Indeed, if ; (Q") = Z, then k% = kq, = ki, hence the right-hand side of (2.11)
reduces to

A 83 _ yv—a;(MNaV
=) () = s (),
1-Y % 1-Y %

which lies in Fy [QV] since oi;(A) € Z. If ai(QV) = Ze, then ®q is of type C,, r > 1, and i = 7,
in view of our convention that «, is a long root. The right-hand side of (2.11) then reads

\4

1 -1 Y, A ]_ — Y_a?“()‘)ar

(Br =kt (ko — ko )Y 7)Y (H/MV )

which lies in Fy [QV] since a,()) € Ze.
Denote by
FIQ']" cF[Q]

the subalgebra of Wy-invariant elements in F [Qv}, and Fy [QV} "o for its image in H under the
embedding (2.10). Then

Z(H) = Fy[Q"]",

where Z(H) denotes the center of H.

2.5 The double affine Hecke algebra

Fix a parameter ¢, € F* and set
o 1= q1|0¢||2/\\a||2 for a € .

It equals either g, qg or qf; (see [6, Section 9.4, Table 1]), and gwa = go for all a € &5. We
like to think of g, as being equal to ¢/ Il for q in some field extension of F (this is done
in Sections 1.2-1.4, where we described the results explicitly for ®( of type C,). To circumvent
field extensions, we will introduce instead a group homomorphism g¢: WZ — F*, m— ¢™,
with

m m|lp?/2

q" =q for m € 257

llell®

Note that ¢™ € F is meaningful for m € (QV, Q") since (Q¥, Q") C WZ.

Definition 2.3. We denote by T the F-torus of rank r consisting of the group homomor-
phisms QY — F*.

The abelian group structure on T is by pointwise multiplication,
(st)H .= sttH, s;teT, peqy,

where t* € F* denotes the value of t € T at u € QV.
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Remark 2.4. Consider the root system ®g = {£(e; £ €) hi<icj<r U {£2¢;};_; of type C,,
with {€1,..., e } the standard orthonormal basis of R". Its co-root lattice Q" equals Z". In the
introduction, we identified the corresponding F-torus T with (F*)" by the isomorphism

T = (F*)", tes (t9, ..,
cf. (1.6) and (1.8).
For XA € QV, we define the torus element
q)‘ eT
by p— ¢ e QY. Then T admits a left W-action by

(W) = v,

(TR = ()" = g Mt (2.12)

fort € T, we Wyand \,u € QV.
We will view a polynomial p = > pduzt € F [QV] as regular function on T by

p(t) :== Z d,th fort e T.
o

The formula

(gp)(t) ==p(g't)

forpe F [QV}, g € W and t € T then turns F[QV} into a W-module, with W acting by algebra
automorphisms. Concretely, the action on the basis of monomials is given by

w(zh) =z, r(\)(z") = ¢ BNk (2.13)

for w € Wy and \, u € QV.
Note that by (2.2),

Sa(xu) _ qga(o)a(ﬂ)xsau (2.14)
for a € ® and p € QY. In particular,
so(ah) = qf(“)x“”*"“.

In various computations, it is convenient to use co-roots of affine roots and incorporate g¢-
powers in the exponents of the monomials. The co-root b¥ of b € ® is defined by

bV = (bv, 2&('(’)2)) € ExR.

The resulting set @Y := {b" },cq of co-roots is an affine root system in E x R [9]. Note that

(sq0)Y =bY — E(EV)QV fora,b e ® (2.15)

in view of (2.3) and the fact that H;HQﬁ(aV) = ”aQHQa(BV) for a, 8 € @ (indeed, both sides are
equal to (", 8Y) by (2.1)).
We set

ot = g™t € F[QV] for fi = (u,m) € Q¥ x ”;‘PZ
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and we write t# for the evaluation of z# ¢ F[Qv] atteT (so in particular, t# = qmt“). Note
that @V C QY x WZ, hence z? makes sense for all b € ®. Concretely,

- qg(o)xgv cF[Q"], (2.16)

which reduces to the monomial z°" in case b = (,0).
Formula (2.14) can then be rewritten as

Sq(xh) = gh—awa’, (2.17)
We furthermore have

g(a:bv) = (90" for g € W and b € ®. (2.18)
Indeed, it suffices to check (2.18) for w = s,, a € ®. By (2.16) and (2.17), we have

5 (xbv) _ be—E(EV)aV
which equals z(5e?)" by (2.15).

Definition 2.5 ([3, 14]). The double affine Hecke algebra H = H(k; g,,) is the unital associative
F-algebra generated by T;, 0 < j <r, and 2#, u € QV, subject to the following relations:

(a) the (W,{so,...,s,})-braid relations for Ty, ..., T},

(b) the quadratic relations (T; — k;) (T} + k;l) =0forj=0,...,r,
(c) ata? =M v € QV, and 2V is the unit element of H,
)

(d) the cross relations

ki — kN (uy —ui )2
Tyt — sj(a")T; = ( — (;av i) (a# — 5;(2")) (2.19)

1—
for j=0,...,r and u € QV.

The Poincaré-Birkhoff-Witt (PBW) theorem for H states that the canonical algebra maps
H — H and F[QV] — H are embeddings, and that the multiplication map of H restricts to
a linear isomorphism

FlQ'|®@H — H.
By the Bernstein presentation of the affine Hecke algebra (see Section 2.4), the subalgebra
HY cH

generated by F[QV] and Hy is isomorphic to the affine Hecke algebra H:=H (E)
The double affine Hecke algebra with dual multiplicity parameters will be denoted by

H:= H(E, qq,).

To keep the notations manageable, we will use the same notations T}, Ty, Y#, z# in both H

and H.
The duality anti-isomorphism [4, 14] is the unique anti-algebra isomorphism

§=6: H-5H
satisfying
§(Ty) =1T; s(YN) =2  S@) =Y

fori=1,...,r and A\, p € Q. Its inverse is 6 := Oy
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3 Quasi-polynomial representations

3.1 The quasi-polynomial representation of HX

In this subsection, we introduce the quasi-polynomial representation of the dual affine Hecke
algebra HX. In case k € K', the representation we obtain was derived before in [16, 15].
Let

|-]: R—>Z

be the floor function, so |s] is the largest integer < s. We denote by
|]e: R — Z, l']o: R—Z,

the functions which map s € R to the smallest even and odd integer < s, respectively. Note that
|s]e :=2]s/2], slo=|s+1]e—1

for s € R.

Definition 3.1. For a € ®, define the even and odd truncated divided difference operator
V.= Vu(k) € End(F[E]) by

| — p-law]ea"
Va(a?) = (f_zgav ¥,

0¥ _ p—la()]oa”
Vo (2¥) = (5” v )xy (3.1)

1— x2e¥
for y € E. We furthermore write V§ := sz and V7 := ng for j=0,...,7.

Truncation in Definition 3.1 refers to the fact that the real numbers a(y) in formula (3.1)
are truncated using the even and odd floor operations. These truncations are necessary to turn
the two quotients in (3.1) into well defined elements in F[QV]. Note that V¢ and VY depend
on g, when a € ®\ @, in view of (2.16). In this subsection, we only need the truncated divided
difference operators for a € ®¢, and there will be no dependence on g,.

We write
V. =V,+V? (3.2)
for the sum of the even and odd truncated divided difference operator, and V; := V,; for

7=0,...,r. Then

_ p-law)a
Val(a¥) = <M> o (3.3)

1— a2
for y € F since

{[sles LsJo}y = {ls), [s] =1}

as unordered 2-sets for any s € R. The truncated difference operator V, € End(F[E]) was
introduced before in [16, Section 4.2].

The link of the various truncated divided difference operators to the usual divided difference
operator is as follows (the first part of the lemma was observed before in [16, Lemma 4.4]).



18 J. Stokman

Lemma 3.2.
(1) If a € @, then

aH — sq(xH)

1 — ga’

Va(zt) =

for pe Q.
(2) If g is of type C,, r > 1, and if a € ® is an affine root such that a € <I>€ (in other words,
a€ WapUWay,), then

zH — sq(zH)

oV
e = Val)

Vi) =

for ueQV.

