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Abstract. We prove a determinantal, Toda-type, presentation for the equivariant K theory
of a partial flag variety Fl(r1, . . . , rk;n). The proof relies on pushing forward the Toda
presentation obtained by Maeno, Naito and Sagaki for the complete flag variety Fl(n),
via Kato’s KT (pt)-algebra homomorphism from the quantum K ring of Fl(n) to that of
Fl(r1, . . . , rk;n). Starting instead from the Whitney presentation for Fl(n), we show that
the same pushforward technique gives a recursive formula for polynomial representatives of
quantum K Schubert classes in any partial flag variety which do not depend on quantum
parameters. In an appendix, we include another proof of the Toda presentation for the
equivariant quantum K ring of Fl(n), following Anderson, Chen, and Tseng, which is based
on the fact that the K-theoretic J-function is an eigenfunction of the finite difference Toda
Hamiltonians.
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1 Introduction

Let Fl(n) denote the variety of complete flags in Cn, and let Fl(r, n) = Fl(r1, . . . , rk;n) be the
variety of partial flags. These are homogeneous under the group SLn(C), and the restriction
of this action to the maximal torus T ⊂ SLn(C) has finitely many fixed points, indexed by
a quotient of the symmetric group Sn. Denote by QKT (Fl(r, n)) the (equivariant, small) quan-
tum K ring associated to these varieties. This is an algebra over KT (pt)[[Q1, . . . , Qk]], and it has
a KT (pt)[[Q1, . . . , Qk]]-basis given by Schubert classes Ow indexed by the torus fixed points. The
quantum K multiplication was defined by Givental and Lee [14, 35] in terms of 3-point, genus 0,
K-theoretic Gromov–Witten (KGW) invariants. Denote by

0 = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = Cn

the sequence of tautological bundles in Fl(r1, . . . , rk;n); thus rank(Si) = ri for 0 ≤ i ≤ k + 1
with r0 = 0 and rk+1 = n.

While the computational foundations of the quantum K rings of (cominuscule) Grassmanni-
ans have been studied for some time now (see, e.g., [5, 6, 7, 8, 16, 43]), it is only in the last few
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years that advances have been made in our understanding of quantum K rings for other flag
varieties; see, e.g., [2, 17, 22, 31, 32, 37, 39, 40]. Many of these advances rely on the groundbreak-
ing works by Kato [28, 29], who proved the K-theoretic version of Peterson’s ‘quantum=affine’
statement [24, 33], relating the quantum K ring of a full flag variety (for an arbitrary complex
group G) to the K-homology of the corresponding affine Grassmannian; see also [9]. In particu-
lar, thanks to results in [39, 40] (proving conjectures in [36]), there are now presentations of the
quantum K rings by generators and relations for QKT (Fl(n)), and we have polynomial represen-
tatives (the quantum double Grothendieck polynomials) for Schubert classes. The generating
set of the presentation in [39] is in terms of the quantum quotients detSi/ detSi−1. We rewrite
this presentation in determinantal form in Theorem 2.3 below. This makes it easier to identify
it with the Toda presentation, which is obtained by taking symbols of the finite difference Toda
operators studied by Givental and Lee [15], and also by Anderson, Chen and Tseng in [1], see
also [30] and Appendix A below.

Our main result is to generalize the Toda presentation from QKT (Fl(n)) to one for the ring
QKT (Fl(r, n)) associated to partial flag varieties. To state it, let

Y (j) =
(
Y

(j)
1 , . . . , Y

(j)
rj+1−rj

)
, 0 ≤ j ≤ k

be formal variables and eℓ be the ℓ-th elementary symmetric polynomial. Let T1, . . . , Tn ∈
KT (pt) be given by the decomposition of Cn into one dimensional T -modules, that is, ∧ℓ(Cn) =
eℓ(T1, . . . , Tn). To distinguish from multiplication in KT (Fl(r, n)), we denote the multiplication
in QKT (Fl(r, n)) by ⋆.

Theorem 1.1 (Theorem 3.4). The ring QKT (Fl(r, n)) is isomorphic to R[[Q]]/JQ, where

R = KT (pt)
[
e1
(
Y (j)

)
, . . . , erj+1−rj

(
Y (j)

)
, 0 ≤ j ≤ k

]
,

and JQ ⊂ R[[Q]] = R[[Q1, . . . , Qk]] is the ideal generated by the coefficients of y in

n∏
ℓ=1

(1 + yTℓ)−

∣∣∣∣∣∣∣∣∣∣∣

A0 B1

1 A1 B2

. . .
. . .

. . .

1 Ak−1 Bk

1 Ak

∣∣∣∣∣∣∣∣∣∣∣

⋆

,

where

Aj =

rj+1−rj∏
ℓ=1

(
1 + yY

(j)
ℓ

)
+Bj , Bj = yrj+1−rj

Qj

1−Qj

rj+1−rj∏
ℓ=1

Y
(j)
ℓ ,

with the convention that Q0 = 0.
More precisely, there exists a KT (pt)[[Q]]-algebra isomorphism

Ψ: R[[Q]]/JQ → QKT (Fl(r1, . . . , rk)), eℓ
(
Y (j)

)
7→ ∧ℓ(Sj+1/Sj)

for j = 0, . . . , k and ℓ = 1, . . . , rj+1 − rj.

