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Abstract. We prove a determinantal, Toda-type, presentation for the equivariant K theory
of a partial flag variety Fl(rq,...,7%;n). The proof relies on pushing forward the Toda
presentation obtained by Maeno, Naito and Sagaki for the complete flag variety Fl(n),
via Kato’s Ky (pt)-algebra homomorphism from the quantum K ring of Fl(n) to that of
Fl(ry,...,rg;n). Starting instead from the Whitney presentation for Fl(n), we show that
the same pushforward technique gives a recursive formula for polynomial representatives of
quantum K Schubert classes in any partial flag variety which do not depend on quantum
parameters. In an appendix, we include another proof of the Toda presentation for the
equivariant quantum K ring of Fl(n), following Anderson, Chen, and Tseng, which is based
on the fact that the K-theoretic J-function is an eigenfunction of the finite difference Toda
Hamiltonians.
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1 Introduction

Let Fl(n) denote the variety of complete flags in C", and let Fl(r,n) = Fl(r1,...,7x;n) be the
variety of partial flags. These are homogeneous under the group SL,(C), and the restriction
of this action to the maximal torus 7' C SL,(C) has finitely many fixed points, indexed by
a quotient of the symmetric group S,,. Denote by QK (FI(r,n)) the (equivariant, small) quan-
tum K ring associated to these varieties. This is an algebra over K7 (pt)[Q1, ..., Qk], and it has
a Kr(pt)[Q1, ..., Qr]-basis given by Schubert classes O indexed by the torus fixed points. The
quantum K multiplication was defined by Givental and Lee [14, 35] in terms of 3-point, genus 0,
K-theoretic Gromov—Witten (KGW) invariants. Denote by

OZSOC81C-~'CSkCSk+1:Cn

the sequence of tautological bundles in Fl(ry,...,rg;n); thus rank(S;) = r; for 0 < i < k41
with rg = 0 and 7541 = n.

While the computational foundations of the quantum K rings of (cominuscule) Grassmanni-
ans have been studied for some time now (see, e.g., [5, 6, 7, 8, 16, 43]), it is only in the last few
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years that advances have been made in our understanding of quantum K rings for other flag
varieties; see, e.g., [2, 17, 22, 31, 32, 37, 39, 40]. Many of these advances rely on the groundbreak-
ing works by Kato [28, 29], who proved the K-theoretic version of Peterson’s ‘quantum=affine’
statement [24, 33], relating the quantum K ring of a full flag variety (for an arbitrary complex
group G) to the K-homology of the corresponding affine Grassmannian; see also [9]. In particu-
lar, thanks to results in [39, 40] (proving conjectures in [36]), there are now presentations of the
quantum K rings by generators and relations for QK (F1(n)), and we have polynomial represen-
tatives (the quantum double Grothendieck polynomials) for Schubert classes. The generating
set of the presentation in [39] is in terms of the quantum quotients det S;/ det S;—1. We rewrite
this presentation in determinantal form in Theorem 2.3 below. This makes it easier to identify
it with the Toda presentation, which is obtained by taking symbols of the finite difference Toda
operators studied by Givental and Lee [15], and also by Anderson, Chen and Tseng in [1], see
also [30] and Appendix A below.

Our main result is to generalize the Toda presentation from QK (F1(n)) to one for the ring
QK (Fl(r,n)) associated to partial flag varieties. To state it, let

v =P vl ). 0<i<k

be formal variables and e; be the /-th elementary symmetric polynomial. Let T1,...,T, €
Kr(pt) be given by the decomposition of C" into one dimensional T-modules, that is, A*(C") =
eo(T,...,T,). To distinguish from multiplication in K7 (F1(r,n)), we denote the multiplication
in QK7 (Fl(r,n)) by *.

Theorem 1.1 (Theorem 3.4). The ring QK4 (F1(r,n)) is isomorphic to R[Q]/Jq, where
R=Kr(pt)[er (YD), .. erymr, (YD), 0 < j < K],

and Jg C R[Q] = R[Q1, ..., Q%] is the ideal generated by the coefficients of y in

*

Ay B
n 1 A1 B2
[Ma+wm-| -~ |
=1 1 Ap1 By
1 A
where

T A Q; T
A= I a+wv?)+8 Bi=yr = 11 Y,

=1 7=t

with the convention that Qg = 0.
More precisely, there exists a Kp(pt)[Q]-algebra isomorphism

U: R[Q]/Jg — QKp(FI(r1,...,m)),  ee(YD)) = AL(Sju1/S;))
forj=0,...;kandl=1,...,rj41 —rj.

Our proof is by decreasing induction on k. The initial case, ¥ = n — 1, is the main result
of [39], rewritten in determinantal form in Theorem 2.3 below. For the induction step, we use
a result of Kato [28] which states that there is a Kp(pt)-algebra homomorphism

QKr(Fl(n)) = QK7 (Fl(ry, ..., re;1));
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1, ré&{r,...,r},

A, (1.1)

O s m (O%), Q> {

which extends the usual projection map 7.: Kp(Fl(n)) — Kp(Fl(r,n)). Note that the classi-
cal 7, is not a ring map. (Kato’s result is for general complex, simple groups G.) We use this
to show that the ideal Jg is contained in the ideal of relations. For the specialization @); + 1
to be well defined, one needs to work with polynomials in Q1,...,Qn_1; see Section 2.2. Push-
ing forward the original Toda relations is not possible, due to poles at ); = 1. We had to
rewrite these relations, and additionally use an extra identity due to Maeno, Naito, and Sagaki
(cf. Proposition 2.7 below), in order for the push forward to be performed. Finally, it follows
from [19] that the ideal Jg coincides with the ideal of relations.

The same pushforward technique may be applied to the Whitney presentation, conjectured
in [17, 20], and for which a proof was recently announced in [22]; see also [18, 21] for the Grass-
mannian case. This is a presentation for QK (Fl(r,n)) with generators A¥(S;) and AY(S;/S;_1).
We prove in Proposition 4.1 that if one eliminates the variables corresponding to classes AF(S;)
in the Whitney presentation, then one recovers the Toda presentation.

Our methods also provide a different proof of the Whitney presentation for QK (Fl(r,n)),
once the Whitney presentation for QK,(F1(n)) (a special case of results from [22]) is assumed;
see Remark 4.2. The details of this proof are omitted, as they follow closely the proof of
Theorem 1.1.

In a further application of our technique, using the aforementioned Whitney presentation, we
rewrite the formula from [40] of the quantum double Grothendieck polynomial of the class of
a point in F1(n) [40] in terms of the classes A, (S;). Surprisingly, the resulting class is independent
of the quantum parameters ;. Pushing forward this class results in a polynomial representative
for the class of the (Schubert) point in any QK,(Fl(r,n)) which is independent of @;. The
outcome is the following.

Theorem 1.2 (Theorem 5.7). Let O"° € QK4 (Fl(r1,...,rg;n)) be the class of the Schubert
point. Then the following holds:

k 7mig1—1

ow =TI TI A8y,

i=1 j=r;
where e € Kr(pt) denotes the (class of the) 1-dimensional T-representation with weight €;.