Proof. (1) This is immediate from (2.17) and the fact that a(Q") C Z.
(2) Under these assumptions, we have E(QV) = Ze, hence

[a(u)]e =alp) = |a(p)]o +1
and the result follows again from (2.17). [

We will often make use of the indicator functions xz,_, xz,: R — {0, 1} of the subsets of even
and odd integers, respectively. We will denote them by x. and x,, respectively.

Theorem 3.3. The formulas

m(z)a = gVt

m(T))a? = k;(e(ai(y))uz(o(@i(y))wsiy + (kz _ ki—l)vf(xy) + (ul _ ui—l)vlq(xy) (3.4)
forpe@V,ie{l,....r} and y € E define a representation 7: HX — End(F[E]).

Proof. Formula (3.4) uniquely defines linear operators m(z*) and 7(7;) on F[E], which in turn
restrict to linear operators

@) = (@) g, 7T = 7(T))|ro) (3.5)

on F[O] for every W-orbit O in E. In view of (2.7) it thus suffices to show that the linear
operators (3.5) define a representation 7© = 7()|pjo): H* — End(F[0]).

Consider HX as left regular HX-module. By (2.9) and (2.19) the H¥-action can be written
down explicitly relative to the basis

{a;’\Tw I eQY,we Wg}
of H¥X. The resulting formulas are

oM T, = x’\‘“‘Tw,

Lo,

_ o 2x- (v tey) —ai(V)ay
Em)\Tw — xSiATsiw + (kl o k;l) (1 T ( ) )x/\Tw

1 — g2
B 2% — p—ai(N)ey
+ (ul Uy 1) ( 1 _ 2oy -T)\Tw (36)

for \peQV,weWyandi=1,...,r.
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Let k€ € FX, w € Wy, be a collection of nonzero scalars. Consider the surjective linear map
v°: HX - F|O], Y© (x)‘Tw) = ﬁgz)‘ﬂvco, AEQY, we W (3.7)

We will fine tune the scalars k9 € F*, w € Wy, in such a way that the kernel of /€ is a left
ideal in H¥X. This will allow us to push the left regular H*X-action through ¢©, giving rise to
a HX-action on F[O]. We then show that the resulting action of z* and T; on F[O] is by the
linear operators 7€ (x#) and 7@ (T;), which completes the proof of the theorem.

For any choice of scalars kK9 € F*, w € Wy, the kernel of 4@ is invariant under left multipli-
cation by F [Qv}. Note that the kernel ¥© is invariant under left multiplication by T; if there
exists a linear operator DY € End(F[O]) such that

DY (49 () = v°(Tih)
for all h € HX. By (3.6), we have

s;w St i 20

o x- (vt —as(V)ay
© (Tix)‘Tw) =59 s~(x)‘+wco) + nfﬁ (kz - kfl) (1 * . )x’\+wco

B 2% — p—ai(N)ey o
| v Et 58

so we look for conditions on the scalars k& such that (3.8) can be expressed as a linear operator
DY € End(F[0]) acting on ¢ (22T,) = kO e for all A € QY and w € Wy.
To simplify notations, we write

y:/\—i—ch

with w € Wy and X € QY. We first prove that

Lo A Ko -1 1 o
000 (T T,) = (57 (b = k- (o) e e ()

Kip Kip

+ (uz — ul-_l))@r (w_lai)xo(ai (wco)))xsiy
+ (ki — k7 V(@) + (g — uy ) V(2Y) (3.9)
by rewriting the two quotients in (3.8) in terms of the odd and even truncated difference oper-
ators.

We first consider the proof of (3.9) when «; (QV) = Ze, i.e., when ® is of type C,, r > 1,
and ¢ = r. Then (2.4) and a,(Q") = Z. imply that

2 (wilar) (V) = 2—|ap(y)]e if w_lo.z,n € ®; and a, (wc®) =0,
—|ar(y)]e otherwise.

By (2.4), this can be reformulated as

2~ lan(y)]e if x— (v ar)xe (o (we®)) =1,
—lar(y)]e i x—(wlar)xe(ar (we?)) = 0.

This allows us to rewrite the second line of (3.8) for ®( of type C, and i = r in terms of the
even truncated divided difference operator,

L 2Ox (wlar)—ar (A)aY
1 — g2

2y— (wlay) —ar(\) = {

>a:y = Ve(@Y) + x— (v o) xe (ar (wco))xSTy (3.10)
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(in case x— (w™'ar)xe (ar (we®)) =1 use the fact that |ar(y)]e = ar(y)). To rewrite the third
line of (3.8) for @ of type C, and i = r, note that

1—a,(\) = 2—lop(y)]o if Oér(wco) =1,
' —lar(y)]o otherwise,

which can be reformulated as

_ 2- Lar(y)Jo if x4 (wilar)XO(ar(ch)) =1,
1—a,(\) = ) . o
—lar(y)]o if xu (w ar)xo(ar(wc )) =0
in view of (2.4). It follows that
of _ p(l—ar(X)a)
(m e ) = Vo) + s (w7 o) o v (we) )™ (3.11)

(in case x4+ (w ™ ay)xo(ar (wc®)) = 1 use the fact that |y (y)]o = oy (y)). Substituting (3.10)
and (3.11) into formula (3.8) for i = r, we obtain (3.9) for @ of type C, and for i = r.
We now prove (3.9) when «; (QV) = Z. Then k; = u; and using that

{2)(, (w_lai) —a;(N),1— ai()\)} = {X, (w_lai) —a;(A), 1+ x— (w_lai) - ai()\)}

as unordered 2-sets, formula (3.8) simplifies to

— (3.12)

o x= (w‘lai) —a;(N)oy
VO (T T,) = ngwxsiy + k9 (ki — k1) <1 ’ )xy.

Using (2.4), we have for w™'a; € ®; that

D at)] xe(a(we®) =0,
X—(w™ai) —ai(A) = {1 )] i xelai(we®)) = 1

and for wla; € <I>(J)r that
Sy e Jlea)] i xe(ai(we)) =0,
X— (W) —ai(A) = {1 “las()] i xo(ai(we®)) =1

This leads to the formula

(1 _ 0 (wtas) —ai(h))ay )
Y

1— 2o
= Vi(z¥) + (x= (0w i) xe (i (we®)) + x4 (W) xo (i (we®)) ).
Substituting into (3.12) and using the formulas (3.2) and (3.3), we now also obtain (3.9) in case
(673 (Qv) =7.
The next step is choosing the normalization factors nfﬂ , w € Wy, in such a way that the

coefficient of 2% in (3.9) only depends on y = A + wc®. We will show that this is the case for
the scalars

/{;8 = H kée(a(co))k;/xg(o‘(co)) (313)
acll(w)
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(a small computation using (2.4) shows that 9 reduces for k € K™ to the normalization
factor [16, (4.11)]). Since II(w) = ®F Nw™1®; for w € Wy, we have

s) — II(w) U {w_lai} if X+(w_1a,~) 1,
H(siw) {H(w) \{—-wlas} if x—(wley) =1

Combined with the fact that x¢, xo: R — {0,1} are even functions, we obtain

£, Rl Oy o) gy lag) = 1,
KO { i xe(@s(we)) roastwe)) e v (wlag) = 1,
and hence
o o (ke — k)= (w0 e xe (e (we®)) - (s — ) (w0 ) o (0 (we)
_ pretai(we)) xola(we?))

for w € Wy and i = 1,...,7. So formula (3.9) reduces for the specific choice (3.13) of k& to

)

1 o lwe oz (we ;
00 (T Ty) = k(e elen e oy
/{"LU
+ (kZ — k;l)Vf(xy) + (uz — u;l)V?(xy). (3.14)
Now note that the map

EoFX, g Bee®)oe) (3.15)