Our proof is by decreasing induction on k. The initial case, k = n − 1, is the main result
of [39], rewritten in determinantal form in Theorem 2.3 below. For the induction step, we use
a result of Kato [28] which states that there is a KT (pt)-algebra homomorphism

QKT (Fl(n)) → QKT (Fl(r1, . . . , rk;n));
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Ow 7→ π∗(Ow), Qr 7→

{
1, r /∈ {r1, . . . , rk},
Qi, r = ri,

(1.1)

which extends the usual projection map π∗ : KT (Fl(n)) → KT (Fl(r, n)). Note that the classi-
cal π∗ is not a ring map. (Kato’s result is for general complex, simple groups G.) We use this
to show that the ideal JQ is contained in the ideal of relations. For the specialization Qi 7→ 1
to be well defined, one needs to work with polynomials in Q1, . . . , Qn−1; see Section 2.2. Push-
ing forward the original Toda relations is not possible, due to poles at Qi = 1. We had to
rewrite these relations, and additionally use an extra identity due to Maeno, Naito, and Sagaki
(cf. Proposition 2.7 below), in order for the push forward to be performed. Finally, it follows
from [19] that the ideal JQ coincides with the ideal of relations.

The same pushforward technique may be applied to the Whitney presentation, conjectured
in [17, 20], and for which a proof was recently announced in [22]; see also [18, 21] for the Grass-
mannian case. This is a presentation for QKT (Fl(r, n)) with generators ∧k(Si) and ∧ℓ(Si/Si−1).
We prove in Proposition 4.1 that if one eliminates the variables corresponding to classes ∧k(Si)
in the Whitney presentation, then one recovers the Toda presentation.

Our methods also provide a different proof of the Whitney presentation for QKT (Fl(r, n)),
once the Whitney presentation for QKT (Fl(n)) (a special case of results from [22]) is assumed;
see Remark 4.2. The details of this proof are omitted, as they follow closely the proof of
Theorem 1.1.

In a further application of our technique, using the aforementioned Whitney presentation, we
rewrite the formula from [40] of the quantum double Grothendieck polynomial of the class of
a point in Fl(n) [40] in terms of the classes λy(Si). Surprisingly, the resulting class is independent
of the quantum parameters Qi. Pushing forward this class results in a polynomial representative
for the class of the (Schubert) point in any QKT (Fl(r, n)) which is independent of Qi. The
outcome is the following.

Theorem 1.2 (Theorem 5.7). Let Ow0 ∈ QKT (Fl(r1, . . . , rk;n)) be the class of the Schubert
point. Then the following holds:

Ow0 =

k∏⋆

i=1

ri+1−1∏⋆

j=ri

λ−1(e
−ϵn−jSi),

where eϵi ∈ KT (pt) denotes the (class of the) 1-dimensional T -representation with weight ϵi.

In the usual (equivariant) K theory of Fl(n) this follows from Fulton’s results in [11] showing
that the Schubert point Xw0 is the zero locus of a section of a vector bundle; see also [12,
Theorem 3]. Using the left divided difference operators in QKT (Fl(r, n)) defined in [42], this
results in a recursive formula for any Schubert class, giving polynomial representatives in terms
of exterior powers ∧iSj which do not depend on quantum parameters. See Theorem 5.11.
Precursors of this ‘quantum=classical’ phenomenon for polynomial representatives of quantum
Schubert classes have been observed for (isotropic) Grassmannians [3, 4, 16, 25, 41], but to our
knowledge this is new for (partial) flag varieties. Recently, we learned that T. Kouno found
a similar phenomenon in the quantum K ring of the symplectic flag varieties Sp2n/B.

In Appendix A, we follow Anderson, Chen, and Tseng’s treatment in the unpublished note [1]
to give another proof of the Toda presentation for QKT (Fl(n)), independent of the one from [39].
The proof combines results of Givental and Lee [15], which states that the K-theoretic J-function
of Fl(n) is an eigenfunction of the first (finite difference) Toda Hamiltonian, with results of
Iritani, Milanov and Tonita [26], which relates this fact to relations in the quantum K theory
ring. We do not claim any originality in this argument, but we found it valuable to include it here,
as it puts together results from the followup papers [2] and [29]; see especially Proposition A.7.
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1.1 A logical roadmap

There are several recent results in the literature which inform the Toda and Whitney presenta-
tions we prove in this paper. Since we do not attempt to give self-contained proofs, we provide
next a roadmap of the logical implications we rely on, which a reader may find useful.

Our proofs of both the Toda presentation, and the Whitney presentation, for QKT (Fl(r, n)),
from Theorem 3.4 (resp. (4.2), see Remark 4.2) rely on the following: the Toda (resp. Whit-
ney) presentation for QKT (Fl(n)); Kato’s push forward homomorphism from (1.1); and the key
technical result from Proposition 2.7, proved in [39], which in turn relies on Kato’s work [29].

There are two proofs of the Toda presentation for QKT (Fl(n)), one in [39], relying on [29], and
another which may be deduced from [1], relying on results from [15] and [26]; cf. Appendix A.

There are also two proofs of the Whitney presentation for QKT (Fl(n)). One was recently
announced by Huq-Kuruvilla [22] (for all rings QKT (Fl(r, n))), and it uses the technique of
abelian-nonabelian correspondence, independent of Kato’s results. Another proof of the Whitney
presentation for QKT (Fl(n)) is given in [20, Section 6]. It relies on the recent proof of the
quantum K divisor axiom [38], and ultimately on Kato’s results.

