|
SIGMA 21 (2025), 098, 26 pages arXiv:2504.07412
https://doi.org/10.3842/SIGMA.2025.098
Toda-Type Presentations for the Quantum K Theory of Partial Flag Varieties
Kamyar Amini a, Irit Huq-Kuruvilla b, Leonardo C. Mihalcea a, Daniel Orr a and Weihong Xu c
a) Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
b) Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Da-an, Taipei 106319, Taiwan
c) Division of Physics, Mathematics, and Astronomy, Caltech, 1200 E. California Blvd., Pasadena, CA 91125, USA
Received April 16, 2025, in final form November 10, 2025; Published online November 20, 2025
Abstract
We prove a determinantal, Toda-type, presentation for the equivariant K theory of a partial flag variety ${\rm Fl}(r_1, \dots, r_k;n)$. The proof relies on pushing forward the Toda presentation obtained by Maeno, Naito and Sagaki for the complete flag variety ${\rm Fl}(n)$, via Kato's ${\rm K}_T({\rm pt})$-algebra homomorphism from the quantum K ring of ${\rm Fl}(n)$ to that of ${\rm Fl}(r_1, \dots, r_k;n)$. Starting instead from the Whitney presentation for ${\rm Fl}(n)$, we show that the same pushforward technique gives a recursive formula for polynomial representatives of quantum K Schubert classes in any partial flag variety which do not depend on quantum parameters. In an appendix, we include another proof of the Toda presentation for the equivariant quantum K ring of ${\rm Fl}(n)$, following Anderson, Chen, and Tseng, which is based on the fact that the ${\rm K}$-theoretic $J$-function is an eigenfunction of the finite difference Toda Hamiltonians.
Key words: quantum K theory; partial flag varieties; Toda lattice.
pdf (564 kb)
tex (35 kb)
References
- Anderson D., Chen L., Tseng H.-H., On the quantum K-ring of the flag manifold, arXiv:1711.08414.
- Anderson D., Chen L., Tseng H.-H., On the finiteness of quantum K-theory of a homogeneous space (with an appendix by Hiroshi Iritani), Int. Math. Res. Not. 2022 (2022), 1313-1349, arXiv:1804.04579.
- Bertram A., Quantum Schubert calculus, Adv. Math. 128 (1997), 289-305, arXiv:alg-geom/9410024.
- Bertram A., Ciocan-Fontanine I., Fulton W., Quantum multiplication of Schur polynomials, J. Algebra 219 (1999), 728-746, arXiv:alg-geom/9705024.
- Buch A.S., Chaput P.-E., Mihalcea L.C., Perrin N., Positivity in minuscule quantum K theory, arXiv:2205.08630.
- Buch A.S., Chaput P.-E., Mihalcea L.C., Perrin N., A Chevalley formula for the equivariant quantum $K$-theory of cominuscule varieties, Algebr. Geom. 5 (2018), 568-595, arXiv:1604.07500.
- Buch A.S., Mihalcea L.C., Quantum $K$-theory of Grassmannians, Duke Math. J. 156 (2011), 501-538.
- Chaput P.-E., Perrin N., Rationality of some Gromov-Witten varieties and application to quantum $K$-theory, Commun. Contemp. Math. 13 (2011), 67-90, arXiv:0905.4394.
- Chow C.H., Leung N.C., Quantum $K$-theory of $G/P$ and $K$-homology of affine Grassmannian, arXiv:2201.12951.
- Etingof P., Whittaker functions on quantum groups and $q$-deformed Toda operators, in Differential Topology, Infinite-dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, Vol. 194, American Mathematical Society, Providence, RI, 1999, 9-25, arXiv:math.QA/9901053.
- Fulton W., Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), 381-420.
- Fulton W., Lascoux A., A Pieri formula in the Grothendieck ring of a flag bundle, Duke Math. J. 76 (1994), 711-729.
- Gerasimov A., Lebedev D., Oblezin S., On $q$-deformed ${\mathfrak{gl}}_{l+1}$-Whittaker function. I, Comm. Math. Phys. 294 (2010), 97-119, arXiv:0805.3754.
- Givental A., On the WDVV equation in quantum $K$-theory, Michigan Math. J. 48 (2000), 295-304, arXiv:math.AG/0003158.
- Givental A., Lee Y.-P., Quantum $K$-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math. 151 (2003), 193-219, arXiv:math.AG/0108105.
- Gorbounov V., Korff C., Quantum integrability and generalised quantum Schubert calculus, Adv. Math. 313 (2017), 282-356, arXiv:1408.4718.
- Gu W., Mihalcea L., Sharpe E., Xu W., Zhang H., Zou H., Quantum K theory rings of partial flag manifolds, J. Geom. Phys. 198 (2024), 105127, 30 pages, arXiv:2306.11094.
- Gu W., Mihalcea L., Sharpe E., Zou H., Quantum K theory of symplectic Grassmannians, J. Geom. Phys. 177 (2022), 104548, 38 pages, arXiv:2008.04909.