1

is T(QV)—invariant. This is trivial when ®q is of type C,, r > 1, and i = r, since in this case
Qo (QV) = Ze. In all other cases, ai(Qv) = Z hence k; = u;, in which case it follows from
the fact that the function (3.15) reduces to y — kZXZ(ai(y)). In (3.14), we may thus replace the
coefficient

kXe (e (’LUCO ) uXo (a; (wCO))

of £ by JXe(@ @), Xe(@i(®)),

In conclusion, for k¥ given by (3.13) the associated linear map ¢© (3.7) satisfies
O(Tih) = DP (9O (h))  Vh e HX
with DY € End(F[0]) defined by
DY (2¥) = kYWD oWy (k1) Ve (aY) 4+ (wy — u; ) VI (2Y)

for y € O. The kernel of ¢©: HX — F[O] thus is a left-ideal, and F[O] inherits a HX-action
from HX/ker(wo) with T} acting by DY = 79(T;) and z* acting by 7%(2#). This completes
the proof of the theorem. [ |

Remark 3.4. The proof of Theorem 3.3 involves a particular choice of normalisation factors
k9 € F* (w € Wy). Any choice of k9, w € Wy, such that the coefficient of %Y, y = X + wc®,
in (3.9) only depends on the coset w{v € Wy | vc® = ¢} for all y =\ +wc® € O and
i€{1,...,r} will lead to an explicit H*X-representation on F[0] involving truncated Demazure—
Lusztig type operators. The present choice (3.13) corresponds to a natural class of parabolically
induced H¥X-modules, see Section 3.2 for details.
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Corollary 3.5.
(1) FIE] = @oecp/w FlO] is a decomposition of F[E] in HX -submodules.
(2) Let O € E/W. Then

Tr(x)‘Tw)xco = figx)‘+wco
for X € QY and w € Wy, with k& defined by (3.13).

Proof. (1) This was remarked in the first paragraph of the proof of Theorem 3.3.

(2) By the last paragraph of the proof of Theorem 3.3, the epimorphism ®: HX — F[0O],
mapping 2T}, to l{l(’3$)\+wco for A € QY and w € Wy, is H*-linear for the special choice (3.13)
of the scalars 9. Hence

W(xATw)xco = ﬂ(xATw)wo(l) =° (x’\Tw) = /@83}’\“”00
for A € QY and w € W [ |

For the upgrade of Theorem 3.3 to the double affine Hecke algebra H (see Section 3.3), it is
useful to introduce the notation

() = 7()lr[o]

for the representation map of the HX-submodule F[O] (as we in fact already have done in the
proof of Theorem 3.3). The reason for this is that the extension of 7€: HX — End(F[O]) to
a H-representation on F[Q] involves additional O-dependent representation parameters.

Remark 3.6.
1. By (3.2), we have
w(Ty)a? = kAo 4 (ky — k7Y (aY) ik = i,
from which it follows that the HX -representation 7@ for k € K™ is the restriction to HX

of the quasi-polynomial H-representation defined in [16, Theorem 1.1].

2. Let A C E be a Wy-invariant lattice containing Q. Then F[A] is a m(H*)-submodule,
and the action of 7(T;) \F[ A] can be written in terms of metaplectic Demazure-Lusztig type
operators when k; = u;, see [16]. The resulting H*-representation 7(-)|pa) for k € K
is essentially the one introduced in [15, Theorem 3.7]. The proof of Theorem 3.3 basically
follows the same strategy as the proof of [15, Theorem 3.7].

3.2 Parabolic data and parabolically induced modules

o

We show in this subsection that the representation 7 is a parabolically induced HX-module

when aq (CO) # 0.
For a subset I C {1,...,r}, write

e Wy, for the parabolic subgroup of Wy generated by s;, ¢ € I,
° WOI for the minimal coset representatives of Wy/Wj r,

e Hy ; for the subalgebra of Hy generated by 75, i € I.
The finite Hecke algebra Hj is a free right Hy ;-module with basis {Tv}vew({, since
L(vw) = £(v) + L(w) for v € W{ and w € Wy ;. (3.16)

Here is an immediate lift to the affine Hecke algebra HX.
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Lemma 3.7.
(1) {T(/\)v}(/\m)EQvaoz is a complete set of representatives of W/Wy 1.

2) HX is a free right Ho r-module with basis 2T, Vol -
) (Av)eQY xWy

Proof. The first part is a consequence of the fact that (A\,w) — 7(A)w defines a bijection
QY x Wy =5 W. For the second part, note that the multiplication map of HX restricts to

a linear isomorphism F[QV] ® Hy — HX. |

The more familiar parabolic structures on W and on the associated affine Hecke algebra H
arise from their Coxeter type presentations. In this case it depends on a subset J of {0,...,7}.
We write

e W, for the parabolic subgroup of W generated by s;, j € J,
e W for the minimal coset representatives of W/Wy,

e H for the subalgebra of H generated by T}, j € J.

The length identity (3.16) now also holds true for v € W/ and w € W,. As a consequence, H is
a free right Hj-module with basis {7} ey
The closure C; of the fundamental alcove C'; splits in a disjoint union of facets

= || cf
JZAO,...,r}

with Ci the set of vectors y € C for which a(y) = 0 if and only if j € J. For y € E denote
by W, C W the subgroup of W fixing y. It is well known that

W.=W,; forceCl.

Definition 3.8. For a W-orbit O in E, we write J(O) for the subset of {0,...,r} such that
© c Ci(o)

1(0):=JO)n{1,...,r}.
Note that I(0) = J(O) if and only if ap(c®) # 0. We will use the shorthand notations

. We furthermore write

C9, nWo, W9, Ho, ...
for Ci(o), WJ(O)7 W‘](O), HJ((Q), ... and
Wo,0, W', Hoo, ..

for Wo 10, WOI(O), Hp 1(0), - - - - The following lemma refines the decomposition (2.6) of the space
of quasi-polynomials F[O] as F[QV]-module when aq (CO) £ 0.
Lemma 3.9. If O is a W-orbit such that ap(c®) # 0, then F[O] decomposes as
FIO]= P F[Q"]«"". (3.17)
vGWOO
Proof. The assignment gWy o +— gc© gives rise to a bijection
W/WQO = O,

since W.o = Wp = Wy o by the assumption on O, and Wg) is a complete set of representatives
of the double coset space 7(Q")\W/Wy 0 by Lemma 3.7(1). Hence {UCO}UEWOO = Woc is
a complete set of representatives of the T(Qv)—orbits in O, and the lemma follows. |
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For a W-orbit O in E, let F1© the trivial Ho-module, defined by
Tj1° = k19 for j € J(O).

We will also view F19 as Hjy p-module by restricting the action to Hy 0. Consider the induced
HX-module

mdlf™ (F19) = X @, , F1°
and write

© —1®m,, 1°

for its canonical cyclic vector.

Proposition 3.10. There exists a unique HX -linear epimorphism
@ @
IndH0 o (F19) — (F[O],7%) (3.18)
mapping 1© to 27, It is an isomorphism when ag (co) £ 0.

Proof. For the first statement, we need to show that the assignment h1® W(h):vco for

h € HX is well defined. Tt suffices to note that
(@]

(T = kia®™  forie I(O).

But for i € I(O), we have s;c® = ¢, and hence

7r(TZ-):UCO = mox‘”c = kiz®”

by Corollary 3.5 (2) and (3.13).
For the second statement, note first that

{2’19 | (\v) € Q¥ x W} (3.19)

is a basis of IndH (Flo). By Corollary 3.5 (2), the basis element 2*7;,1¢ is mapped by the
epimorphism (3. 18) to

W(mATv)xCO = ﬁvox)""vco.

By Lemma 3.9, we conclude that the epimorphism (3.18) maps the basis (3.19) of Indgjo (F19)
to a basis of F[O], which concludes the proof of the second statement. |

The natural analog of Proposition 3.10 for W-orbits O with ag(c®) = 0 (i.e., with 0 € J(0))
requires the extension of the HX-action 7° on F[O] to an action of the double affine Hecke
algebra H. This will be the subject of the next subsection.