2 Preliminaries

2.1 Equivariant K theory of Grassman bundles

Let T be a linear algebraic group. For any projective T -variety Z, let KT (Z) be the equivariant
K-theory ring, defined as the Grothendieck ring of T -equivariant algebraic vector bundles. This
ring is an algebra over KT (pt), the representation ring of T . Let χZ : KT (Z) → KT (pt) be the
pushforward map along the structure morphism.

For E → Z a T -equivariant vector bundle of rank rkE, we denote by

λy(E) := 1 + y[E] + · · ·+ yrkE
[
∧rkEE

]
∈ KT (Z)[y]

the Hirzerbruch λy class of E. This class is multiplicative for short exact sequences. In an abuse
of notation, we often write E for the class [E] in KT (Z). Note that for a rank e equivariant
vector bundle E, and a character eχ ∈ KT (pt),

λy(e
χ ⊗ E) = λyeχ(E) =

e∑
i=0

yieiχ ⊗ ∧iE.

As is customary, we will often remove the ⊗ symbol from the notation.
Denote by π : G(r, E) → Z the Grassmann bundle over Z. It is equipped with a tautological

sequence 0 → S → π∗E → Q → 0 over G(r, E). The following result follows from [27, Proposi-
tion 2.2], see also [21, Proposition 3.2 and Corollary 3.3]. (Kapranov proved this when Z = pt;
the relative version follows immediately using that π is a T -equivariant locally trivial fibration.)
We only state the special cases that will be used in this paper. See the above references for the
full generality.

Proposition 2.1 (Kapranov). There are the following isomorphisms of T -equivariant vector
bundles:

(1) for all i ≥ 0, ℓ > 0 the higher direct images, Riπ∗
(
∧ℓS

)
= 0;

(2) for all ℓ ≥ 0,

Riπ∗
(
∧ℓQ

)
=

{
∧ℓE, i = 0,

0, i > 0.
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2.2 (Equivariant) quantum K theory of flag varieties

Let r = (r1, . . . , rk). We consider

X = Fl(r, n),

which parametrizes flags of vector spaces F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ Cn with dimFi = ri
for 1 ≤ i ≤ k.

Let Md,n := M0,n(X, d) be the moduli space of genus zero degree d stable maps to X
with nmarked points. Given classes a1, . . . , an ∈ KT (X), define the K-theoretic Gromov–Witten
invariants by

⟨a1, . . . , an⟩d = χMd,n

(
n∏

i=1

ev∗i (ai)

)
∈ KT (pt).

Non-equivariant Gromov–Witten invariants are obtained by replacing T with the trivial group;
these Gromov–Witten invariants are integers.

For d = (d1, . . . , dk) ∈ H2(X,Z) ∼= Zk, we write Qd for
∏k

i=1Q
di
i . Here Qi corresponds to the

Poincaré dual of the first Chern class −c1(detSi). Following [14, 35], the T -equivariant (small)
quantum K theory ring is

QKT (X) = KT (X)⊗KT (pt) KT (pt)[[Q]]

as a KT (pt)[[Q]]-module. It is equipped with a commutative, associative product, denoted by ⋆,
which is determined by the condition

((σ1 ⋆ σ2, σ3)) =
∑
d

Qd⟨σ1, σ2, σ3⟩d for all σ1, σ2, σ3 ∈ KT (X),

where

((σ1, σ2)) :=
∑
d

Qd⟨σ1, σ2⟩d

is the quantum K-metric.
It was proved in [2, 29] that for σ1, σ2 ∈ KT (X), the product σ1 ⋆ σ2 can always be expressed

as a polynomial in Q with coefficients in KT (X). It follows that

QKpoly
T (X) := KT (X)⊗KT (pt) KT (pt)[Q]

is a subring of QKT (X).
Let Y = Fl

(
r1, . . . , r̂i, . . . , rk;n

)
and π : X → Y be the natural map. Let also r̂ =

(
r1, . . . ,

r̂i, . . . , rk
)
. The following theorem is a specialization of results proved in [28].

Theorem 2.2 (Kato). There is a surjective ring homomorphism

Φ: QKpoly
T (X) → QKpoly

T (Y )

given by σ 7→ π∗σ for all σ ∈ KT (X) and

Qj 7→

{
Qj , j ̸= i,

1, j = i
for 1 ≤ i ≤ k.

It follows from Theorem 2.2 that Kato’s homomorphism extends naturally to

Φ: QK
loc(r̂)
T (X) → QK

loc(r̂)
T (Y ), (2.1)

where loc(r̂) indicates localization at the multiplicative set generated by 1−Qj for j ̸= i.
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2.3 The Toda presentation for Fl(n)

The variety Fl(n) = Fl(1, . . . , n− 1;n) is equipped with tautological vector bundles

0 = S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 ⊂ Sn = Cn,

where Sj has rank rj . It can also be viewed as SLn /B, where B ⊂ SLn is a Borel subgroup.
Let T ⊆ B be a maximal torus in SLn.

The following is the main result of [39] (see Remark 2.4 for more details). The relation (2.2)
can also be recovered from the connection between the J-function of the full flag variety and
the relativistic Toda lattice established by Givental and Lee in [15]. This observation was made
in the unpublished note [1] of Anderson–Chen–Tseng, but removed from the published version
of their paper. For the sake of completeness, we give a brief account in Appendix A.