In the usual (equivariant) K theory of F1(n) this follows from Fulton’s results in [11] showing
that the Schubert point X*° is the zero locus of a section of a vector bundle; see also [12,
Theorem 3|. Using the left divided difference operators in QK (F1(r,n)) defined in [42], this
results in a recursive formula for any Schubert class, giving polynomial representatives in terms
of exterior powers /\iSj which do not depend on quantum parameters. See Theorem 5.11.
Precursors of this ‘quantum=classical’ phenomenon for polynomial representatives of quantum
Schubert classes have been observed for (isotropic) Grassmannians [3, 4, 16, 25, 41], but to our
knowledge this is new for (partial) flag varieties. Recently, we learned that T. Kouno found
a similar phenomenon in the quantum K ring of the symplectic flag varieties Sps,, /B.

In Appendix A, we follow Anderson, Chen, and Tseng’s treatment in the unpublished note [1]
to give another proof of the Toda presentation for QK4 (F1(n)), independent of the one from [39].
The proof combines results of Givental and Lee [15], which states that the K-theoretic J-function
of Fl(n) is an eigenfunction of the first (finite difference) Toda Hamiltonian, with results of
Iritani, Milanov and Tonita [26], which relates this fact to relations in the quantum K theory
ring. We do not claim any originality in this argument, but we found it valuable to include it here,
as it puts together results from the followup papers [2] and [29]; see especially Proposition A.7.
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1.1 A logical roadmap

There are several recent results in the literature which inform the Toda and Whitney presenta-
tions we prove in this paper. Since we do not attempt to give self-contained proofs, we provide
next a roadmap of the logical implications we rely on, which a reader may find useful.

Our proofs of both the Toda presentation, and the Whitney presentation, for QK (Fl(r,n)),
from Theorem 3.4 (resp. (4.2), see Remark 4.2) rely on the following: the Toda (resp. Whit-
ney) presentation for QK,(F1(n)); Kato’s push forward homomorphism from (1.1); and the key
technical result from Proposition 2.7, proved in [39], which in turn relies on Kato’s work [29].

There are two proofs of the Toda presentation for QK,(F1(n)), one in [39], relying on [29], and
another which may be deduced from [1], relying on results from [15] and [26]; cf. Appendix A.

There are also two proofs of the Whitney presentation for QK4 (FI(n)). One was recently
announced by Hug-Kuruvilla [22] (for all rings QK4 (Fl(r,n))), and it uses the technique of
abelian-nonabelian correspondence, independent of Kato’s results. Another proof of the Whitney
presentation for QK,(F1(n)) is given in [20, Section 6]. It relies on the recent proof of the
quantum K divisor axiom [38], and ultimately on Kato’s results.

2 Preliminaries

2.1 Equivariant K theory of Grassman bundles

Let T be a linear algebraic group. For any projective T-variety Z, let K7(Z) be the equivariant
K-theory ring, defined as the Grothendieck ring of T-equivariant algebraic vector bundles. This
ring is an algebra over K7 (pt), the representation ring of T'. Let x,: K7 (Z) — K¢(pt) be the
pushforward map along the structure morphism.

For F — Z a T-equivariant vector bundle of rank rk F/, we denote by

Ay(E) =1+ y[E] + -+ y* [N FE] € Kp(2)[y]

the Hirzerbruch A, class of E/. This class is multiplicative for short exact sequences. In an abuse
of notation, we often write E for the class [E] in Kr(Z). Note that for a rank e equivariant
vector bundle F, and a character eX € Kp(pt),

Ay(€X @ E) = Ay (E) = Y _y'eX @ N'E.
1=0

As is customary, we will often remove the ® symbol from the notation.

Denote by 7: G(r, E) — Z the Grassmann bundle over Z. It is equipped with a tautological
sequence 0 - & — ™ E — Q — 0 over G(r, E). The following result follows from [27, Proposi-
tion 2.2], see also [21, Proposition 3.2 and Corollary 3.3]. (Kapranov proved this when Z = pt;
the relative version follows immediately using that 7 is a T-equivariant locally trivial fibration.)
We only state the special cases that will be used in this paper. See the above references for the
full generality.

Proposition 2.1 (Kapranov). There are the following isomorphisms of T-equivariant vector
bundles:

(1) for all i >0, £ > 0 the higher direct images, Rim. (/\Zﬁ) =0;

(2) forall ¢ >0,

NE, i=0,
0, i>0.

Rim (N'Q) = {
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2.2 (Equivariant) quantum K theory of flag varieties
Let r = (r1,...,7). We consider
X =Fl(r,n),

which parametrizes flags of vector spaces Fy C F» C --- C F, C C" with dimF; = r;
for 1 <i<k.

Let Mg, = Mom(X, d) be the moduli space of genus zero degree d stable maps to X
with n marked points. Given classes a1, ..., a, € Kp(X), define the K-theoretic Gromov—Witten
invariants by

(ay,...,an = X, (Hev (a; ) € Kr(pt).

Non-equivariant Gromov—Witten invariants are obtained by replacing 1" with the trivial group;
these Gromov—Witten invariants are integers.

For d = (dy,...,dy) € Ho(X,Z) = ZF, we write Q¢ for Hle Q;-ii. Here Q; corresponds to the
Poincaré dual of the first Chern class —c;(det S;). Following [14, 35], the T-equivariant (small)
quantum K theory ring is

QK7 (X) = Kr(X) @k, (pt) Kr(pt)[Q]

as a Kp(pt)[@]-module. It is equipped with a commutative, associative product, denoted by «,
which is determined by the condition

(o1 x 02,03)) = ZQd<0'1,O'2,O'3>d for all 01, 09,03 € Kp(X),

where

(01,02) =Y Q%o1,02)4

d

is the quantum K-metric.
It was proved in [2, 29] that for 01,09 € Kp(X), the product oq o can always be expressed
as a polynomial in @) with coefficients in K7 (X). It follows that

QKEY(X) == Kp(X) K (pt) K7 (pt)[Q]

is a subring of QK (X).
Let Y = Fl(rl, ey Ty TR ) and m: X — Y be the natural map. Let also T = (7"1, ceey
TiyeooyT ) The following theorern is a specialization of results proved in [28].

Theorem 2.2 (Kato). There is a surjective ring homomorphism
@: QKEV(X) — QKM (Y)

given by o — w0 for all o0 € Kp(X) and

QJH{Q” I7h i<i<k
1, j=1

It follows from Theorem 2.2 that Kato’s homomorphism extends naturally to
®: QKR (X) - QKPP (v), (2.1)

where loc(#) indicates localization at the multiplicative set generated by 1 — Q; for j # i.
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2.3 The Toda presentation for Fl(n)
= FI(1, n — 1;n) is equipped with tautological vector bundles
cS,.1CS, = (Cn,

The variety Fl(n)
0=8ScCcS& C---

where S; has rank r;. It can also be viewed as SL,, /B, where B C SL,, is a Borel subgroup.
Let T C B be a maximal torus in SL,,.

The following is the main result of [39] (see Remark 2.4 for more details). The relation (2.2)
can also be recovered from the connection between the J-function of the full flag variety and
the relativistic Toda lattice established by Givental and Lee in [15]. This observation was made
in the unpublished note [1] of Anderson-Chen-Tseng, but removed from the published version
of their paper. For the sake of completeness, we give a brief account in Appendix A.