3.3 The quasi-polynomial representation of H

We now promote the quasi-polynomial representation 7€ of the affine Hecke algebra HYX to
a family of representations of the double affine Hecke algebra H. The number of additional pa-
rameters depends on the facet C’i(o) containing ¢©. For k € K™ the extended representations
are the quasi-polynomial H-representations 7.0 ; introduced in [16, Theorem 1.1]. For k € K
and ®q of type C,, » > 1, they will give quasi-polynomial extensions of the polynomial repre-
sentation of the type CVC, double affine Hecke algebra H [11, 14].
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Recall the definition of the F-torus T (see Definition 2.3). For J C {0,...,r}, consider its
affine subtori

T;={teT |t =1VjeJ}.
For a W-orbit O in E, write

TO = TJ(O)’
Note that
Sqt = t(t*av)a forae ®andteT, (3.20)

where t(t_“v)a € T is viewed as character of Q¥ by X\ — t} (t_av)a(A) for A € QY. By (3.20),
we have s,t = t if t%" = 1, and so

T;CTV ={teT|gt=tVYge W, (3.21)

Note that Ty and T"V are sub-tori of T when 0 ¢ .J.

In [16, Lemma 4.2], the Wy-action on F[O] was extended to a family of W-actions on F[O],
parametrised by t € Tp. These actions are compatible with the W-action (2.13) on F [QV] by
g-dilations and reflections. The definition of this action requires the following definition.

Definition 3.11. For y € E, write gy € W for the unique element of shortest length in W such
that gy_ly e Cy.
Note that if y lies in the W-orbit O of E, then g, is the unique element in W such that

y= gyco-
Lemma 3.12. Let O be a W-orbit in E. Fort € To, the formulas

wir? = w(z?) = Y, w e W,

T(\)2¥ = (gyt) Y, Ae QY (3.22)
fory € O define a linear left W-action on F[O] satisfying

9:(pf) = (9p)(9:f) (3.23)
forge W, pe F[QV] and f € F[O].

It is instructive to recall the proof of (3.23) for g = 7(\), A € QV. First note that by (3.21),
we may replace g, in (3.22) by any other representative of the coset g,Wp. We then have
for p € QV,

TNt = (guiyt) P2ty

= (r(n)gyt) Nah
= (q*<)"“>x“) ((gyt)*)‘xy), (3.24)
where we used gy, Wo = 7(1)g,Wo for the second equality, and (2.12) for the third equality.
The last line in (3.24) clearly equals (7(\)z*)(7(M\)z¥). Note in particular that the family of
W-actions (3.22) depends on ¢ via the W-action (2.12) on T.
Note that by (3.24) we have the formula
TNl pigviar = (8yt) (@¥ 0 7(N) 0 27Y)|m(Qviav,

where 2 are regarded as multiplication operators on F[E].
The following result extends [16, Theorem 1.1] to multiplicity functions k € K.
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Theorem 3.13. Let O be a W-orbit in E andt € To. The formulas
ﬁf) (xA):cy = ¥+,
nQ(Ty)a? = kYA g0y (k) — k) VS(Y) + (g — ;) V() (3.25)

forj=0,....,7, A€ Q" and y € O define a representation 7°: H — End(F[0]).

Remark 3.14. Note that 7rtO |gx is the restriction 7@ of the quasi-polynomial HX-represen-
tation 7 from Theorem 3.3 to F[O]. Furthermore, for restricted multiplicity parameters k € K"
we have

w0 (1) = ks 0¥ 4 (ky = k) V5 ()

since k; = u;, hence 7rto then coincides with the quasi-polynomial representation 7.0 ; defined
in [16, Theorem 1.1].

Proof. Consider H as left regular H-module. Relative to the F-basis
{2 T, YY" |\ e @Y, we Wy}
of H, the H-action is explicitly given by

Ty Y = 8y (1) T 50

1 = &= tay)—a;(N)ey
+ (kj — k1 . 2, Y H
( J J ) ( 1 — 229
Y (1—aj(\)aY
_ xr 7 x J
+ (uy—uj ) ( e )x’\TwY“ (3.26)

for w e Wy, \,u € Q¥ and j = 0,...,r. For j € {1,...,r}, formula (3.26) follows immedi-
ately from (3.6). For j = 0, formula (3.26) follows by commuting Ty and z* using the cross
relation (2.19) and then applying the identity

ToTy = Topy¥ ™ 0@+ x_ (w™'@0) (ko — kg ') T (3.27)
in H. For the proof of (3.27), first note that it is equivalent to the identity
TTOT, =T,y (3.28)

in H since s0(0) = ¢V, @ = —¢ and Ty' = Ty — ko + ko' For a proof of (3.28) see, for
instance, [10, (3.3.6)].

Let O be a W-orbit in E. Recall the linear epimorphism ¢©: HX — F[0], defined by (3.7),
which is an epimorphism of H¥-modules by Corollary 3.5(2). The goal is to find extensions
of © to linear epimorphisms H — F[O] such that

(1) their kernels are left ideals in H,
(2) right multiplication by Fy [QV] is turned into multiplication by a linear character of

Fy [QV].

This will upgrade the HX-action on F[O] to a family of H-actions satisfying the additional prop-
erty that the quasi-monomial 2°° will be a simultaneous eigenvector for the action of Fy [Qv].
The family of extended H-actions on F[O] will be natural parametrised by the associated linear
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characters of Fy [QV], which in turn can be described by an affine subtorus of the form sT¢ for
a specific basepoint s € T, so be determined in due course.

So our starting point will be the desired property (2). Fix t € T and consider the extension
of 1© to a (t-dependent) linear map +{ : H — F[O] by

W@ (F T, YH) = (5t) Hp© (27T, ) = KC (st) Hat e (3.29)

for w € Wy and A, € QY (recall here that £ € F* is the explicit scalar defined by (3.13)).
By the first formula of (3.29) and Corollary 3.5 (2), it follows that

VO (h') = 7O (h)WC(h')  forh € HX and b/ € H.

In particular, the kernel of ¥ is a left HX-submodule in H. To meet the first property (1),
we now fine-tune the choice of s € T such that

YO(Tol') = Do (O (1)) forall I € H

for some Dy € End(F[O)).
Note that for A € QY and w € W,

S(]’tJJA—HUCO = 5o (m)\) (SO,tcho) _ twflcpv 50 (Jj)\)xsg,wco

and hence, by (3.26),

(5t)M O A ngw Ew_lwv Awce®
o ¥ (I T Y") = ——5——s042
w w
1 — 2(@x—(w='a0)~ao(N)ay o
1 A
B 200 — p(1=a0(N)ag o
+ (up — uy ") ( 5 gt (3.30)

So we need to fine-tune s € T such that the right-hand side of (3.30) can be written Dy (z*%°)
for some Dy € End(F[O]). We follow the proof of Theorem 3.3, but it requires some necessary
additional computations due to the presence of the additional parameters s and ¢ (compare also
with [16, Section 5], which deals with the case that k € k).

We first consider the case that ®q is of type C,, 7 > 1, so that ag(Q") = Z,. Fix A € Q"
and w € Wy and set

y =+ wc®.

The second line of (3.30) can then be rewritten using the formula

1 — 2(x—(w™'a0)~a0(N)ag
1— .%20‘5/

>$y = V§(a¥) + x— (w_lao)xe (@0 (wco))so,txy. (3.31)
To prove (3.31), note that by (2.4) we have

2x— (wilao) — ao(/\) =

{2 ~ [@o())e it w @ € @y and @ (we) =0, (3.32)

—lao(y)]e otherwise,
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and that @ (wco) = 0 if and only if x, (Eg (wco)) = 1. This immediately implies (3.31) unless
wlag € @, and ap (wco) = 0. So suppose now that w™ ey € ¢, and ap (wco) = 0. Then
© O and hence

s¢wc = wc
s = soa) sn ) = (A TOWIE ) (119 ) = g Ao b

But (w*1<p) (CO) = 0, hence

w Y € dY N @ Za .
)

Since t € T, we conclude that t¥~ ¢ =1, so
so Y = gAGo(Nag +we? (3.33)

Then (3.31) follows by combining the first case of (3.32) and (3.33).
Similarly, we rewrite the third line of (3.30) using the formula

(xag — p(1=q(N)eg

1— a2 >$y = V(") + x4 (w1 a0) Xo (a0 (we?) ) 50,12 (3.34)

For the proof of (3.34), we now use that

a2 @) e if @ (we®) =1,
o = {—LOéo(y)Jo otherwise, (3.35)

and the observation that aj (ch) = 1 is equivalent to x4+ (w_lao)xo (60 (wco)) =1. Then (3.34)
is immediate if @ (wco) # 1. So suppose now that @ (wco) = 1. Then
sopa? = twflcpv x)\—ao()\)oag—&—svwco
_ q(ptw’lgov x/\—(l—i-ao()\))oag—‘rwco _ xA—(1+ao(>\))ag+ch _ (336)

The last equality follows from the fact that the affine root a := (w_lnp, 1) satisfies a(co) =0,
so a” € @7 NP, o) Za; and hence got" " =1%" =1 (cf. [16, Lemma 3.4]). Then (3.34)
follows from the first case of (3.35) and (3.36).