Theorem 2.3. The ring QKT (Fl(n)) is isomorphic to R′[[Q]]/J ′
Q, where R′ is equal to the

ring KT (pt)
[
P±
1 , . . . , P±

n

]
and the ideal J ′

Q ⊂ R′[[Q]] = R′[[Q1, . . . , Qn−1]] is generated by the
coefficients y in

λy(Cn)−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + yP1
P0

yP2
P1
Q1

1 1 + yP2
P1

yP3
P2
Q2

1 1 + yP3
P2

yP4
P3
Q3

. . .
. . .

. . .

1 1 + yPn−1

Pn−2
y Pn
Pn−1

Qn−1

1 1 + y Pn
Pn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⋆

, (2.2)

here P0 = 1 by convention, and λy(Cn) ∈ KT (pt)[y].
More precisely, there exists a KT (pt)[[Q]]-algebra isomorphism Ψ′ : R′[[Q]]/J ′

Q → QKT (Fl(n))
that sends Pj to detSj for all j = 1, . . . , n.

Remark 2.4. Theorem 2.3 is proved in [39] using results of Kato [29] based on the semi-infinite
flag variety. The connection between our statement of Theorem 2.3 and that of [39] is seen as
follows. Define the Toda polynomials T

(n)
k for k = 1, . . . , n by

T
(n)
k =

∑
0=i0<···<ik≤n

k∏
s=1

Pis

Pis−1
(1−Qis−1)

1−δis−is−1,1 .

These elements of Z
[
P±
1 , . . . , P±

n

]
[[Q]] (where P0 = 1 and Q0 = 0 by convention) are symbols of

the finite-difference Toda Hamiltonians [10] (see also [1, 13, 15, 30]).
Letting T (n) =

∑n
k=0 T

(n)
k yk where T

(n)
0 = 1, we claim that T (n)(y) is equal to the determinant

of the matrix appearing in the Toda relations (2.2), namely,

T (n)(y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + yP1
P0

yP2
P1
Q1

1 1 + yP2
P1

yP3
P2
Q2

1 1 + yP3
P2

yP4
P3
Q3

. . .
. . .

. . .

1 1 + yPn−1

Pn−2
y Pn
Pn−1

Qn−1

1 1 + y Pn
Pn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⋆

.

This is verified by showing that T (n) satisfies the recursion

T (n) = T (n−1)

(
1 + y

Pn

Pn−1

)
− yQn−1

Pn

Pn−1
T (n−2),

and then applying Lemma 2.6 below (with n playing the role of j there).
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Remark 2.5. Upon the specialization Q1 = · · · = Qn−1 = 0, the Toda presentation R′[[Q]]/J ′
Q
∼=

QKT (Fl(n)) becomes the Borel presentation

KT (pt)
[
P±
1 , . . . , P±

n

]
/J ∼= KT (Fl(n)),

where J is the ideal generated by the coefficients of y in

λy(Cn)−
n−1∏⋆

j=0

(1 + yPj+1/Pj)

and Pj corresponds to detSj for all j = 1, . . . , n.

Lemma 2.6. Suppose Uj for 0 ≤ j ≤ k + 1 and Aj, Bj for 0 ≤ j ≤ k are elements of
a commutative ring with 1 such that the Uj satisfy the recursion

Uj+1 = AjUj −BjUj−1, 0 ≤ j ≤ k

with initial conditions U0 = 1, U−1 = 0. Then, for all 0 ≤ j ≤ k + 1, one has

Uj =

∣∣∣∣∣∣∣∣∣∣∣

A0 B1

1 A1 B2

. . .
. . .

. . .

1 Aj−2 Bj−1

1 Aj−1

∣∣∣∣∣∣∣∣∣∣∣
. (2.3)

Proof. One simply expands along the last row or column to see that the determinant in (2.3)
satisfies the recursion. Observe that the initial values U0 = 1 and U1 = A0 agree. This completes
the proof. ■

Before finishing this section, we record the following, which follows from [39, Proposition 5.2].

Proposition 2.7 (Maeno–Naito–Sagaki). In QKT (Fl(n)), the following relations hold:

detSi ⋆ detSj/Si = (1−Qi) detSj , 1 ≤ i < j ≤ n.

3 Toda-type presentations for the equivariant quantum
K theory of partial flag varieties

To begin, we observe that the Toda presentation in Theorem 2.3 can be rewritten as follows.

Corollary 3.1. The ring QKT (Fl(n)) is isomorphic to R[[Q]]/JQ, where

R = KT (pt)
[
Y (0), . . . , Y (n−1)

]
,

and JQ ⊂ R[[Q]] = R[[Q1, . . . , Qn−1]] is generated by the coefficients of y in

λy(Cn)−∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + yY (0) 1
1−Q0

yY (1) Q1

1−Q1

1 1 + yY (1) 1
1−Q1

yY (2) Q2

1−Q2

. . .
. . .

. . .

