|
SIGMA 21 (2025), 087, 18 pages
https://doi.org/10.3842/SIGMA.2025.087
Bilateral Two-Parameter Mock Theta Functions and Related Applications
Chun Wang
Department of Mathematics, Shanghai Normal University, Shanghai, 200234, P.R. China
Received January 20, 2025, in final form October 06, 2025; Published online October 17, 2025
Abstract
In this paper, we investigate new relationships for bilateral series related to two-parameter mock theta functions, which lead to many identities concerning the bilateral mock theta functions. In addition, interesting relations between the classical mock theta functions and the bilateral series are also concluded.
Key words: mock theta functions; theta series; bilateral series; Appell-Lerch sums.
pdf (396 kb)
tex (21 kb)
References
- Andrews G.E., On a transformation of bilateral series with applications, Proc. Amer. Math. Soc. 25 (1970), 554-558.
- Andrews G.E., Berndt B.C., Ramanujan's lost notebook. Part II, Springer, New York, 2009.
- Andrews G.E., Garvan F.G., Ramanujan's ''lost'' notebook. VI. The mock theta conjectures, Adv. Math. 73 (1989), 242-255.
- Andrews G.E., Hickerson D., Ramanujan's ''lost'' notebook. VII. The sixth order mock theta functions, Adv. Math. 89 (1991), 60-105.
- Bailey W.N., On the basic bilateral hypergeometric series ${}_2\Psi_2$, Quart. J. Math. Oxford Ser. 1 (1950), 194-198.
- Bajpai J., Kimport S., Liang J., Ma D., Ricci J., Bilateral series and Ramanujan's radial limits, Proc. Amer. Math. Soc. 143 (2015), 479-492, arXiv:2202.12141.
- Berndt B.C., Ramanujan's notebooks. Part III, Springer, New York, 1991.
- Berndt B.C., Chan S.H., Sixth order mock theta functions, Adv. Math. 216 (2007), 771-786.
- Bringmann K., Folsom A., Ono K., Rolen L., Harmonic Maass forms and mock modular forms: Theory and applications, Amer. Math. Soc. Colloq. Publ., Vol. 64, American Mathematical Society, Providence, RI, 2017.
- Bringmann K., Ono K., The $f(q)$ mock theta function conjecture and partition ranks, Invent. Math. 165 (2006), 243-266.
- Bringmann K., Ono K., Dyson's ranks and Maass forms, Ann. of Math. 171 (2010), 419-449.
- Choi Y.-S., The basic bilateral hypergeometric series and the mock theta functions, Ramanujan J. 24 (2011), 345-386.
- Dyson F.J., Some guesses in the theory of partitions, Eureka 8 (1944), 10-15.
- Frye J., Garvan F., Automatic proof of theta-function identities, in Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, Texts Monogr. Symbol. Comput., Springer, Cham, 2019, 195-258, arXiv:1807.08051.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
- Gordon B., McIntosh R.J., Some eighth order mock theta functions, J. London Math. Soc. 62 (2000), 321-335.
- Gordon B., McIntosh R.J., Modular transformations of Ramanujan's fifth and seventh order mock theta functions, Ramanujan J. 7 (2003), 193-222.
- Gordon B., McIntosh R.J., A survey of classical mock theta functions, in Partitions, $q$-Series, and Modular Forms, Dev. Math., Vol. 23, Springer, New York, 2012, 95-144.
- Gu N.S.S., Hao L.-J., On some new mock theta functions, J. Aust. Math. Soc. 107 (2019), 53-66.
- Hickerson D., A proof of the mock theta conjectures, Invent. Math. 94 (1988), 639-660.
- Hickerson D., Mortenson E., Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I, Proc. Lond. Math. Soc. 109 (2014), 382-422, arXiv:1208.1421.
- Hikami K., Transformation formula of the ''second'' order Mock theta function, Lett. Math. Phys. 75 (2006), 93-98, arXiv:math-ph/0604007.
- Hu Q., Song H., Zhang Z., Third-order mock theta functions, Int. J. Number Theory 16 (2020), 91-106.
- Hu Q., Zhang Z., On generalizations of theorems involving the third-order mock theta functions, Proc. Amer. Math. Soc. 148 (2020), 125-132.
- Kang S.-Y., Mock Jacobi forms in basic hypergeometric series, Compos. Math. 145 (2009), 553-565, arXiv:0806.1878.
- Mc Laughlin J., Mock theta function identities deriving from bilateral basic hypergeometric series, in Analytic Number Theory, Modular Forms and $q$-Hypergeometric Series, Springer Proc. Math. Stat., Vol. 221, Springer, Cham, 2017, 503-531, arXiv:1906.11997.
- McIntosh R.J., Second order mock theta functions, Canad. Math. Bull. 50 (2007), 284-290.
- McIntosh R.J., The $H$ and $K$ family of mock theta functions, Canad. J. Math. 64 (2012), 935-960.
- Mortenson E., On the dual nature of partial theta functions and Appell-Lerch sums, Adv. Math. 264 (2014), 236-260, arXiv:1208.6316.
- Mortenson E., Ramanujan's radial limits and mixed mock modular bilateral $q$-hypergeometric series, Proc. Edinb. Math. Soc. (2) 59 (2016), 787-799, arXiv:1309.4162.
- Ramanujan S., The lost notebook and other unpublished papers, Narosa Publishing House, New Delhi, 1988.
- Song H., Wang C., Identities involving mock theta functions and theta functions, Proc. Amer. Math. Soc. 151 (2023), 3009-3022.
- Watson G.N., The final problem: An account of the mock theta functions, J. London Math. Soc. 11 (1936), 55-80.
- Watson G.N., The mock theta functions (2), Proc. London Math. Soc. 42 (1936), 274-304.
- Wei C., Yu Y., Hu Q., Two generalizations of Jacobi's triple product identity and their applications, Ramanujan J. 60 (2023), 925-937.
- Zhang W., Shi J., Terminating $q$-Whipple summation theorem with two integer parameters, Ramanujan J. 54 (2021), 137-146.
- Zhang Z., Song H., Some identities of certain basic hypergeometric series and their applications to mock theta functions, Indian J. Pure Appl. Math. 54 (2023), 1214-1225.
- Zwegers S., Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002, arXiv:0807.4834.
- Zwegers S., Mock $\theta$-functions and real analytic modular forms, in $q$-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), Contemp. Math., Vol. 291, American Mathematical Society, Providence, RI, 2001, 269-277.
|
|