Returning now to (3.30), we conclude from (3.31) and (3.34) that

“w
(22 VP (Tox T, Y) = coeff9 s x¥ + (ko — kg H) VE(2Y) + (uo — ug ') Vi (aY) (3.37)
with
O w—lgo\/
coefi 1“2 o (ky — ky )y (T e (0 (we))
+ (uo — ual)X+ (w_lao)xo (ao (wco)). (3.38)

Formula (3.37) also holds true when ® is not of type C,. In fact, if ®¢ is not of type C, then
K = K™ and ko = up, and the formula can be recovered from [16, Section 5|. It can also be
derived directly, similarly as the proof of (3.9) when «; (QV) = Z. So we will now continue the
proof of the theorem for ®( of any type, taking (3.37) as the starting point.

Properties of the normalization factors k9 (3.13) were derived in [16] for restricted parameters
k € K™, which led to an explicit expression of the quotient K)Spw /kS (see [16, Lemma 5.6 (1)], as
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well as case 2 of the proof of [16, Lemma 5.9]). This can be easily extended to ¢ for arbitrary
parameters k € IC. It leads to the formula

@
Iisgw = kapX(w L) xe(p(we ))kX(w )Xo (p(we® H kXe(CV c)a(w= 1ty )k;Xo(Ol(CO)) (u/_1<,a\/)7
kS P
a€¢+
where x is given by (2.8). Hence
w_1¢
coeffO — X xe(p(we®) (0 P)xole ( [T texeofeogerotete? >>a)
acd}

+ (ko — kg ) x+ (w ™ o) xe (0 (we®) ) + (w0 — ug ™) x— (™) xo (0 (we?)),

where the factor in big brackets in the first line is considered as element in T with value at A € QY
given by

)\ H kxe )k Xo(a(c? ))0‘()‘)
a6¢+

Now we pick s € T to be

)

_xela(®)) xo(a(c?) |
so = |] (kak@n) ™ 2 “(kekoyy) 27 (3.39)
ae@é
whose value at A\ € QV is
A _ xe(a(c9)a(n) xo(a(c9))a()
5= ] (kak(a)) T (kgka ) 7

ae@é
When a(Qv) = 7, the factor in this product should be read as

K xe(0(e2)a ) e (@( N _ jelro(a(e®)—xe(@(e))a ()

2

recall that ko = k(q,1) = ke =ka 1) when a(QY) =Z).
(e,1) 2 (3.2)

For the remainder of the proof, “Wwe set § = 50, hence the linear map wt H — F[O] is now
given by
W@ (2T, YH) = k8 (sot) Hat e (3.40)

for A\, € QY and w € Wy. We get

coeffO = X @)xe(p(we?))  x(w™ o) xo (i (we?))

xe(a(e ))a(w*l V) xo(a(c@)a(w=1eY)
-1 -1 B R
< JI (kakiay) (ks ks 1))
acdd:a(QY)=Z.

+ (ko — kg ' )x+ (w0 xe (9 (we®)) + (w0 — ug ) x— (w7 @) xo (0 (we?)). (3.41)

Recall that there only exist roots a € &g with a(QV) = Z. when ®g is of type C,. In this case
{a € ®|a(QY) =Z} is the set By of long roots in @y, and

{a € Qo | a(ufl(pv) #* 0} = {wilgo, —wilgo}.
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We thus have

xe(a(c@)a(w™lY) Xo(a(c@)a(w=1eY)
-1 2 -1 2
H (kak(a,1)) (k% k(%,%))
acdd: a(QY)=Z.

(kal kr)x(wflw)Xe(w(wco)) ( 1)x(w’1<p)><o(sﬂ(wco))‘

UoU,.

Note that this formula is correct for ®g of arbitrary type. Indeed, if ®¢ is not of type C, then
the product on the left-hand side is an empty product, and the right-hand side also reduces to 1.
Substituting (3.3) into (3.41), we see that the dependence on k, and u, drops out, and we end
up with the formula

coeffd = ko—x(w‘lsa)xe(so(wco))uéc(w‘lso)xo(so(wco))

+ (ko — kg ' )x+ (W) xe (9 (we®)) + (w0 — ug ) x— (™ 0) xo (10 (we?)).
Now note that
kax(w*w)xe(<p(wco))ugc(w*1¢)Xo(so(ch)) = (kox—(w™'9) + k3 'xs (0 0)) xe (2(wc©))
+ (wox+ (™) +up x— (w71 ) ) xo (9 (we?)),
and hence
coeffS = koxe (2(we®)) + oxo (o (we®)) = KX PNy Xolewe?), (3.42)

Note that y +— ké‘eup(y))u%‘“(“p(y)) is T(Qv)—invariant (compare with the proof of Theorem 3.3),
hence (3.37) and (3.42) lead to the formula

(sot)*
,‘QO

w

P (Tox T, Y") = Do(aY)

for y = A4+ wc® € O and p € QV, where Dy is the linear operator on F[O] defined by
Do(a¥) = kg g @ s 0¥ 4 (b — kg ") V(@) + (o — ug ) Vi (a)

for y € O.

In conclusion, the kernel of ¢ : H — F[O] (see (3.40)) is a left H-module, and the resulting
isomorphism H/ker(¢f) — F[O] extends the quasi-polynomial HX-action 7 on F[O] to an
action of H with Ty € H C H acting by Dy, hence the corresponding representation map is 7°.
This concludes the proof. |

Remark 3.15. For the W-orbit O = @V containing the origin, we have Tgv = {1t} since
J(QY) ={1,...,r}. By Lemma 3.2 and by the fact that g1, f = g(f) for g € W and f € F[Q"]
(see Lemma 3.12), we conclude that

v _ _ oV M —S'(Iu)
T (Tt = kys;(a#) + (ky — k7' + (g — ujyt)a® )< 1— J;JQ%V >

for j =0,...,7 and u € QV. Hence 7 H End(F [QVD is the basic representation of Hi,

1t
due to Cherednik [3] for k € £ and due to Noumi [11] and Sahi [14] when k € K and ® is of
type C,.
Corollary 3.16. We have
g (x)‘TwY“)xCO = Hg(ﬁot)_“m)‘wco

for A, € QY and w € Wy, with so € T given by (3.39) and &% given by (3.13).
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Proof. In the proof of Theorem 3.13, we showed that the epimorphism ¢ : H — F[0], de-
fined by (3.40), is H-linear. Since ¢ (1) = 2¢°, the result now follows immediately from for-
mula (3.40), cf. the proof of Corollary 3.5 (2). [

Remark 3.17. A similar remark as for the proof of Theorem 3.3 (see Remark 3.4) can be made
for the proof of Theorem 3.13. With the x,, chosen to be (3.13), the proof of Theorem 3.13
involves choosing some s € T such that the coefficients coeffS (see (3.38)) only depends on the
coset wWy o for all w € Wy. For any such choice, one gets explicit realisations of quotients
of cyclic Y-parabolically induced H-modules with the associated induction datum given by st
(cf. Corollary 3.16). This forces s to lie in suitable affine subtori of T. With the present choice
s = 50 (see (3.39)) one obtains the explicit realisations of all cyclic Y-parabolically induced
H-modules, see Section 5 for details.

4 Quasi-polynomial analogs of the nonsymmetric
Macdonald—Koornwinder polynomials

We fix a W-orbit O in F and t € Ty throughout this section.

