Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 093, 19 pages      arXiv:2412.07955      https://doi.org/10.3842/SIGMA.2025.093

Stolz Positive Scalar Curvature Structure Groups, Proper Actions and Equivariant 2-Types

Massimiliano Puglisi a, Thomas Schick b and Vito Felice Zenobi c
a) Dipartimento di Matematica, Sapienza Università di Roma, Italy
b) Mathematisches Institut, Universität Göttingen, Germany
c) Istituto Nazionale di Alta Matematica, Piazzale Aldo Moro 5, 00185 Roma, Italy

Received February 11, 2025, in final form October 19, 2025; Published online October 30, 2025

Abstract
In this note, we study equivariant versions of Stolz' $R$-groups, the positive scalar curvature structure groups $R^{\rm spin}_n(X)^G$, for proper actions of discrete groups $G$. We define the concept of a fundamental groupoid functor for a $G$-space, encapsulating all the fundamental group information of all the fixed point sets and their relations. We construct classifying spaces for fundamental groupoid functors. As a geometric result, we show that Stolz' equivariant $R$-group $R^{\rm spin}_n(X)^G$ depends only on the fundamental groupoid functor of the reference space $X$. The proof covers at the same time in a concise and clear way the classical non-equivariant case.

Key words: positive scalar curvature; universal space for proper actions; spin bordism; fundamental groupoid.

pdf (595 kb)   tex (188 kb)  

References

  1. Davis J.F., Lück W., Spaces over a category and assembly maps in isomorphism conjectures in $K$- and $L$-theory, $K$-Theory 15 (1998), 201-252.
  2. Hanke B., Positive scalar curvature with symmetry, J. Reine Angew. Math. 614 (2008), 73-115, arXiv:math.GT/0512284.
  3. Mayer K.H., $G$-invariante Morse-Funktionen, Manuscripta Math. 63 (1989), 99-114.
  4. Milnor J., Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, NJ, 1965.
  5. Piazza P., Schick T., Rho-classes, index theory and Stolz' positive scalar curvature sequence, J. Topol. 7 (2014), 965-1004, arXiv:1210.6892.
  6. Piazza P., Schick T., Zenobi V.F., On positive scalar curvature bordism, Comm. Anal. Geom. 30 (2022), 2049-2058, arXiv:1912.09168.
  7. Piazza P., Schick T., Zenobi V.F., Mapping analytic surgery to homology, higher rho numbers and metrics of positive scalar curvature, Mem. Amer. Math. Soc. 309 (2025), v+145 pages, arXiv:1905.11861.
  8. Schick T., The topology of positive scalar curvature, in Proceedings of the International Congress of Mathematicians - Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, 1285-1307, arXiv:1405.4220.
  9. Schick T., Zenobi V.F., Positive scalar curvature due to the cokernel of the classifying map, SIGMA 16 (2020), 129, 12 pages, arXiv:2006.15965.
  10. Stolz S., Concordance classes of positive scalar curvature metrics, Preprint, University of Notre Dame, 1999, https://web.archive.org/web/20240430033820/https://www3.nd.edu/ stolz/concordance.ps.
  11. tom Dieck T., Orbittypen und äquivariante Homologie. I, Arch. Math. (Basel) 23 (1972), 307-317.
  12. tom Dieck T., Transformation groups, De Gruyter Stud. Math., Vol. 8, Walter de Gruyter & Co., Berlin, 1987.
  13. Wasserman A.G., Equivariant differential topology, Topology 8 (1969), 127-150.
  14. Xie Z., Yu G., Positive scalar curvature, higher rho invariants and localization algebras, Adv. Math. 262 (2014), 823-866, arXiv:1302.4418.
  15. Xie Z., Yu G., Zeidler R., On the range of the relative higher index and the higher rho-invariant for positive scalar curvature, Adv. Math. 390 (2021), 107897, 24 pages, arXiv:1712.03722.
  16. Zeidler R., Positive scalar curvature and product formulas for secondary index invariants, J. Topol. 9 (2016), 687-724, arXiv:1412.0685.

Previous article  Next article  Contents of Volume 21 (2025)