Theorem 2.3. The ring QKp(Fl(n)) is isomorphic to R'[Q]/Jg,
ring KT(pt)[Pli,.. ,PE] and the ideal Jo C RQ] = R’[[Ql,...

coefficients y in

where R' is equal to the
,Qn—1] is generated by the

1

Ay (C) =

1+ ypt

yp1Q1
1+yﬁ1
1

yp2Q2
1+yp y&Qs

1

P
l+yp=, v

Pn in

1 1+yPn1

here Py =1 by convention, and \,(C") € Kr(pt)[y].
More precisely, there exists a Kr(pt)[Q]-algebra isomorphism ¥': R'[Q[/J; — QK1 (Fl(n))
that sends P; to detS; for all j =1,...,n

Remark 2.4. Theorem 2.3 is proved in [39] using results of Kato [29] based on the semi-infinite
flag variety. The connection between our statement of Theorem 2.3 and that of [39] is seen as
follows. Define the Toda polynomz’als T,gn) fork=1,...,n by

ZHP

O0=ip<-<ip<n s=1

These elements of Z[P{,..., PF][Q] (where Py = 1 and Q¢ = 0 by convention) are symbols of
the finite- dlfference Toda Hamiltonians [10] (see also [1, 13, 15, 30]).

T - (1= Qu 1)

Letting T(™ = Y7, k F where Ty = 1, we claim that T(™ (y) is equal to the determinant
of the matrix appearing in the Toda relations (2.2), namely,
*
1+ ypt yHQl
1 L+yp y&Q2
1 1 =
T (y) = +yP2 yP3Q3

1 1+y&1 Y Qn
1 1+ yPI:il

This is verified by showing that 7" satisfies the recursion

T(n=2)

7o) _ pln—1) <1+yPn> V21 Py
Pn—l

n 1

)

and then applying Lemma 2.6 below (with n playing the role of j there).
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Remark 2.5. Upon the specialization Q1 = - -- = Q1 = 0, the Toda presentation R'[Q]/J;, =
QK1 (F1(n)) becomes the Borel presentation

Kr(pt) [Pf, ..., PE]/J = Ky (Fl(n)),

where J is the ideal generated by the coefficients of y in
n—1
*
A€ = ] (1 +yPjsa/P)
§=0

and P; corresponds to detS; for all j =1,...,n.
Lemma 2.6. Suppose U; for 0 < j < k+1 and Aj, Bj for 0 < j < k are elements of

a commutative ring with 1 such that the U; satisfy the recursion

Ujy1 = A;U; — B;U; 1, 0<j<k
with initial conditions Uy =1, U_1 = 0. Then, for all0 < j < k+ 1, one has
Ay B;

1 A1 By
Uj = . (2.3)
1 Aj_g Bj—l

1 Aj,1

Proof. One simply expands along the last row or column to see that the determinant in (2.3)
satisfies the recursion. Observe that the initial values Uy = 1 and Uy = Ag agree. This completes
the proof. |

Before finishing this section, we record the following, which follows from [39, Proposition 5.2].
Proposition 2.7 (Maeno-Naito-Sagaki). In QK (Fl(n)), the following relations hold:
detSi*detSj/Sz':(1—Qi)det8j, 1§2<]§n

3 Toda-type presentations for the equivariant quantum
K theory of partial flag varieties

To begin, we observe that the Toda presentation in Theorem 2.3 can be rewritten as follows.
Corollary 3.1. The ring QK¢ (F1(n)) is isomorphic to R[Q]/Jq, where

R=Kr(pt)[Y©, ... ,y(=D],
and Jg C R[Q] = R[Q1,- .., Qn-1] is generated by the coefficients of y in

Ay(C™)—
0)_1 1)_Q *
1 1 2
1 14+yY W A gy 2
—2 1 —1 Qn—
1 L+yY 2 g— gy )
—1 1
1 1+yy® >717an1

with the convention that Qg = 0.
More precisely, there ezists a K (pt)[Q]-algebra isomorphism V: R[Q]/Jq — QK1 (Fl(n))
that sends Y'U) to Sjy1/Sj forj=1,...,n—1.
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Proof. Identifying Pjy1/P; with Y /(1 — Q;) gives an isomorphism between R[Q]/Jg and
R'[Q]/Jg. More precisely, define a Kz (pt)[Q] homomorphism ®: R'[Q]/J;, — R[Q]/Jq by

j—1 ;
y (@)

‘I’(Pj):rll_@,, 1<j<n-1
i=0 !

Note that in R[Q]/Jg, we have det C" =[] Y /(1 — @Q;), which implies all Y) are in-
vertible. Since the relations match, the homomorphism ¥ is well-defined and injective. Since
(1 —Q;)Pj41/Pj is sent to YU for 0 < j < n — 1, it is also surjective. Finally, the geometric
interpretation follows from Proposition 2.7. |

Next, we generalize Corollary 3.1 to all partial flag varieties utilizing Theorem 2.2, Proposi-
tion 2.7, and the Nakayama-type result from [20, 21].

Theorem 3.2. In QK (Fl(r,n))[y], the following relation hold:

*

Ay B
1 A1 By
Ay(C")— : (3.1)
1 Ax1 By
1 A
where
Qj

Bj = yrj“*rjl_iQ det(Sj+1/S5),  Aj = Ay(Sj1/Sj) + Bj.
J

Proof. Let X = Fl(rq,...,m;n), ¥ = Fl(rl,...,ﬂ,...,rk;n), and 7: X — Y be the natural
map. Let

0=85CS&S C - CSCS1=C"

be the sequence of tautological bundles on X. Note that all but S; are pulled back from Y.
With a slight abuse of notation, we denote the sequence of tautological bundles on Y by

OZSOC81C...Sz'_lC8i+1C"'CSkCSk+1:Cn.

Note that the elements By,...,B;—2, Bit1,...,Br as well as Aj...., A;—2, Ajy1,..., A in the
ring QK1 (X)[y] stay the same under pushforward along 7. By a slight abuse of notation, we also
think of them as elements of QK,(Y)[y].

By induction, we assume that relation (3.1) holds for X, i.e.,

A() By
1 Al By

B;
A; Bt
1 Ay

1 Ay
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holds in QKI})C(r) (X)[y] for 1 < j < k, and we will show that the (localized) Kato’s pushfor-
ward (2.1) of this relation gives relation (3.1) on Y.
Relation (3.1) on Y reads

Ay B
1 Ay Bs
B;
1 A, B!
A, (C") — i i-1 , 3.3
(") R (33
1 A
1 A1 By
1 A,
where

= ”*1_”‘11@51 det (Siy1/Si-1), Ai ) = M\y(Siy1/Si—1) + By,
- —1

regarded as elements in QKI})C(P)(Y)[y].

By the projection formula, to prove (3.3), it suffices to prove the pushforward along 7 of (3.2)
agrees with (3.3). We compare the two determinants by expanding along columns. Expanding
along the column containing B} ;, we have that the determinant in (3.3) is of the form

-Bl_xC'+A,_,xD' - FE';

expanding along the two columns containing B;_1 or B;, we have that the determinant in (3.2)
is of the form

*

Bi1 0 Bi1 0 Bi1 0
‘Ai_l B * 0 1 A *C + 0 1 * I
Ay Bl Ay Bl 1Al
+ ’ 1 A, *D — 0 1 *E + 0 1 * 0.