In the first part of this section, we show that the commuting operators 70 (Y*), u € QV,
on F[O] are triangular with respect to an appropriate partial order on the basis {2¥},c0o of
quasi-monomials. This will lead to the definition of the quasi-polynomial analogs of the non-
symmetric Macdonald—Koornwinder polynomials as the simultaneous eigenfunctions of the op-
erators 7r§9 (Y*), p € QV. The techniques in this section again closely follow the paper [16], in
which these results are derived for k € ™.

We first establish triangularity for a family G (a), a € ®, of operators closely related to
the 7 (T}). The linear operator G (a) on F[O] is defined by the formula

1 — g2

—a¥ _ ..|a(y)]oa
+ (k% - kél) <x x—2av )Sa:ﬂy

_ _ _ pla)]ea"
G?(a):vy — kge(a(y))kﬁn(a(y))xy + (ka _ k;l) <1x> SqstY
2

11—z
for y € O.

Lemma 4.1. We have

(1) GP () = 8572 (Ty) for j=0,...,r.
(2) GP(ga) = 9GP (a)g; " forg € W

Proof. This follows from a direct computation using (3.23) and (2.18), cf. [16, Section 5.5]. W

Recall the definition of g, € WO from Definition 3.11. Denote by < the partial order on E
defined by

y<z & yeWzandg,<pg.
with <p the Bruhat order of (W, {sq,...,s,}). Note that for each z € F,

lyeEly<z}

is a finite set contained in the W-orbit Wz of z. Various other properties of this partial order
are obtained in [16, Section 5.4].
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Definition 4.2. For f € F[E], we write
f=dz¥ + lo.t.
if f e dxy +@Z<y Fz? with d € F*. We then say that f is of degree y with leading coefficient d.
Define 7, 1,: R — {—1,0,1} by

Ne = X2Z>1 — X2Z<p» Mo = X1+42Z>o — X1+42Z<g-
We also set
N = Ne + No,

which is equal to xz., — Xz, We have the following extension of [16, Lemma 5.27].
Lemma 4.3. Fora € <I)a' X Z, we have
GO (a)z¥ = k;ne(a(y))k;no(ﬁ(y))xy + Lo.t.
2

forally € O.

Proof. This is covered by [16, Lemma 5.27] unless @ is of type C,. For ®; of type C,, one
checks using [16, Lemma 4.3 (1)], [16, Proposition 5.20] and [16, Lemma 5.24] that for a € ®§ X Z,

1 — g—2a"

2" _ plaw)loa”
oV SatT? = —X14225,(a(y))z? + Lo.t.,

1 — gla®)]ea” B
o | 8at? = — X2z, (a(y))z? + Lo.t.,

1—2
and hence
GP (a)a?
= (M) (1! — k)Xo, (@) + (kg — ks ) xir22.(@(y)))a? + Lot
= k;”e(a(y))k;%@(y)):ﬂy + Lo.t.,
2
as desired. |

Definition 4.4. For y € F, define 5, € T by

syi= [ (kak(a)

aE@J

ne(a(®)) o,

no(z(y))a

(kgk(1 o))

In other words, the value of s, at A € Q" is

AL ne(o(y))a(X) no(a(y))o(N)
sy = [I (kak@y) (keko 1)) 2
aeég
If a(QV) Ze, then the factors in this product are clearly well defined. If a(QV) = Z,

then ko = k(q,1) = k% = k(a 1y, and the corresponding factor in the product should be read as

kg(a(y))a( ) In particulal“, o

Sy = H k7@ for k € K™,
acdd

which is the base-point considered in [16] (see [16, Definition 5.1]). By [16, Lemma 2.5], the
function £ — T, y + s, is constant on the faces of the affine root hyperplane arrangement.
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Remark 4.5. If ¢ € C, then (2.4) implies that
se= ] (kak(avl))—qu%k%))ma
acdd
In particular,
5.0 = $0,
with sp» € T the torus element appearing before in Corollary 3.16 (see (3.39)).

Corollary 4.6. For all p € QV and y € O, we have
2 (YM)2Y = (s,g,t) " 2¥ + Lo.t.

Proof. This is [16, Proposition 5.28] when k € K. Using Lemma 4.3 as replacement of [16,
Lemma 5.27], the proof of [16, Proposition 5.28] extends to the case k € K. [ |

We now first derive some further properties of the map £ — T, y — s,. The following lemma
extends [16, Lemma 5.3].

Lemma 4.7. Let W, = {w € W | wy = y} be the subgroup of W fizing y € E, and let
j€A{0,...,r}.
(1) If sj € Wy, then

J

_ 17,-1 o (. \%
sy’ =k, kaq, and sa;8y = (Ka,ko; )8,

(69
T3 2

(2) If sj ¢ W, then sg,5y = 55,y

Proof. We give here the required adjustments to the proof of [16, Lemma 5.3].
For 1 <i <r, we have &; = «;, sz, = s; and II(s;) = {a;}, hence

) e )Y

$5%.b

with the obvious interpretation of the right-hand side when o;(QY) = Z. Then (1) and (2)
follow from the fact that

)—(no(ai(y))ﬂo(—ai(y)))%

SiSy = (kaia k(ahl) Sy,

Ne(2) +me(—2) = =2x403(2),  Mo(2) +1M0(—2) =0

for z € R.

We now prove the lemma for sy when @ is of type C, (the other types are covered by [16,
Lemma 5.3]). Write (I)(j)ce (resp. @is) for the positive and negative long (resp. short) roots in ®.
Clearly,

I(sy) = Me(sy) U s (sy)
with Iy(w) := &, Nw™ '@, and I (w) := @E{S N w_lé&s for w € Wy. Furthermore,

My(sp) ={e},  Ma(sy) = {a €, [a(p’) =1},

where we used for the first equality that there are no long positive roots a with a(gov) =1,
because @ is of type C,. Following the proof of [16, Lemma 5.3] and using that

kg =k =ks =k

[NlisY

(3:2)

[N

)
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for 5 € ‘I)(J)r,sv we get

S8y = 580y(kokr)—(ne(w(y))+ne(2—w(y)))% (uguy )~ (P) 12— () 3

— —B(s 1 S
y H k; (n(=B(sy))+n(1+B(s0)))B (4.1)

Bed,: Ble¥)=1

Now the product in the second line of (4.1) is 1t since n(z) +n(1 — z) = 0 for z € R. Applying
the elementary formulas

Ne(2) +me(2=2) =0, no(2) +10(2 = 2) = 2x(13(2) (4.2)
for z € R to the first line of (4.1), the identity (4.1) reduces to
S8y = ESOy(uOuT)—xu}(w(y))so’

from which the lemma for j = 0 follows immediately. |

We denote by w € Wy the image of w € W under the group homomorphism W — W,
vT(A) = v, v € Wy, A € QY. Note that 5, = sz for a € ®.

Corollary 4.8. Fory € O, we have
Sy = 8yS0 and  s,8yt = gy(sot).
Furthermore, 5(69Jv = E;jﬂg for all j € J(O).
5
Proof. Similar to the proof of [16, Proposition 5.4] and [16, Corollary 5.5]. |

By Corollary 4.8, we have spTp = Lo with

[

L oY _ -17-1 :
Lo = {')/ET”)/ J *kajk"“ V_]EJ(O)} (4'3>

v

Note here that anﬁ%o = Uy, kaik% = kf =k%for 1 <i<r, and Earﬁ% = kok;.
Write

b = {t € To | the map W° — T, g+ g(sot) is injective}.

Then T/, # @ for generic ¢ € F* and k € K. We are now in the position to extend the definition
of the quasi-polynomial analogs of the monic nonsymmetric Macdonald polynomials, introduced
in [16, Theorem 6.2] for multiplicity functions k € K, to multiplicity functions k € K.

Theorem 4.9. Fort € T\, and y € O, there ezists a unique quasi-polynomial
@ @
E/(z) = B/ (z;k,t;q) € F[O]
satisfying the following two properties:

(a) Ef(x) =z¥+1lo.t.,
(b) 7P (YMEP (x) = (gy(sot)) "By (x) for all p € QY.