1 1 + yY (n−2) 1
1−Qn−2

yY (n−1) Qn−1

1−Qn−1

1 1 + yY (n−1) 1
1−Qn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

⋆

with the convention that Q0 = 0.
More precisely, there exists a KT (pt)[[Q]]-algebra isomorphism Ψ: R[[Q]]/JQ → QKT (Fl(n))

that sends Y (j) to Sj+1/Sj for j = 1, . . . , n− 1.
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Proof. Identifying Pj+1/Pj with Y (j)/(1 − Qj) gives an isomorphism between R[[Q]]/JQ and
R′[[Q]]/J ′

Q. More precisely, define a KT (pt)[[Q]] homomorphism Φ: R′[[Q]]/J ′
Q → R[[Q]]/JQ by

Φ(Pj) =

j−1∏
i=0

Y (i)

1−Qi
, 1 ≤ j ≤ n− 1.

Note that in R[[Q]]/JQ, we have detCn =
∏n−1

i=0 Y (i)/(1−Qi), which implies all Y (j) are in-
vertible. Since the relations match, the homomorphism Ψ is well-defined and injective. Since
(1−Qj)Pj+1/Pj is sent to Y (j) for 0 ≤ j ≤ n − 1, it is also surjective. Finally, the geometric
interpretation follows from Proposition 2.7. ■

Next, we generalize Corollary 3.1 to all partial flag varieties utilizing Theorem 2.2, Proposi-
tion 2.7, and the Nakayama-type result from [20, 21].

Theorem 3.2. In QKT (Fl(r, n))[y], the following relation hold:

λy(Cn)−

∣∣∣∣∣∣∣∣∣∣∣

A0 B1

1 A1 B2

. . .
. . .

. . .

1 Ak−1 Bk

1 Ak

∣∣∣∣∣∣∣∣∣∣∣

⋆

, (3.1)

where

Bj = yrj+1−rj
Qj

1−Qj
det(Sj+1/Sj), Aj = λy(Sj+1/Sj) +Bj .

Proof. Let X = Fl(r1, . . . , rk;n), Y = Fl
(
r1, . . . , r̂i, . . . , rk;n

)
, and π : X → Y be the natural

map. Let

0 = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = Cn

be the sequence of tautological bundles on X. Note that all but Si are pulled back from Y .
With a slight abuse of notation, we denote the sequence of tautological bundles on Y by

0 = S0 ⊂ S1 ⊂ . . .Si−1 ⊂ Si+1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = Cn.

Note that the elements B1, . . . , Bi−2, Bi+1, . . . , Bk as well as A1. . . . , Ai−2, Ai+1, . . . , Ak in the
ring QKT (X)[y] stay the same under pushforward along π. By a slight abuse of notation, we also
think of them as elements of QKT (Y )[y].

By induction, we assume that relation (3.1) holds for X, i.e.,

λy(Cn)−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 B1

1 A1 B2

. . .
. . .

. . .
. . .

. . . Bi−2

1 Ai−2 Bi−1

1 Ai−1 Bi

1 Ai Bi+1

1 Ai+1
. . .

. . .
. . .

. . .

1 Ak−1 Bk

1 Ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⋆

(3.2)
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holds in QK
loc(r)
T (X)[y] for 1 ≤ j ≤ k, and we will show that the (localized) Kato’s pushfor-

ward (2.1) of this relation gives relation (3.1) on Y .

Relation (3.1) on Y reads

λy(Cn)−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 B1

1 A1 B2

. . .
. . .

. . .
. . .

. . . Bi−2

1 Ai−2 B′
i−1

1 A′
i−1 Bi+1

1 Ai+1
. . .

. . .
. . .

. . .

1 Ak−1 Bk

1 Ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⋆

, (3.3)

where

B′
i−1 = yri+1−ri−1

Qi−1

1−Qi−1
det (Si+1/Si−1) , A′

i−1 = λy(Si+1/Si−1) +B′
i−1,

regarded as elements in QK
loc(r̂)
T (Y )[y].

By the projection formula, to prove (3.3), it suffices to prove the pushforward along π of (3.2)
agrees with (3.3). We compare the two determinants by expanding along columns. Expanding
along the column containing B′

i−1, we have that the determinant in (3.3) is of the form

−B′
i−1 ⋆ C

′ +A′
i−1 ⋆ D

′ − E′;

expanding along the two columns containing Bi−1 or Bi, we have that the determinant in (3.2)
is of the form∣∣∣∣Bi−1 0

Ai−1 Bi

∣∣∣∣⋆ ⋆ 0− ∣∣∣∣Bi−1 0
1 Ai

∣∣∣∣⋆ ⋆ C +

∣∣∣∣Bi−1 0
0 1

∣∣∣∣⋆ ⋆ F
+

∣∣∣∣Ai−1 Bi

1 Ai

∣∣∣∣⋆ ⋆ D −
∣∣∣∣Ai−1 Bi

0 1

∣∣∣∣⋆ ⋆ E +

∣∣∣∣1 Ai

0 1

∣∣∣∣⋆ ⋆ 0.
Note that C, D, E, F stay the same under the pushforward, and it is straightforward to check
that

C ′ = C, D′ = D, E′ = E.

The rest follows from Lemma 3.3 below. ■

Lemma 3.3. The following hold:

(a) π∗

∣∣∣∣Ai−1 Bi

0 1

∣∣∣∣⋆ = 1;

(b) π∗

∣∣∣∣Bi−1 0
0 1

∣∣∣∣⋆ = 0;

(c) π∗

∣∣∣∣Bi−1 0
1 Ai

∣∣∣∣⋆ = B′
i−1;
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(d) Assume that ri − ri−1 = 1. Then

π∗

∣∣∣∣Ai−1 Bi

1 Ai

∣∣∣∣⋆ = A′
i−1.