Note that C', D, E, F stay the same under the pushforward, and it is straightforward to check
that

' =C, D' =D, E =E.
The rest follows from Lemma 3.3 below. [ |

Lemma 3.3. The following hold:

*

A By

(a) s 0 1| = 1;
Bi, O

(b) 7« 0 1 =0;
Bi_1 0]

(C) T 21 A; - Bz{—l;
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(d) Assume that r; —ri_1 = 1. Then

*

_ /
=Ai1-

Proof. Note that X may be realized as the Grassmann bundle G(r; — r;_1,S;+1/S;—1) over Y,
with tautological sequence 0 — S;/S;—1 — Sit+1/Si—1 — Sit+1/Si — 0. It follows from Proposi-
tion 2.1 that

Ti+1—T4
TNy Sis1/S)) = D VN (Si1/Sic1),  m(A(Si/Si1)) = 1. (3.4)
j=0
For (a), (b), note that A;_1,B;—1 € QK?C@) (X), so we may use (2.1), and it follows that
F*Bi_l = O, 7T*Ai_1 =1.
Note that by Proposition 2.7 and Theorem 2.2, we have

det Sj *det(8j+1/8j) = (1 — Q]) det 8j+1 for 0 < j < /{, in QKT(X), (3.5)
det 51;1 * det(8i+1/81'71) = (1 — Qifl) det Si+1 in QKT(Y) (3.6)

To prove (c), we obtain from definition

=B 1A; = Bi_1 * (M\y(Si1/Si) + By)

=B,_1 % /\y(3i+1/8i) + Bi_1x B;. (37)

The element B; cannot be pushed forward, as it contains 1 — (); in the denominator. However,
we use (3.5) to calculate

Qi-1Qi
(1-Qi—1)(1 —Qy)

det S;
— oTiH1TTi—1(). . i+l
Y Qz—le det Si—l’

Tit1—Tie
Bi1x By =yttt

det(SH_l/Si) * det(Si/Si_l)

where the inverse is calculated in the quantum K ring of X. By (3.5) again,

det S; 11 det S;11 * det (Cn/Si_l . loc(?)
= K X
det S;_1 (1 — Qi_l)det Cn inQ T ( )’

and its pushforward is

det Sz'+1
det Sz'_l

e QKR ® (v, (3.8)

Note that by (3.6), expression (3.8) is equal to
det (Si-i—l/Si—l)

in QKR (Y),

1-Qi
Using (3.4) and (3.7), the projection formula, and Theorem 2.2, it follows that
Bii 0] R Qi-1
T 1 ! A, = Ty (Bi—l *Bi) =yt 1711_7@_1 det (SZ'+1/S¢_1) = 1{71.
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For (d), we calculate

*

1 A;

From (c), m«(A; x Bi—1) = B]_,, therefore it suffices to show that A; * A, (S;/S;—1) — B; may be
pushed forward, and that

Ty (Al * )\y(Si/Si—l) — Bz) = )\y(Si—l—l/Si—l)- (3.9)
The hypothesis r; — r;_; = 1 implies that S;/S;—1 is a line bundle, and that
Ai * )\y(Sl/Szfl) —

Qi

= A:‘/(‘S,H-l/‘SZ) * )\y(Sz/Sz_l) + yri+1_ri 1 Q

det( i+1/8i) * det(Si/Si_l).

By (3.4), we have
T ( Ay (Sit1/8i)) = Ny(Siv1/Siz1) —y" "=t det(Sip1/Si1), Te(Ay(Si/Si-1)) = 1.
By (3.5), we have

Qi
1—Q;
As in the proof of (c), this can be pushed forward and its pushforward is det(S;4+1/S;—1). Putting
these together, we have established (3.9). [

det 87;+1
det 87;71 '

det(S¢+1/Si) * det(Si/Sifl) = Ql(l — Qifl)

Recall that Y = (Yl(j), LYW ), 0 < j < k, are formal variables, e, denotes the /-th

YAl =Ty
elementary symmetric polynomiaul,J andj Ty,...,T, € Kp(pt) are given by the decomposition
of C™ into one dimensional T-modules, that is, A*(C") = ey(T1, ..., Ty).
Theorem 3.4. The ring QK (Fl(r,n)) is isomorphic to R[Q]/Jq, where
R=Kr(pt)[er (YD), ... er 0, (YD), 0 < j < K],

and Jo C R[Q] = R[Q1, .., Q] is the ideal generated by the coefficients of y in

A() By
n 1 Al BQ
[Ha+vm)—-f - - - , (3.10)
=1 1 Ax1 By
1 Ay
where

Ti+1—T; , Ti41-T;

T | B e |

(=1

with the convention that Qg = 0.
More precisely, there exists a Kp(pt)[Q]-algebra isomorphism

U: R[Q]/Jg — QK (F1(r1,...,7%))

that sends 64(Y(j)) to N (Sj41/S8;j) for j=0,...;k and L =1,...,1j41 — 1}
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Proof. It follows from Theorem 3.2 that U is a well-defined ring homomorphism. To prove there
are no other relations, we use [19, Theorem 4.1], which states that a complete set of relations in
the quantum (equivariant) K ring is obtained by quantizing any complete set of relations in the
ordinary (equivariant) K ring. Therefore, we need to show that when one specializes each Q;
to 0, the resulting ring is a presentation of Kp(F1(ry,...,7x)). The relations obtained this way
are the ‘Borel-type relations’ of the A, classes

Ay(S1) - Ay(Sa/S1) - -+ Ay (C"/Sp) = Ay (C). (3.11)
Note that the relations (3.11) can be obtained from the Whitney relations
Ay(Si) - A(Sig1/8i) = Ay(Sivr),

by eliminating the classes A,(S;) for 2 < ¢ < k. (The quantization of this statement is done in
the next section.) Finally, it is known that the Whitney relations form a full set of relations
in Kp(F1(ry,...,7,)). This is essentially done by Lascoux [34, Section 7], and we refer to [19,
Proposition 5.1] for a complete proof. |

We illustrate the proof of Theorem 3.2 with the following example.

Example 3.5. Let F1(4) — Gr(2,4) = F1(2;4) be the projection. In QK4 (F1(4)), we have the
following relation

*

Ao B1 0 0

s _ |1 A By 0
Ay (CH) = 0 1 A, B (3.12)
0 0 1 A;
where

Ag = Ay(S1), By =y @ det(Sy/S1),

1 -
A = /\y(SQ/Sl) + yl —QlQl det(SQ/Sl), By = yl _QQQQ det(83/82),
Ay = \y(S3/82) + yl QQQQ det(S3/S2), B3 = yl Q?ég det((C4/53),
A3 =3, (CY/83) + v ?3@3 det(C1/S5).

We push this relation forward to Gr(2,4) by pushing it forward to F1(2,3;4) and then pushing
forward from F1(2,3;4) to Gr(2,4). Let m: F1(4) — F1(2,3;4) be the projection. The relation
on F1(2,3;4) is given by

*

Ay By 0
M(CH =1 Ay B, (3.13)
0 1 Aj
where
Ay = Ay(82).

By expanding the determinant in (3.12) along the columns containing Ay and A;, we obtain

* *

_AO

*

AO B
1 A4

Ao Bs
1 A

By 0

2o (3.14)

n(C) =]
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By Lemma 3.3,

T “i“ ii*:A’, Ay =1
and | Af fg ‘*, Bf 123 }* will not change under pushforward by 7. Thus, by pushing forward (3.14)
we obtain

wey =iyt S [ L[

which is the expansion of (2) along the first column. So the relation in QK (F1(4)) pushes
forward to the relation in QK,(F1(2,3;4)).
Now let p: F1(2,3;4) — Gr(2,4) be the projection. In Gr(2,4) we have the following relation:

*

A/ B/l
weh =1 (3.15)
where
B =y? 9 det(C*/Sy), Al =X\, (C"/Sy) + g2 det(C*/Sy).
1-Q2 1-Q2

*

By Lemma 3.3, in (3.13), we have p, ’%2 ﬁg ’* =AY, pi| P Xs ’

‘Bl = B{ and Aj will not change
under the pushforward. Thus, (3.13) pushes forward to (3.15).