Proof. This is a direct consequence of Corollaries 4.6 and 4.8. |
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Only the Koornwinder/CYC,-case of Theorem 4.9 is new compared to [16, Theorem 6.2].
In this case, ®q is of type C,, » > 1, and Ef (x) depends on five multiplicity parameters
ko, uo, kr, ur, k € F* (four in case of » = 1), on the dilation parameter ¢, and on the representa-
tion parameter t € Tp.

To see how Sahi’s [14] monic nonsymmetric Koornwinder polynomials fit into this picture,
consider the special case that O = QY. Then J(Q) ={1,...,r} and Tgv = {11}. Then The-
orem 4.9 requires that 11 € T, Lo} which amounts to generic conditions on ¢ € F* and k € K
(including, typically, the condition that ¢ is not a root of unity). By Remark 3.15, the resulting
Laurent polynomial

EQ" (z:k, 11;q) € F[QY]

is Sahi’s [14, Theorem 6.2] monic nonsymmetric Koornwinder polynomial E, of degree p € QV,
with n and the multiplicity parameters to, uo, tn, Un, t;, i # 0,n, in [14] corresponding to r
and ko, ug, kr, ur, k.

Various properties of the quasi-polynomial generalisations of the Macdonald polynomials ob-
tained in [16] have direct analogs in the Koornwinder case, such as the face limit transitions [16,
Proposition 6.15], the creation formulas [16, Theorem 6.12] in terms of double affine Hecke alge-
bra Y-intertwiners, the orthogonality relations [16, Theorem 6.42], and (anti)symmetrisation [16,
Section 6.6]. We do not give the details here. The quasi-polynomial generalisations of the sym-
metric Macdonald—Koornwinder polynomials will be the topic of an upcoming paper.

5 The quasi-polynomial representation
as Y -parabolically induced module

In this section, O is a W-orbit in F and t € Typ. Then spot € spTp = Lo with Lo the
affine subtorus of T defined by (4.3) and s» given by (3.39). Recall the definition of the subset
I(0) C {1,...,r} from Definition 3.8.

Lemma 5.1. The H-module (F[O],ﬂf)) is cyclic with cyclic vector <. Furthermore,
ﬁ?(Ti)xco = ki, i€ I(0),
T2 (YMz = (sot) Ha”, e Q. (5.1)
Proof. This follows immediately from Corollary 3.16 and the fact that x$ = k; fori € 1(0). W

Lemma 5.1 prompts the following definition.

Definition 5.2. We write Hyp[Y] for the subalgebra of the affine Hecke algebra H = H (k)
generated by Ho o and Fy [QV].

By Lemma 5.1, F2° is a one-dimensional Hg o[Y]-submodule of (F[O],7{| Ho, olv]), with
the action defined by the unique linear character Qto : HyolY] — F satisfying

((T) =k  foriel(0),

C(YH*) = (sot)™  forpe@. (5:2)
The existence of the linear character ¢(C: Hoo[Y] — F can also be established without refer-
ence to Lemma 5.1 using the Bernstein presentation of Hyo[Y] C H in terms of the algebraic

generators T, i € 1(0), and Y*, € QY. From now on, we write F19 for the one-dimensional
Hy o]Y]-representation with representation map ¢C.
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Proposition 5.3. We have a unique surjection of H-modules

Ind},goqo[y} (F1?) — (F[O],7})

mapping 1 @, [v] 19 to 2. It is an isomorphism when g (c©) # 0 (i.e., when I(O) = J(O)).

Proof. The first statement is immediate from Lemma 5.1.
In view of the PBW theorem for H,

{.%'ATU ®H0,O[Y] 1? ’ NS Qv, (NS W(gg}
is a F-basis of Indlgmo[y] (Fl?) This is mapped to
{n?w’\ﬂco IANe@Y,ve W(?}

by Corollary 3.16, which is a basis of F[O] when «q (CO) # 0 by Corollary 3.9. [

Remark 5.4. For an associative F-algebra A, denote by mody4 the category of left A-modules.
The image of Indﬂlﬂ}0 olY] (Fl? ) under the restriction functor

Resﬁgx : mody — modgx

is isomorphic to Indgoxo (Flo) because Indg0 olY] (Fl? ) is already generated by 1? as a HX-
module and {to | Hoo 18 the trivial linear character of Hy ». Hence Proposition 3.10 follows from
Proposition 5.3 by applying the restriction functor Resﬂgx.

We finish this section by realising (F[(’)], 7o ) as a Y-parabolically induced H-module when
ag(cO) =0. For y € F and w € W, set

ne(a(wy));ne(a(y)) no(a(wy));no(a(y))

ko(y) == [] ko ke ,

aeég

which is well defined since the product involves integer powers of the multiplicity parameters.
Indeed, this follows from the observation that

Kuww (y) = Fuw (w'y) ku (y) (5.3)

for w,w’ € W and the formulas

ks, () ko Oy (y) £,
s (y) = 2
) if ai(y) =0

fori=1,...,r and

Hael’[(sq,) k;ne(a(y))k;no(a(y)) if aO(y) 7& 0
; . 0 (5.5)

kso(y) = , kgne(a(y))k;no(a(y))
2

Haeneson e

which in turn follow by a computation in the spirit of Lemma 4.7.

The following result extends Lemma 5.1 (see [16, Lemma 5.11] and [16, Proposition 5.29]).
Recall the definition of the duality anti-algebra isomorphism ¢ = §.: H — H with inverse 6 = o
from Section 2.5.
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Proposition 5.5. We have

g (g(T])):ECO Ea].xco for j € J(O),
g (g(Tw—l))ZEc = ky (CO):L'“’CO + Lo.t. for w e W©. (5.6)

¢]

Note that for j € I(O) we have g(T]) =T} and Eaj = kj, so the first line of (5.6) is consistent
with the first line of (5.1). Before proving Proposition 5.5, let me explain how it leads to the
interpretation of (F[O], ) as a Y-parabolically induced H-module.

Consider the following algebras:

e the subalgebra Hp of H = H(k), generated by T;, j € J(O),
e the subalgebra HY := §(Hp) of HY,
e the subalgebra Ho [X] of H, generated by Ho and F [QY],
o the subalgebra H)[Y] := g(fI@ [X]) of H.
Note that
H)=Hyo and HYHY]=HyolY]  when ag(c?) #0.
On the other hand, if ag(c?) = 0, then HJ[Y] is generated as algebra by Hyo[Y] and
§(Ty) =Y % Tox—¢" (5.7)

(the equality in (5.7) follows from the fact that ve' =TT, ,)- In this case, HY[Y] no longer is
a subalgebra of H.

Recall the linear character (£ : Hyo[Y] — F, defined by (5.2). By Lemma 5.1 and Proposi-
tion 5.5, we can define the following extension of (© to a linear character of H (59 [Y], which we
again denote by ¢°.

Definition 5.6. We write (¥ : HS[Y] — F for the unique linear character of H)[Y] satisfying

CG(T)) =kay,  for j € J(0),
(F(YH) = (sot) " for pe Q.

So if ag (CO) =0, then (P is characterised by (5.2) and the formula

€ (3(Ty)) = kay = uy.

The existence of the linear character ¢ : H, (59 [Y] — F can be proven without referring to the quasi-
polynomial representation, but by using instead that H, g Y] = g(f]@ (X ]) and the Bernstein-type
presentation of Hp[X] involving the cross relations (2.19) for j € J(O) and p € QY with k
replaced by k. It is discussed in detail in [16, Section 3.2] when k € K™, in which case the
duality anti-algebra involution does not affect the multiplicity parameters.