Proof. Note that X may be realized as the Grassmann bundle G(ri − ri−1,Si+1/Si−1) over Y ,
with tautological sequence 0 → Si/Si−1 → Si+1/Si−1 → Si+1/Si → 0. It follows from Proposi-
tion 2.1 that

π∗(λy(Si+1/Si)) =

ri+1−ri∑
j=0

yj ∧j (Si+1/Si−1), π∗(λy(Si/Si−1)) = 1. (3.4)

For (a), (b), note that Ai−1, Bi−1 ∈ QK
loc(r̂)
T (X), so we may use (2.1), and it follows that

π∗Bi−1 = 0, π∗Ai−1 = 1.

Note that by Proposition 2.7 and Theorem 2.2, we have

detSj ⋆ det(Sj+1/Sj) = (1−Qj) detSj+1 for 0 ≤ j ≤ k, in QKT (X), (3.5)

detSi−1 ⋆ det(Si+1/Si−1) = (1−Qi−1) detSi+1 in QKT (Y ). (3.6)

To prove (c), we obtain from definition∣∣∣∣Bi−1 0
1 Ai

∣∣∣∣⋆ = Bi−1Ai = Bi−1 ⋆ (λy(Si+1/Si) +Bi)

= Bi−1 ⋆ λy(Si+1/Si) +Bi−1 ⋆ Bi. (3.7)

The element Bi cannot be pushed forward, as it contains 1−Qi in the denominator. However,
we use (3.5) to calculate

Bi−1 ⋆ Bi = yri+1−ri−1
Qi−1Qi

(1−Qi−1)(1−Qi)
det(Si+1/Si) ⋆ det(Si/Si−1)

= yri+1−ri−1Qi−1Qi
detSi+1

detSi−1
,

where the inverse is calculated in the quantum K ring of X. By (3.5) again,

detSi+1

detSi−1
=

detSi+1 ⋆ detCn/Si−1

(1−Qi−1) detCn
in QK

loc(r̂)
T (X),

and its pushforward is

detSi+1

detSi−1
∈ QK

loc(r̂)
T (Y ). (3.8)

Note that by (3.6), expression (3.8) is equal to

det (Si+1/Si−1)

1−Qi−1
in QK

loc(r̂)
T (Y ).

Using (3.4) and (3.7), the projection formula, and Theorem 2.2, it follows that

π∗

∣∣∣∣Bi−1 0
1 Ai

∣∣∣∣⋆ = π∗ (Bi−1 ⋆ Bi) = yri+1−ri−1
Qi−1

1−Qi−1
det (Si+1/Si−1) = B′

i−1.
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For (d), we calculate∣∣∣∣Ai−1 Bi

1 Ai

∣∣∣∣⋆ = ∣∣∣∣λy(Si/Si−1) +Bi−1 Bi

1 Ai

∣∣∣∣⋆ = Ai ⋆ λy(Si/Si−1) +Ai ⋆ Bi−1 −Bi.

From (c), π∗(Ai ⋆ Bi−1) = B′
i−1, therefore it suffices to show that Ai ⋆ λy(Si/Si−1)−Bi may be

pushed forward, and that

π∗ (Ai ⋆ λy(Si/Si−1)−Bi) = λy(Si+1/Si−1). (3.9)

The hypothesis ri − ri−1 = 1 implies that Si/Si−1 is a line bundle, and that

Ai ⋆ λy(Si/Si−1)−Bi

= λy(Si+1/Si) ⋆ λy(Si/Si−1) + yri+1−ri−1
Qi

1−Qi
det(Si+1/Si) ⋆ det(Si/Si−1).

By (3.4), we have

π∗(λy(Si+1/Si)) = λy(Si+1/Si−1)− yri−ri−1 det(Si+1/Si−1), π∗(λy(Si/Si−1)) = 1.

By (3.5), we have

Qi

1−Qi
det(Si+1/Si) ⋆ det(Si/Si−1) = Qi(1−Qi−1)

detSi+1

detSi−1
.

As in the proof of (c), this can be pushed forward and its pushforward is det(Si+1/Si−1). Putting
these together, we have established (3.9). ■

Recall that Y (j) =
(
Y

(j)
1 , . . . , Y

(j)
rj+1−rj

)
, 0 ≤ j ≤ k, are formal variables, eℓ denotes the ℓ-th

elementary symmetric polynomial, and T1, . . . , Tn ∈ KT (pt) are given by the decomposition
of Cn into one dimensional T -modules, that is, ∧ℓ(Cn) = eℓ(T1, . . . , Tn).

Theorem 3.4. The ring QKT (Fl(r, n)) is isomorphic to R[[Q]]/JQ, where

R = KT (pt)
[
e1
(
Y (j)

)
, . . . , erj+1−rj

(
Y (j)

)
, 0 ≤ j ≤ k

]
,

and JQ ⊂ R[[Q]] = R[[Q1, . . . , Qk]] is the ideal generated by the coefficients of y in

n∏
ℓ=1

(1 + yTℓ)−

∣∣∣∣∣∣∣∣∣∣∣

A0 B1

1 A1 B2

. . .
. . .

. . .