4 Whitney implies Toda

In this section, we consider a different presentation of the quantum K ring, named the quantum K
Whitney presentation. This presentation quantizes relations Ay (S;) - Ay (Si+1/Si) = A\y(Sit1) sat-
isfied by the tautological subbundles in K7 (Fl(r,n)). Informally, the Whitney presentation con-
tains more (geometric) information than the Toda presentation, as it involves more generators,
corresponding to the )\, classes of the tautological subbundles, and their quotients. In contrast,
the Toda presentation only involves the quotient bundles.

The quantization was conjectured in [17, 20|, generalizing the conjectures from [18] for
Grassmannians. These conjectures have been proved in [21] for Grassmannians, and in [20]
for F1(1,n — 1;n) case. The general case was recently announced in [22] using the abelian/non-
abelian correspondence. We note that the results in [22] are logically independent on those
from [40], which were used to obtain the Toda presentation in the previous section.

Our main result of this section is that eliminating the additional variables of the Whitney
presentation yields the Toda presentation. As an aside, we note that the proof of Theorem 3.4
can be easily modified to show that the quantum K Whitney presentation of Fl(r,n) follows
from that of Fl(n). We leave the details of this proof to the reader.

In what follows, T' can be a maximal torus in GL,,. Let

X0 =(xP . x9) ad YO =,y )
denote formal variables for j = 1,...,k and denote by X**t1 .= (T},... T},) the equivariant
parameters in Kp(pt). Let ey (X (j)) and ey (Y(j)) be the ¢-th elementary symmetric polynomials
in X and Y, respectively. Define the ring

k

S =Kr(pt)[er (X(j)), c ey (X(j)),el (Y(j)), N (Y(j))]jzl,
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and the ideal I C S[Q] = S[Q1, ..., Qk] generated by the coefficients of y in

rj T . Titl )
[T0+ox?) T (4 v®) - TT0+uxP*) (4.
(=1 =1 =1
) Tj41—Tj ) Tj ] Ti—1 )
g ] Yé”(H(HyXé”)—H<1+yXé”‘”)), J=1k
J =1 =1 =1

It was conjectured in [17, 20] and proved in [22] that there is an isomorphism of Kp(pt)[Q]-
algebras

o: SIQ)/Iq - QKy (Fi(r,n)) (4.2)
sending
eg(X(j)) = AY(S)) and eg(Y(j)) = AYSj41/S;).
We refer to this as the (quantum K) Whitney presentation.
Proposition 4.1. There is a natural isomorphism
S[Ql/Iq ~ R[Q]/ Jq,
G

obtained by eliminating the indeterminates X/). In particular, the Whitney relations from (4.1)
imply the Toda relations from (3.10).

Proof. Let
Tj41—T5 Q Tj+1—T5 )
H 1 + yY + Bj, Bj =yt %) H Yg(])’
=1 1-Q; 5

so that (4.1) becomes

Tj ' Tj-1 , Tj+1 ,
A [0+ yX7) - B, [T+ yXI 1) - [T+ yX Iy, (4.3)
=1 =1 /=1

Note that by Lemma 2.6, relations given by (4.3) are equivalent to those given by

Ao By
P 1 A B
H(1+yX§jH))— for 1 <j<k.
=1 1 A]',1 Bj
1 A
As a consequence, we can eliminate e (X(j)), ey (X(j)) for 2 < j < k, and be left with the
relation (3.10). [

Remark 4.2. We note that our methods from the previous section can be adapted easily to
show that ® is an isomorphism for all partial flag varieties if and only if it is an isomorphism
for Fl(n).

We illustrate Proposition 4.1 with the following two examples.
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Example 4.3. Consider FI(2) = P! with the tautological subbundle S; C C2. The QK Whitney
relations are given by

Ay(S1) * Ay (C?/S1) = Ay (C?) — yl_QQ((C2/81) * (Ay(S1) — 1)

After making the change of variables S; — P; and C2/S; +— (1 — Q)P»/ Py, then collecting the
coefficients of y and 2, one obtains the Toda relations for QK (Pl):

1-@Q

1

P+ = (C2, Py = A2C2.

Example 4.4. We now consider the case X = FI(3), equipped with the tautological sequence
S1 C Sy € C3. There are two QK Whitney relations

Ay(S1) % Ay(S2/S1) = Ay(S2) = 7 ?1@132/51 * (Ay(S1) = 1),

Q2
1—-Qo

Ay(82) x Ay (C?/S2) = Ay (C?) — y C3/Sy x (My(S2) — Ay(S1)).

From the first relation, we can write

M(82) = Ay (81 % 0 (S2/ 1) + - Co-Sa/S1 % (1,(81) - D),

which we can use to replace \,(S2) in the second relation. By some algebra, we obtain
3 2 @1
(1+yS1) * (1 +yS2/S1) » (14 yC’/S2) +y -0
Q2

=M (C) =y €S (L4 yS1) % (L+yS2/S1)
B @1Q2 Q2
(1-Q1)(1—-Q2) 1—@Q2

With the change of variables

S2/S1 xS1 (1 +yC?/Ss)

S xSy/81 % C3/Sy +y C3/8Sy (1 +ySy).

Si— P, S8 (1-Q1)P/P,  C Sy (1-Qo)Ps/Py
and equating the coefficients of y, y2, y® in the two sides to obtain
o coefficient of y: P14 (1 — Q1)P2/P1 + (1 — Q2)P3/ P> = C?;
e coefficient of y2: Py + (1 — Q1)P3/Py + (1 — Q2) P P3/ Py = N2C3;
e coefficient of y3: Py = A3C3.

These are the Toda relations for QK4 (F1(3)), calculated from (2.2).

5 Representatives for quantum K Schubert classes
in partial flag varieties

The goal of this section is to use the pushforward technique to obtain polynomial representatives
of Schubert classes in the equivariant quantum K rings of partial flag varieties. Our strategy is to
push forward the polynomials for the class of the point from QK (Fl(n)) to QK4 (Fl(r,n)), then
use the (left) divided difference operators defined in [42] in the rings QK4 (Fl(r,n)) to deduce
a recursive procedure giving the other polynomials. The left divided difference operators were
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also used by Maeno, Naito, and Sagaki [40] to prove that the quantum double Grothendieck
polynomials represent Schubert classes in the Toda presentation of QK4 (F1(n)).

We use a different generating set from loc. cit., the exterior powers of the tautological bundles,
thus our representatives live in the (quantum) Whitney presentation introduced in Section 4.
A key feature of our polynomials, and unlike those from [40], is that they do not involve quantum
parameters.

5.1 Preliminaries on Schubert classes
and quantum divided difference operators

We start with recalling some basic facts about the Schubert classes and quantum divided differ-
ence operators in the equivariant quantum K theory.

We need the formula for the class of the Schubert point, proved in [40], which we later use
to find formulae for the other Schubert classes. To this aim, we briefly recall the definition of
the Schubert basis in the quantum K rings.

