Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 094, 17 pages      arXiv:2301.13239      https://doi.org/10.3842/SIGMA.2025.094

Periodic $Y$-Systems and Nahm Sums: The Rank 2 Case

Yuma Mizuno
School of Mathematical Sciences, University College Cork, Western Gateway Building, Western Road, Cork, Ireland

Received June 04, 2025, in final form October 26, 2025; Published online November 03, 2025

Abstract
We classify periodic $Y$-systems of rank 2 satisfying the symplectic property. We find that there are six such $Y$-systems. In all cases, the periodicity follows from the existence of two reddening sequences associated with the time evolution of the $Y$-systems in positive and negative directions, which gives rise to quantum dilogarithm identities associated with Donaldson-Thomas invariants. We also consider $q$-series called the Nahm sums associated with these $Y$-systems. We see that they are included in Zagier's list of rank 2 Nahm sums that are likely to be modular functions. It was recently shown by Wang that they are indeed modular functions.

Key words: cluster algebras; $Y$-systems; Nahm sums.

pdf (510 kb)   tex (27 kb)  

References

  1. Andrews G.E., An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. USA 71 (1974), 4082-4085.
  2. Brüstle T., Dupont G., Pérotin M., On maximal green sequences, Int. Math. Res. Not. 2014 (2014), 4547-4586, arXiv:1205.2050.
  3. Calegari F., Garoufalidis S., Zagier D., Bloch groups, algebraic $K$-theory, units, and Nahm's conjecture, Ann. Sci. Éc. Norm. Supér. 56 (2023), 383-426, arXiv:1712.04887.
  4. Calinescu C., Milas A., Penn M., Vertex algebraic structure of principal subspaces of basic $A_{2n}^{(2)}$-modules, J. Pure Appl. Algebra 220 (2016), 1752-1784, arXiv:1402.3026.
  5. Cao P., Huang M., Li F., A conjecture on $C$-matrices of cluster algebras, Nagoya Math. J. 238 (2020), 37-46, arXiv:1702.01221.
  6. Cherednik I., Feigin B., Rogers-Ramanujan type identities and Nil-DAHA, Adv. Math. 248 (2013), 1050-1088, arXiv:1209.1978.
  7. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RR/0104151.
  8. Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121, arXiv:math.RA/0208229.
  9. Fomin S., Zelevinsky A., $Y$-systems and generalized associahedra, Ann. of Math. 158 (2003), 977-1018, arXiv:hep-th/0111053.
  10. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
  11. Fordy A.P., Marsh R.J., Cluster mutation-periodic quivers and associated Laurent sequences, J. Algebraic Combin. 34 (2011), 19-66, arXiv:0904.0200.
  12. Galashin P., Pylyavskyy P., The classification of Zamolodchikov periodic quivers, Amer. J. Math. 141 (2019), 447-484, arXiv:1603.03942.
  13. Garoufalidis S., Zagier D., Knots, perturbative series and quantum modularity, SIGMA 20 (2024), 055, 87 pages, arXiv:2111.06645.
  14. Hatayama G., Kuniba A., Okado M., Takagi T., Tsuboi Z., Paths, crystals and fermionic formulae, in MathPhys Odyssey, 2001, Prog. Math. Phys., Vol. 23, Birkhäuser, Boston, MA, 2002, 205-272, arXiv:math.QA/0102113.
  15. Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: Type $B_r$, Publ. Res. Inst. Math. Sci. 49 (2013), 1-42, arXiv:1001.1880.
  16. Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras II: Types $C_r$, $F_4$, and $G_2$, Publ. Res. Inst. Math. Sci. 49 (2013), 43-85, arXiv:1001.1881.
  17. Kac V.G., Peterson D.H., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984), 125-264.
  18. Kato A., Terashima Y., Quiver mutation loops and partition $q$-series, Comm. Math. Phys. 336 (2015), 811-830, arXiv:1403.6569.
  19. Keller B., On cluster theory and quantum dilogarithm identities, in Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2011, 85-116, arXiv:1102.4148.
  20. Keller B., Cluster algebras and derived categories, in Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2012, 123-183, arXiv:1202.4161.
  21. Keller B., The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. 177 (2013), 111-170, arXiv:1001.1531.
  22. Kuniba A., Nakanishi T., Spectra in conformal field theories from the Rogers dilogarithm, Modern Phys. Lett. A 7 (1992), 3487-3494.
  23. Lee C.-H., Nahm's conjecture and $Y$-systems, Commun. Number Theory Phys. 7 (2013), 1-14, arXiv:1109.3667.
  24. Mizuno Y., Difference equations arising from cluster algebras, J. Algebraic Combin. 54 (2021), 295-351, arXiv:1912.05710.
  25. Nagao K., Quantum dilogarithm identities, in Infinite Analysis 2010 - Developments in Quantum Integrable Systems, RIMS Kôky^uroku Bessatsu, Vol. B28, Research Institute for Mathematical Sciences (RIMS), Kyoto, 2011, 165-170.
  26. Nahm W., Conformal field theory and torsion elements of the Bloch group, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 67-132, arXiv:hep-th/0404120.
  27. Nakanishi T., Periodicities in cluster algebras and dilogarithm identities, in Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2011, 407-443, arXiv:1006.0632.
  28. Nakanishi T., Synchronicity phenomenon in cluster patterns, J. Lond. Math. Soc. 103 (2021), 1120-1152, arXiv:1906.12036.
  29. Nakanishi T., Stella S., Wonder of sine-Gordon $Y$-systems, Trans. Amer. Math. Soc. 368 (2016), 6835-6886, arXiv:1212.6853.
  30. Ravanini F., Valleriani A., Tateo R., Dynkin TBAs, Internat. J. Modern Phys. A 8 (1993), 1707-1727.
  31. Stembridge J.R., Admissible $W$-graphs and commuting Cartan matrices, Adv. Appl. Math. 44 (2010), 203-224.
  32. Tateo R., New functional dilogarithm identities and sine-Gordon $Y$-systems, Phys. Lett. B 355 (1995), 157-164, arXiv:hep-th/9505022.
  33. Vlasenko M., Zwegers S., Nahm's conjecture: asymptotic computations and counterexamples, Commun. Number Theory Phys. 5 (2011), 617-642, arXiv:1104.4008.
  34. Wang L., Identities on Zagier's rank two examples for Nahm's problem, Res. Math. Sci. 11 (2024), 49, 34 pages, arXiv:2210.10748.
  35. Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.
  36. Zamolodchikov A.B., On the thermodynamic Bethe ansatz equations for reflectionless $ADE$ scattering theories, Phys. Lett. B 253 (1991), 391-394.

Previous article  Next article  Contents of Volume 21 (2025)