1 Ak−1 Bk

1 Ak

∣∣∣∣∣∣∣∣∣∣∣
, (3.10)

where

Aj =

rj+1−rj∏
ℓ=1

(
1 + yY

(j)
ℓ

)
+Bj , Bj = yrj+1−rj

Qj

1−Qj

rj+1−rj∏
ℓ=1

Y
(j)
ℓ ,

with the convention that Q0 = 0.
More precisely, there exists a KT (pt)[[Q]]-algebra isomorphism

Ψ: R[[Q]]/JQ → QKT (Fl(r1, . . . , rk))

that sends eℓ
(
Y (j)

)
to ∧ℓ (Sj+1/Sj) for j = 0, . . . , k and ℓ = 1, . . . , rj+1 − rj.
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Proof. It follows from Theorem 3.2 that Ψ is a well-defined ring homomorphism. To prove there
are no other relations, we use [19, Theorem 4.1], which states that a complete set of relations in
the quantum (equivariant) K ring is obtained by quantizing any complete set of relations in the
ordinary (equivariant) K ring. Therefore, we need to show that when one specializes each Qi

to 0, the resulting ring is a presentation of KT (Fl(r1, . . . , rk)). The relations obtained this way
are the ‘Borel-type relations’ of the λy classes

λy(S1) · λy(S2/S1) · · · · · λy(Cn/Sk) = λy(Cn). (3.11)

Note that the relations (3.11) can be obtained from the Whitney relations

λy(Si) · λ(Si+1/Si) = λy(Si+1),

by eliminating the classes λy(Si) for 2 ≤ i ≤ k. (The quantization of this statement is done in
the next section.) Finally, it is known that the Whitney relations form a full set of relations
in KT (Fl(r1, . . . , rk)). This is essentially done by Lascoux [34, Section 7], and we refer to [19,
Proposition 5.1] for a complete proof. ■

We illustrate the proof of Theorem 3.2 with the following example.

Example 3.5. Let Fl(4) → Gr(2, 4) = Fl(2; 4) be the projection. In QKT (Fl(4)), we have the
following relation

λy

(
C4
)
=

∣∣∣∣∣∣∣∣
A0 B1 0 0
1 A1 B2 0
0 1 A2 B3

0 0 1 A3

∣∣∣∣∣∣∣∣
⋆

, (3.12)

where

A0 = λy(S1), B1 = y
Q1

1−Q1
det(S2/S1),

A1 = λy(S2/S1) + y
Q1

1−Q1
det(S2/S1), B2 = y

Q2

1−Q2
det(S3/S2),

A2 = λy(S3/S2) + y
Q2

1−Q2
det(S3/S2), B3 = y

Q3

1−Q3
det
(
C4/S3

)
,

A3 = λy

(
C4/S3

)
+ y

Q3

1−Q3
det
(
C4/S3

)
.

We push this relation forward to Gr(2, 4) by pushing it forward to Fl(2, 3; 4) and then pushing
forward from Fl(2, 3; 4) to Gr(2, 4). Let π : Fl(4) → Fl(2, 3; 4) be the projection. The relation
on Fl(2, 3; 4) is given by

λy

(
C4
)
=

∣∣∣∣∣∣
A′

0 B2 0
1 A2 B3

0 1 A3

∣∣∣∣∣∣
⋆

, (3.13)

where

A′
0 = λy(S2).

By expanding the determinant in (3.12) along the columns containing A0 and A1, we obtain

λy

(
C4
)
=

∣∣∣∣A0 B1

1 A1

∣∣∣∣⋆ ∣∣∣∣A2 B3

1 A3

∣∣∣∣⋆ −A0

∣∣∣∣B2 0
1 A3

∣∣∣∣⋆ . (3.14)
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By Lemma 3.3,

π∗

∣∣∣∣A0 B1

1 A1

∣∣∣∣⋆ = A′
0, π∗A0 = 1

and
∣∣A2 B3

1 A3

∣∣⋆, ∣∣B2 0
1 A3

∣∣⋆ will not change under pushforward by π. Thus, by pushing forward (3.14)
we obtain

λy

(
C4
)
= A′

0

∣∣∣∣A2 B3

1 A3

∣∣∣∣⋆ − ∣∣∣∣B2 0
1 A3

∣∣∣∣⋆
which is the expansion of (2) along the first column. So the relation in QKT (Fl(4)) pushes
forward to the relation in QKT (Fl(2, 3; 4)).

Now let p : Fl(2, 3; 4) → Gr(2, 4) be the projection. In Gr(2, 4) we have the following relation:

λy

(
C4
)
=

∣∣∣∣A′
0 B′′

1

1 A′′
1

∣∣∣∣⋆ , (3.15)

where

B′′
1 = y2

Q2

1−Q2
det
(
C4/S2

)
, A′′

1 = λy(C4/S2) + y2
Q2

1−Q2
det
(
C4/S2

)
.

By Lemma 3.3, in (3.13), we have p∗
∣∣A2 B3

1 A3

∣∣⋆ = A′′
1, p∗

∣∣B2 0
1 A3

∣∣⋆ = B′′
1 and A′

0 will not change
under the pushforward. Thus, (3.13) pushes forward to (3.15).

4 Whitney implies Toda

In this section, we consider a different presentation of the quantum K ring, named the quantum K
Whitney presentation. This presentation quantizes relations λy(Si) ·λy(Si+1/Si) = λy(Si+1) sat-
isfied by the tautological subbundles in KT (Fl(r, n)). Informally, the Whitney presentation con-
tains more (geometric) information than the Toda presentation, as it involves more generators,
corresponding to the λy classes of the tautological subbundles, and their quotients. In contrast,
the Toda presentation only involves the quotient bundles.