Regard Fl(n) as SL,, /B, and let W := Ngr,, T/T ~ S,, be the Weyl group, equipped with the
length function ¢: W — N. It is a Coxeter group, generated by simple reflections s; = (4,7 + 1)
for 1 < i < n—1. Denote by wy € W be the longest element, so that dimFl(n) = £(wy).
Let Wy < W be the subgroup generated by the simple reflections s; so that ¢ is not among the
components of r, and let W* C W be the set of minimal length representatives for the cosets
of W/WT.

Set B~ = woBwy C SL,, the opposite Borel subgroup. For each w € W, the flag variety Fl(n)
has a T-fixed point e, := n,, B, where n,, € Ngi,,T/T is any representative of w. The (opposite)
Schubert cell is X%»° := B~.n,, B C Fl(n), and it is isomorphic to the affine space Adm Fl(n)=¢(w)
One can similarly define Schubert cells in any partial flag variety Fl(r,n); alternatively, the
Schubert cells in Fl(r, n) are the images of the Schubert cells in F1(n) under the (SL,-equivariant)
natural projection Fl(n) — Fl(r,n). The Schubert variety X" is the (Zariski) closure of the
corresponding Schubert cell. Inclusion of Schubert varieties give the Bruhat (partial) order on
the set W7,

uW' <oW' & X" D X" in Fl(r,n).

Now let O¥ € Kp(Fl(r,n)) be the K theory class given by the structure sheaf of X®. The
Schubert cells give a stratification of F1(n), and, more generally, of F1(r,n). Then the classes O"
form a basis for K7 (Fl(r,n)) over Ky (pt), when w varies in the quotient W/W,. This implies
(by definition) that the classes O" are a basis of QK4(F1(r, n)), over the ground ring K (pt)[Q].

As in [40], we identify Kr(pt) with the group algebra Z[P] = @y cpZeX of the weight lattice
P = Z;:ll Zw; of SL,, where w;,1 < i < n — 1 are the fundamental weights. We also set
wo =wy, =0,and ¢; = w; —wj;_1 for 1 < j <n.

In [42], left divided difference operators acting on QK4 (Fl(r,n)) (in fact on the equivariant
quantum K ring of any homogeneous space G/P) were constructed. These operators send
Schubert classes to Schubert classes, and were compatible with the quantum K product. We
recall next the salient facts, see Section 8.3 in loc. cit. for further details.

Regard Fl(r,n) as SL,, /P;, where P, the parabolic group stabilizing the identity partial flag.
Left multiplication by a representative n,, of an element w € W induces an automorphism of
Fl(r,n) which is equivariant with respect to the automorphism of T' given by t — n,tng!.
Pulling back along this automorphism of Fl(r, n) gives a ring automorphism w” of Kz (Fl(r,n)).
The following combines [42, Proposition 5.3, Lemma 5.4, and Proposition 5.5].

Proposition 5.1 (Mihalcea—Naruse—Su). The following hold:

1. wk(eXa) = e*®wl(a) for any eX € Kr(pt) and a € Kp(Fl(r,n)).
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2. wk is Kgy,, (Fl(r,n))-linear: for k € Kgr,,, (Fl(r,n)) and a € Kr(Fl(r,n)),

wl(k-a) = k- wk(a).

3. wl commutes with the natural projection m: Fl(n) — Fl(r,n):
wh (. (a)) = 7, (wL(a)), Va € Kp(Fl(n)).

In particular, the map w” on Kp(Fl(r,n)) is determined by the map on Kr(Fl(n)).

4. The automorphisms w' give an action of W on K¢ (Fl(r,n)). If s; € W is a simple
reflection, and O" € Kp(Fl(r,n), then

YO + (1 — e*)O%™  if s;uwWy < wWy,

ov otherwise,

sHOv) = {

where o is the simple positive root giving s;.

The equivariant quantum K theory is functorial for isomorphisms. Thus one may extend
the action of W to an action on QK¢ (Fl(r,n)) by Q[Q]-linear ring automorphisms. Define the
(quantum) left divided difference operators by

1

S l—e

0; : (id — e*aisL).

%

(In [42, equation (13)] this operator is denoted by dy.) These operators have the same proper-
ties as the ordinary Demazure operators, and they satisfy a Leibniz rule compatible with the
quantum K product. For reader’s convenience, we state these properties next, see [42, Proposi-
tion 8.3].

Proposition 5.2 (Mihalcea—Naruse—Su).

1. The quantum operators §; are Q[q]-linear, satisfy the braid relations, and (5;)* = &;.

2. For each w € WT,

w OFWeif i < w,

otherwise.

3. (Leibniz rule) For any a,b € QK4 (Fl(r,n)),

Si(axb) = 6;(a) b+ e sk (a) * 5;(b) — e “sF(a) x sE(b).

4. The operator 6; is a QKgp, (Fl(r,n))-module homomorphism, that is, for any k from
QKsgr,,, (Fl(r, n)) and n from QK (Fl(r,n)),

0i(k*xm) = Kk*xd0;(n).

Part (1) implies that for each w € W there are well defined operators d,, acting on quan-
tum K ring QK4 (Fl(r,n)). Furthermore, part (2) implies that if w € W is a minimal length
representative in its coset in W/Wy, then

O = Sy (0"07).
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5.2 Polynomial representatives

In this section, we use results of [40] to obtain a formula for the class of the Schubert point
in QK1 (F1(n)). Then we use Kato’s pushforward, and the left divided difference operators d,,
to obtain a recursive formula for the Schubert classes in any QK,(Fl(r,n)).

To start, note that, in geometric terms, the relations (4.1) are interpreted as follows (cf. [17,
20, 22)).

Theorem 5.3. For j =1,...,k, the following relations hold in QKp(X):
Ay(Sj) * Ay(Sjiv1/Sj)

O
:)\ 3 _ T‘+1T‘
y(SJ+1) y] JI_QJ

Proposition 5.4. The following holds in QK (Fl(n)):

NS =Y ( I ; —IQ]) <H*5j/sj1> (5.2)

JClk] \ 1<j<k jeJ
|J|=p Jg+led

det(Sj41/S5) * (Ay(Sj) = Ay(Sj-1))- (5.1)

for 0 < p <k <n, where x means the quantum K product.
Proof. We use double induction on p, k, with p = k = 0 case being clear. Assume that
/ 1 *
p — /S,
W= 3 < I Qj) (IT s:5-4)

JCIK] \1<j <K/ jeJ

for all (p', k") < (p, k), then considering the three cases for J C [k]: k ¢ J, k,k—1€ J, ke J
and k — 1 ¢ J, we have

Z( I 1_1Qj><H*3j/5j—1>

JCk] \ 1<j<k jer
\J=p JJtiet
= NSp_1 + S/Sp—1* (1 NS — _Ok-1 AP Sk—2>
1 —Qr—1 1— Qg1
= NPS,
where the last equality follows from the Whitney relations (5.2). |

After harmonizing conventions, and using Proposition 5.4, the following is a restatement
of [40, Proposition 3.1].

Corollary 5.5. In QK (Fl(n)), we have
n—l*
ovo = H A_l(e_G"’iSi).
i=1

We illustrate the corollary next.