- Gu W., Mihalcea L.C., Sharpe E., Xu W., Zhang H., Zou H., A Nakayama result for the quantum K theory of homogeneous spaces, Épijournal Géom. Algébrique, to appear, arXiv:2507.15183.
- Gu W., Mihalcea L.C., Sharpe E., Xu W., Zhang H., Zou H., Quantum K Whitney relations for partial flag varieties, arXiv:2310.03826.
- Gu W., Mihalcea L.C., Sharpe E., Zou H., Quantum K theory of Grassmannians, Wilson line operators and Schur bundles, Forum Math. Sigma 13 (2025), e140, 38 pages, arXiv:2208.01091.
- Huq-Kuruvilla I., Quantum K-Rings of partial flag varieties, Coulomb branches, and the Bethe ansatz, arXiv:2409.15575.
- Huq-Kuruvilla I., Relations in twisted quantum K-rings, arXiv:2406.00916.
- Ikeda T., Iwao S., Maeno T., Peterson isomorphism in $K$-theory and relativistic Toda lattice, Int. Math. Res. Not. 2020 (2020), 6421-6462, arXiv:1703.08664.
- Ikeda T., Mihalcea L.C., Naruse H., Factorial $P$- and $Q$-Schur functions represent equivariant quantum Schubert classes, Osaka J. Math. 53 (2016), 591-619, arXiv:1402.0892.
- Iritani H., Milanov T., Tonita V., Reconstruction and convergence in quantum $K$-theory via difference equations, Int. Math. Res. Not. 2015 (2015), 2887-2937, arXiv:1309.3750.
- Kapranov M.M., On the derived category of coherent sheaves on Grassmann manifolds, Math. USSR-Izv. 24 (1985), 183-192.
- Kato S., On quantum $K$-groups of partial flag manifolds, arXiv:1906.09343.
- Kato S., Loop structure on equivariant $K$-theory of semi-infinite flag manifolds, Ann. of Math. 202 (2025), 1001-1075, arXiv:1805.01718.
- Koroteev P., Pushkar P.P., Smirnov A.V., Zeitlin A.M., Quantum K-theory of quiver varieties and many-body systems, Selecta Math. (N.S.) 27 (2021), 87, 40 pages, arXiv:1705.10419.
- Kouno T., Lenart C., Naito S., Sagaki D., Quantum $K$-theory Chevalley formulas in the parabolic case (with an appendix joint with Weihong Xu), J. Algebra 645 (2024), 1-53, arXiv:2109.11596.
- Kouno T., Naito S., Borel-type presentation of the torus-equivariant quantum K ring of flag manifolds of type C, arXiv:2410.10575.
- Lam T., Li C., Mihalcea L.C., Shimozono M., A conjectural Peterson isomorphism in $K$-theory, J. Algebra 513 (2018), 326-343, arXiv:1705.03435.
- Lascoux A., Anneau de Grothendieck de la variété de drapeaux, in The Grothendieck Festschrift, Vol. III, Progr. Math., Vol. 88, Birkhäuser, Boston, MA, 1990, 1-34.
- Lee Y.-P., Quantum $K$-theory. I. Foundations, Duke Math. J. 121 (2004), 389-424, arXiv:math/0105014.
- Lenart C., Maeno T., Quantum Grothedieck polynomials, arXiv:math.CO/060823.
- Lenart C., Naito S., Sagaki D., A general Chevalley formula for semi-infinite flag manifolds and quantum $K$-theory, Selecta Math. (N.S.) 30 (2024), 39, 44 pages, arXiv:2010.06143.
- Lenart C., Naito S., Sagaki D., Mihalcea L.C., Xu W., Quantum K-theoretic divisor axiom for flag manifolds, arXiv:2505.16150.
- Maeno T., Naito S., Sagaki D., A presentation of the torus-equivariant quantum $K$-theory ring of flag manifolds of type $A$, Part I: The defining ideal, J. Lond. Math. Soc. 111 (2025), e70095, 43 pages, arXiv:2302.09485.
- Maeno T., Naito S., Sagaki D., A presentation of the torus-equivariant quantum $K$-theory ring of flag manifolds of type $A$, Part II: quantum double Grothendieck polynomials, Forum Math. Sigma 13 (2025), e19, 26 pages, arXiv:2305.17685.
- Mihalcea L.C., Giambelli formulae for the equivariant quantum cohomology of the Grassmannian, Trans. Amer. Math. Soc. 360 (2008), 2285-2301, arXiv:math.CO/0506335.
- Mihalcea L.C., Naruse H., Su C., Left Demazure-Lusztig operators on equivariant (quantum) cohomology and K-theory, Int. Math. Res. Not. 2022 (2022), 12096-12147, arXiv:2008.12670.
- Sinha S., Zhang M., Quantum $K$-invariants via Quot schemes I, arXiv:2406.12191.
|
|