Definition 5.7. We write F1¥ for the one-dimensional H%[Y]—module with representation
map Cto , and
O ._ H o
My = Inng[Y] (F1y)

for the resulting induced H-module.
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Note that MY = Indﬂlﬂll,0 olY] (Flg9 ) when ag (co) # 0, which is the induced H-module appear-
ing in Proposition 5.3.
We denote the canonical cyclic vector of MY by
O ._ @]
The following theorem extends [16, Theorem 4.5 (2)] to multiplicity parameters in k.
Theorem 5.8. With the above notations and conventions, we have a unique isomorphism
ME 5 (FIO)x0)
of H-modules mapping 19 to 2
Proof. By Lemma 5.1 and the first line of (5.6), we have a unique epimorphism
MY — (F[O], 7)) (5.8)
of H-modules mapping 1¢ to 2. By the PBW theorem for H,
{a;“TT g lpeqy, ueWo,weWO}
is a basis of H, and hence {5 w1V HS[Y] | w € WO} is a F-basis of H/HS[Y]. The resulting
F-basis {(5 o)1 [ w € WO} of M? is mapped by the epimorphism (5.8) to
{7Tt( _1)C |w€Wo},
which is a basis of F[O] due to the second line of (5.6). Hence the map (5.8) is an isomor-

phism. |

Proof of Proposition 5.5. First line of (5.6). By Lemma 5.1, it suffices to check it for j =0
when ag (CO) = 0, which we assume from now on.
By (5.7) and Lemma 5.1, we have

(@]

7O (5(T; )2 = (sot) ™ o 7 (T ). (5.9)

By the explicit expression (3.25) of f (Tp), we have, since ap(c?) = —1,
W?(To):nco = uoso,tz:co + (k‘o — kal)$co,

and hence
O

7rto (To_l)uvCO = 77,? (T() — ko + ko_l):cco = upSp ¢
By (2.2) and (3.22), we then have

_ (@] \Y (@] \Y O__ Vv
W?(TO 1)a:C = ugt? z°¢¢ = ugt? 2 ¥,

where we used that ¢© = spc® = s5,¢” + ¢V for the second equation. Returning to (5.9), we

conclude that

g (S(TO_ 1))1,(:0 = 5(_9“’Vu0xco
But 0 € J(O) by the assumption that ag(c®) =0, so

v @0 -1 -1

A —
=55 = Uy U,

So
by Corollary 4.8, and we conclude that
?(E(Tg))xco = urxco = anxco,
as desired.
Second line of (5.6). The proof uses the following lemma.
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Lemma 5.9. For j € {0,...,r} andy € O with j(y) > 0, we have
g (E(T,))xy = ks, (y)z*Y + Lo.t.

Proof. The proof we give here deviates from the proof of [16, Proposition 5.29]. We will make
use of Lemma, 4.3, which simplifies the computations.
(1) Consider first the case that j =i € {1,...,7}. By (5.4), we then have to show that

70(Ty)a? = el W) gsiv 4 o ¢ (5.10)
2

for y € O satisfying «a;(y) > 0.
For any y € O, we have

7O (T — GO (ag) Lo — eIt s 4 o (5.11)
2
by Lemmas 4.1 (1) and 4.3. If in addition a;(y
and a direct computation shows that n.(—a;(y)
Formula (5.10) for y € O satisfying o;(y) >
T,=T " +k— k.
(2) Consider now the case that j = 0. By (5.5), we then have to show that

> 0, then y < s;y by [16, Proposition 5.21]

Ne(ai(y)) and no(—i(y)) = —no(ai(y)).

then follows from (5.11) and the fact that

)
)
> 0

T2 (6(1)a? = (] k;"eW(y))kg”O(“(y”)xsoy+1.o.t. (5.12)
a€ll(sy)

for y € O satisfying ag(y) > 0.
Consider the element

Uy = x_angl = qglx‘PstwY_‘Pv cH

(the second equality follows from the fact that z% = qgé,:L‘_“’v and from formula (3.28) for w = 1).
For type C,, the element Uy was introduced by Sahi [14], who in particular showed that Uy
satisfies the Hecke relation (Uy — uo)(Up + ual) = 0 (but we are not going to need this here).
By formula (3.28) with w = 1, we have

3(Tp) =T a™*" = ¢ 'Y U . (5.13)

So it suffices to focus on the quasi-monomial expansion of 77,? (Ug 1) 2¥ and then use Corollary 4.6.
For the moment, suppose that y € O is arbitrary. We compute, using Lemma 4.1,

o (Ugl)xy = Tr?(TO)(xy‘Fo‘g) =GP (—ag)soy ($y+ag). (5.14)
By (3.22) and (3.23), we have

50,t (xy+°‘g) = 5 (xo‘g)so,t(xy) =2 0 (gy )P sy = =q, (gyt)‘pvfcsoy.
Substituting in (5.14) then gives

i (Ug )a" = ;" (gyt)” GF (—ao)a™.
Now —qq € <I>ar X Z, so by Lemma 4.3,

7Tt0 (Uo—l)xy — q;I(gyt)«zvkane(w(sw))uano(so(sw))xsoy ot
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Combined with (5.13) and Corollary 4.6, we conclude that

70 (5(T0))a¥ = q3252) (8sgyt)? (gyt)? kg "Wyl psoy o . (5.15)

oV
S0y
Jrom now on, we assume that ag(y) > 0. Then sys, = §5y by Lemma 4.7(2), hence
S5y =Sy~ . Furthermore,
\
gsoyt = SOgyt = qlp Stpgyt

in T, where we used in the first equality that t € To C T"©, hence we may replace Esoy With
any other affine Weyl group element mapping c© to sqy. Hence (gSOyt)ﬁov = q?P (gyt)_‘Pv. So the
leading coefficient in (5.15) reduces to

5;90 ko—ne(sO(soy)) —no(sO(SOy))_

Ug

Note that ¢(soy) = 2 — ¢(y) # 1 since ap(y) > 0, so by (4.2) the leading coefficient in (5.15)
reduces further to

5;9& kge(cp(y))ugo(so(y)).
To complete the proof of (5.12), it thus suffices to show that
55\/ _ kge(@(y))ugo(w(y)) H kze(a(y))k%)(a(y))‘ (5.16)
a€ll(sy)
By the definition of s,, we have

ne(a(y)aleY)
57 = [] (kak@y) 2 (kaka 1))

ae@é

no(a(y)a(eY)
2

Consider the decomposition of @F{ as the disjoint union of the subsets
ofm] = {a € ®f |a(p’) =m}, m € Z.
We have & [m] = @ unless m = 0, 1,2, and

(0] = ¢ \(sp), ¢ [1] =T(sp) \ {0}, 27[2] = {e}.

Hence

ne(a(y)) no(a(y))

v ne (2 (y)) no(e(y)) De \x\y))
59 = (kok,)” 2 (uou,)” 2 H (kak(a,1)) 2 (k%k(%,%)) :
a€ll(sy)

By (2.5), formula (5.16) immediately follows if ®( is not of type C,, r > 1. If &g is of type C,,
r > 1, then
(1)8_[1] =(sy) \ {p} = s(sp)
with IIs(s,) the positive short roots in ®, mapped to negative roots by s,. Hence k, = k% and
ke =ko 1) fora e @ [1] = II4(s,), and we conclude that
272

ne(a(y)) no(a(y))

(egkes 1))

52" = (kok, )™ W) (ugu, )1o#@) [T (kaker)

a€lls(sy)

= (koky )" ?0) (ugu, ) ?@) [ ki@l
a€lls(sy) ?

— kge(¢(y))ugo(¢(y)) H kge(a(y))k'rg(a(y))’

a€ll(sy)

as desired. [ |
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We can now complete the proof of the second line of (5.6) (and hence of Proposition 5.5)
as in [16, Proposition 5.29]: let w € W© and fix a reduced expression w = 5§, 84y *8j,- Then
M(w) = {bl, e ,bz} with

bi == sj, -+ Sjir1 i

(for ¢ = ¢ this should be read as by = a;,). Since w € WY, we have w®5 C ®F with ®f
defined by

dh ::q>+m< &y Za]),

and hence b; € &1\ <I>z,5 for i =1,...,£. Since ¢© € C9, it follows that
a; (sz‘+1 T Sjeco) = b; (CO) >0
fori=1,...,¢. Hence
70 (8(Ty1))a " = 70 (3(Ty,)) -+ (3(L5,)) 27 = ko (e7)a"*” +Lo.t.

by Lemma 5.9 and (5.3). This completes the proof of the second line of (5.6) (and hence of
Proposition 5.5). [
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