Example 5.6. We take n = 2, thus F1(2) = P((CQ). Fix e1, es to be a basis for C2. For simplicity
we regard P! as GLy /B with T" = (C*)? acting naturally, and then restrict this action to SLo.
With these conventions, the Schubert point is X" = (eg), and the localizations of S = Op1(—1)
at the fixed points P({e;)), i = 1,2, are S|p((e,)) = . Then one easily checks that

oW =1 —e 8.
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Theorem 5.7. In QK (Fl(r,n)), we have

k rmig1—1

0w =TT I rile 8. (5.3)

i=1 j=r;

Proof. Let X =Fl(ry,...,1x;n), Y = Fl(rl, e Ty ,rk;n), and let 7: X — Y be the natural
projection. Corollary 5.5 implies that the claim is true for Fl(n). By induction, we assume
that (5.3) holds for X, and we compute its pushforward under 7 using Kato’s pushforward map
from Theorem 2.2. Note that all but the term including S; are pulled back from Y. By (5.1),
we have

A1 (676"’7'51‘) =X (efE"ﬂl Si—l) * A1 (676"77‘ Sl/Sz_l)
Qi—1
1-Qi
where we used (the A-ring formalism asserting) that A_;(eX® E) = A_x(F). Since the pushfor-

ward 7, (/\jSi/Si,l) =0 for any j > 0 by Proposition 2.1, m,A_1(e""=iS;) = A_1(e""iS;_1),
and the claim on Y follows from the projection formula. |

+ (—G_E"_j)Ti+1_ri det(Si/Sl;l) * ()\71(6_6”_]'51;1) — )\71(6_6”_3'81;2)),

We illustrate the formula in Theorem 5.7 in the case of Gr(2,4). The Schubert classes in
Gr(2,4) are typically indexed by partitions in the 2 x 2 square; the dictionary to translate into
the indexing by Weyl group elements is the following:

oW — Os:Wr 0 — osss2Wr

0(1,1) — OSlSQWr7 0(2,1) — OslsngWr, 0(2,2) — 052315352Wr'

Example 5.8 (Theorem 5.7 for Gr(2,4)). Denote by S the tautological subbundle. Using (for
instance) a localization argument, one calculates that

Ay(8) = (14 ye ) (1 + ye2)07 — ye? (1 4 ye?) O — yer O,
Thus for any weight
A 1(eXS) =1 —eXS + e A2S
can be expanded into a combination of Schubert classes. Then one checks directly that

A1(e728) x A_1(e78) = 022,

The relevant multiplications are

oW L o) — (1-— e63—62)(9(1) + e 4 gasmeepll) _ e 21)

OW O = (1 — =)L) 4 g8 021)

O L oY) _ gester—2a (L) _ gester—2an(21) _ gea—an(Ll) 4 ge3—a(21)
—e2a ) 4 ermap2) 4 o),

Next we state the main result of this section. Recall the Whitney presentation ®: S[Q]/Io —
QK1 (Fl(r,n))) from (4.2).

!These can be calculated for example with A. Buch’s Equivariant Schubert Calculator, available at https:
//sites.math.rutgers.edu/~asbuch/equivcalc/.
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Theorem 5.9. Letr = (r1,...,7). Under the isomorphism ®, the elements
k *Ti+1—*1
Gu(X) =071 <5w (H 11 A_l(een—jSi)»
i=1 j=r;
are sent to Wy-symmetric polynomials in the variables X9 for j =1,... k, such that

D(Gy(X))=0" € QK (Fl(r,n)).
Furthermore, the polynomials G,,(X) are independent of the Novikov variables Q; for 1 < i < k.

Proof. This follows from Proposition 5.2: polynomial representatives for all Schubert classes
can be obtained by applying the quantum left divided difference operators d; to the identity (5.3)
above. This process does not introduce any @’s. |

The proposition may be interpreted as saying that the same polynomials representing Schu-
bert classes in K7 (Fl(r,n)) also represent their quantizations in QK,(Fl(r,n)); of course, the
ideal of relations in QK1 (F1(r,n)) needs to be quantized.

We illustrate next the calculation of the polynomials representing Schubert classes in the ring

QK1 (Gr(2,4)).

Example 5.10. We use left divided difference operators to find polynomial representatives for
all Schubert classes in QK4 (Gr(2,4)), knowing from Theorem 5.7 the representative for the
Schubert point.

Recall that «; = ¢; — €;41, and denote by S the class of the tautological subbundle. First,
observe that &;(eX ® AFS) = §;(eX) ® A*S by Proposition 5.2 (4), and

eX, si(X) =X,
di(eX) = 1 — (e~ )1+(ay)
' eX (™) . , otherwise.
1—e
It follows that
e_kej /\kS, j?éz7 Z+17
0 =1, k=1
di <e—’“j AF 5) =" Feh =S
—e~(ateit) A2 G j=1, k=2,

R (1 e 4. pem kD) AR S =41, k> 1.
By Theorem 5.7, O?2) is equal to
Al1(e798) *¥ A1(e728) = (1—e IS +e 2 A2S) x (1 —e 28 +e 22 A% S).

We have that do ((9(2’2)) = 021, We now calculate 65 (0(2’2)) by means of the Leibniz rule from
Proposition 5.2. We obtain

O = \_(e718) % (1- e~(eta) A2 S),

(92 — 61 (0(2,1)) —1- (e—el—eg + e—62—63 + e—51—53) /\2 S + (6_61_62_63)5*/\28,

O = 53 (0@ = \_1(e7S),

oW =5 (O0D) =1 —e (@t A2

07 =5 (0W) = 1.
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Finally, we can rewrite the operators §; as operators p; acting on Z[Tlil, . ,T,fﬂ] by
_ T -Tins
Pi T, — Tia )

where s; replaces each T by Ty, (;), and further extend it to

SIQT=Z[er (X)), . en (X9),e1 (YD), ey, (VO)E_ Q)@ Z[TE, . T
by Z[el (X(j)), ce ey (X(j)),el (Y(j)), N (Y(j))];?:l [Q]-linearity. Given w € S,, with

reduced expression w = s;, ... s;,, we define

Pw = Piy - - - Piy-

Since the operators p; satisfy the braid relations, the operator p,, doesn’t depend on the choice
of reduced expression. We may restate Theorem 5.9 as follows.

Theorem 5.11. Forw € W, the isomorphism ®: S[Q]/Ig — QK1 (Fl(r,n)) sends the class of

(T 1T TH0-72,x0)

i=1 j=r; (=1
to Ov.

We have not seen similar polynomials in the study of quantum K theory of flag manifolds.

A Toda relations from finite difference operators
(after Anderson—Chen—Tseng)

The proof of the Toda relations in [39] relies on Kato’s earlier results [29]. For the quantum
K ring QK4 (F1(n)), there is another proof of these relations, using an argument combining the
results of Iritani, Milanov and Tonita [26] with results of Givental and Lee [15]. More precisely,
it is shown in [26] that the symbols of finite difference operators annihilating the K-theoretic J
function of a variety X give relations in the quantum K ring of X. Givental and Lee’s results from
loc. cit. imply that the K-theoretic J function of the complete flag variety is an eigenfunction
of the (finite difference) Toda Hamiltonians. This observation was made in the unpublished
note [1] of Anderson—Chen—Tseng, but removed from the published version of their paper. For
the sake of completeness, we give a brief account below, and in the process fill in some of the
details to make the argument complete.

We start with recalling the definition of the K-theoretic J-function of the complete flag
variety X = Fl(n). Denote by P; = A'S;; it is known that these line bundles algebra gen-
erate K7 (F1(n)) over Kp(pt); see, e.g., [19, Proposition 3.1]. Furthermore, the curve classes
associated to the Novikov variables (); are dual to the classes ¢; (/\’SZ?k ) For a fixed effective
(multi)degree d € Ha(X), let L be the cotangent line bundle at the unique marked point on the
moduli space Mo 1(X,d). Let also ¢%, ¢, denote Poincaré-dual bases for K1 (X). (For example,
one may take Schubert classes O%, and their duals — the ideal sheaves of the boundary of the
opposite Schubert varieties.) The small J-function of X, denoted by Jx, is defined by

In(Q;)
Ixla)= (- [[ " ZQd<1 b L> o
i do 94/ 0,1,d

We will explain later the meaning and the effect of the factor Piln(Qi)/ (9 We also note that the
presence of the prefactors (1 — ¢) and []; Pz-ln(Qi)/ () Varies in the literature. Our description
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agrees with the one used by Givental and Lee in [15], and corresponds to the function denoted
by J in [26].
We recall some basics on the formalism of difference operators. Consider commuting variables

q,T1,...,Tn, and define the difference operators
1
Ty = g™ % = Z H((lnq)wiami) .
k>0

(More generally, for a differential operator f, one defines the ¢-difference operator ¢' = ema)f —
>3320 71((Ing)f)’.) Note that

<1
)= 2 qana)eide) (5) = *ai,

k=0

which explains the ‘difference operator’ terminology. More generally, for any Laurent polynomial
in commuting variables x;, we have

Ef('xla"°7xia"°7xn):f(xla""qajia"'al‘n))

i.e., T; is an automorphism of the Laurent polynomial ring Z[ xlﬂ, ey xfl] We use this

expression to extend the definition of T; to any function in the indeterminates q, x1, ..., Tp.
Now consider the subring of Laurent polynomials

Zg5QE o Qi) = 2 et o]

—1%i41
T4

Ti = g Qi00ig@ 1%, (A1)

obtained by sending Q); — ¢ . The restriction of T; to this subring is given by

where quan are the difference operators on the subring in @;’s n(@;)
With that in mind, we can now explain the meaning of the factor P (@ . The difference
operators quan act on functions in @;’s, and one calculates that

6..
In(Q;) (¢’ Q;) Q)
q@i%:i (P In(q) ) — P W@ = P% P .

In(Q;)
In other words, the factor P @ should be regarded as a formal variable which transforms

according to the rule above under the difference operators.

The relations in the quantum K ring are given by the Hamiltonians of the finite difference
(or relativistic) Toda lattice. There is some ambiguity in the exact expressions for the Toda
Hamiltonians, since their construction depends on choices; see, e.g., [15, Remark 5]. We follow
here the approach from [13], but we will also need to make some changes of variables, in order
to fit with the conventions in our main reference [15]. For the convenience of the reader, we
briefly included some of the details below.

The Hamiltonians of the g-deformed type A Toda chain have the form

1-0i,—4y_,1 K
H= Y H< . 1) HT F=1...n, (4.2)

0=ip<---<ip<nl=1

where ¢ and z; are commuting variables, and T; = ¢%%:i is the ¢-difference operator above. It
was proved in [13] that the operators Hj are limits of Macdonald operators, and the latter are
known to commute. This implies that Hj also commute.
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As above, let Q; = ¢ 'a; 12,71, with Qo = Q,, = 0. Then, using (A.1), one can rewrite (A.2)
as

k
Hy = Z H QQu 1 1 P Hq_QilaQil qul_linFly k=1,...,n

O0=tp<---<1p<n =1 =1

1

Replacing ¢ by ¢~ *, we obtain

A SH | R R s “H Quta, ~u-1%a,

0=ip<---<ix<nl=1

k
_ Z Hqu‘zaQil_QilflaQilfl H(l o Qil_l)l—(silﬂ'l_l,l’ k= 1’ cem.

0=ip<-<ip<nl=1 =1

Remark A.1. The substitutions above ensure that the first Hamiltonian ffl agrees with the
one used in [15]. The substitution chosen in [1] produces similar operators, but with the g-shifts
and the Novikov terms in the opposite order.

The following key result of Givental and Lee [15, Theorem 2] shows that the J function is an
eigenfunction for Jpy(,).

Theorem A.2 (Givental-Lee). fflJFl(n) = C"Jpi(n)-
We also need the following lemma of Givental-Lee [15].

Lemma A.3 ([15, p. 9]). Let D be a difference operator commuting with H. Then, if J is an
eigenfunction of D modulo Q, then J is an eigenfunction of D whose eigenvalue is the same as
the one modulo Q.

From this, we deduce that Jpy(,) is an eigenfunction of the higher Toda Hamiltonians, using
their commutativity with H; and by computing their eigenvalues modulo Q).

Corollary A.4. For any 1 < k < n, the following holds:
HyJginy = AF(C™) Jpi(ny-

Proof. The case k = 1 is Theorem A.2. Suppose 2 < k < n. Since ﬁk commutes with ﬁl, we
need only verify that Jg(, is an eigenfunction of Hy modulo @, thanks to Lemma A.3.
To this end, we first observe

n(Q;)

ﬁlk:JFl(n) = I <(1 —q) HPi e ) + 0(Q:)

= ) H <(1 -q) l:[f’,-l?i%d + 0(Q)).

O=ip<--<ip<nl=1
Thus, modulo ), we have the eigenvalue equation

7,11

Hpm = Y.  []5=mm

P _
O=ig<<ip<ni=1 w1
<P1 Py P,
=ep| =, —,..., ——
Py P P,

)JFl(n) = AF(C™) Jpiny- L
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We now use [26, Proposition 2.12] which shows that the symbols of Toda Hamiltonians give
relations in quantum K theory.

Theorem A.5 (Iritani-Milanov—Tonita). Let D = D(quaQi ,q,Q, Ai) be any q-difference oper-
ator with coefficients in K7(pt)[q¢T][Qs], such that it is reqular at ¢ = 1. Then

DJx =0 = D(P,1,Q,A;) =0 € QK4 (X).

Remark A.6. The result of Iritani, Milanov and Tonita is stated non-equivariantly, and for
the big quantum K ring and the corresponding big J function. However, an inspection of their
proof shows that it works in the equivariant situation as well. Furthermore, if one starts with
the small quantum K ring, then all arguments extend to that situation, and the result also holds
for the small quantum K ring and the small J function. For further details, see [23].

One subtle point is that ﬁl is a certain @)-deformation of the line bundle F;: it is the restriction
to the small quantum K ring of an operator denoted by A; com in [26, Corollary 2.9], which arises
as a solution to a certain Lax-type equation. However, results of both Anderson, Chen, Tseng,
and Iritani in [2, Lemma 6], and also by Kato in [29, Theorem 1.35] show that in fact no
quantization is needed.

Proposition A.7. For the flag variety Fl(n), dm) = det(S;).

We note in passing that an analogue of Proposition A.7 holds for any homogeneous space G/ P,
but we do not need this generality here.

Combining Theorem A.5 and Proposition A.7 with Corollary A.4 yields the following corol-
lary.

Corollary A.8. The following identities hold in QK (Fl(n)):

k
P I
Z H - (1 - Qil—l)l 6”_”7171 - /\k’(cn7 k= 1a RN
P,

O0=ig<--<ig<n I=1" "7
where Py = P, = 1.

Remark A.9. Theorem 4.9 of [30] gives a presentation of the quasimap quantum K-ring of T*F
whose limit to the is described in Theorem 5.5. The relations are based on the trigonometric
Ruijsenaars—Schneider model. After further taking into account a restriction from GL,, to SL,,
the ‘Toda limit’ recovers the relations in this paper. We are grateful to P. Koroteev who explained
this procedure to us.
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