The quantization was conjectured in [17, 20], generalizing the conjectures from [18] for
Grassmannians. These conjectures have been proved in [21] for Grassmannians, and in [20]
for Fl(1, n− 1;n) case. The general case was recently announced in [22] using the abelian/non-
abelian correspondence. We note that the results in [22] are logically independent on those
from [40], which were used to obtain the Toda presentation in the previous section.

Our main result of this section is that eliminating the additional variables of the Whitney
presentation yields the Toda presentation. As an aside, we note that the proof of Theorem 3.4
can be easily modified to show that the quantum K Whitney presentation of Fl(r, n) follows
from that of Fl(n). We leave the details of this proof to the reader.

In what follows, T can be a maximal torus in GLn. Let

X(j) =
(
X

(j)
1 , . . . , X(j)

rj

)
and Y (j) =

(
Y

(j)
1 , . . . , Y

(j)
rj+1−rj

)
denote formal variables for j = 1, . . . , k and denote by X(k+1) := (T1, . . . , Tn) the equivariant
parameters in KT (pt). Let eℓ

(
X(j)

)
and eℓ

(
Y (j)

)
be the ℓ-th elementary symmetric polynomials

in X(j) and Y (j), respectively. Define the ring

S = KT (pt)
[
e1
(
X(j)

)
, . . . , erj

(
X(j)

)
, e1
(
Y (j)

)
, . . . , erj+1−rj

(
Y (j)

)]k
j=1

,
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and the ideal IQ ⊂ S[[Q]] = S[[Q1, . . . , Qk]] generated by the coefficients of y in

rj∏
ℓ=1

(
1 + yX

(j)
ℓ

) rj+1−rj∏
ℓ=1

(
1 + yY

(j)
ℓ

)
−

rj+1∏
ℓ=1

(
1 + yX

(j+1)
ℓ

)
(4.1)

+ yrj+1−rj
Qj

1−Qj

rj+1−rj∏
ℓ=1

Y
(j)
ℓ

( rj∏
ℓ=1

(
1 + yX

(j)
ℓ

)
−

rj−1∏
ℓ=1

(
1 + yX

(j−1)
ℓ

))
, j = 1, . . . , k.

It was conjectured in [17, 20] and proved in [22] that there is an isomorphism of KT (pt)[[Q]]-
algebras

Φ: S[[Q]]/IQ → QKT (Fl(r, n)) (4.2)

sending

eℓ
(
X(j)

)
7→ ∧ℓ(Sj) and eℓ

(
Y (j)

)
7→ ∧ℓ(Sj+1/Sj).

We refer to this as the (quantum K) Whitney presentation.

Proposition 4.1. There is a natural isomorphism

S[[Q]]/IQ ≃ R[[Q]]/JQ,

obtained by eliminating the indeterminates X
(j)
ℓ . In particular, the Whitney relations from (4.1)

imply the Toda relations from (3.10).

Proof. Let

Aj =

rj+1−rj∏
ℓ=1

(
1 + yY

(j)
ℓ

)
+Bj , Bj = yrj+1−rj

Qj

1−Qj

rj+1−rj∏
ℓ=1

Y
(j)
ℓ ,

so that (4.1) becomes

Aj

rj∏
ℓ=1

(
1 + yX

(j)
ℓ

)
−Bj

rj−1∏
ℓ=1

(
1 + yX

(j−1)
ℓ

)
−

rj+1∏
ℓ=1

(
1 + yX

(j+1)
ℓ

)
. (4.3)

Note that by Lemma 2.6, relations given by (4.3) are equivalent to those given by

rj+1∏
ℓ=1

(
1 + yX

(j+1)
ℓ

)
−

∣∣∣∣∣∣∣∣∣∣∣

A0 B1

1 A1 B2

. . .
. . .

. . .

1 Aj−1 Bj

1 Aj

∣∣∣∣∣∣∣∣∣∣∣
for 1 ≤ j ≤ k.

As a consequence, we can eliminate e1
(
X(j)

)
, . . . , erj

(
X(j)

)
for 2 ≤ j ≤ k, and be left with the

relation (3.10). ■

Remark 4.2. We note that our methods from the previous section can be adapted easily to
show that Φ is an isomorphism for all partial flag varieties if and only if it is an isomorphism
for Fl(n).

We illustrate Proposition 4.1 with the following two examples.
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Example 4.3. Consider Fl(2) = P1 with the tautological subbundle S1 ⊂ C2. The QK Whitney
relations are given by

λy(S1) ⋆ λy

(
C2/S1

)
= λy

(
C2
)
− y

Q

1−Q

(
C2/S1

)
⋆ (λy(S1)− 1)

After making the change of variables S1 7→ P1 and C2/S1 7→ (1−Q)P2/P1, then collecting the
coefficients of y and y2, one obtains the Toda relations for QKT

(
P1
)
:

P1 +
1−Q

P1
= C2, P2 = ∧2C2.

Example 4.4. We now consider the case X = Fl(3), equipped with the tautological sequence
S1 ⊂ S2 ⊂ C3. There are two QK Whitney relations

λy(S1) ⋆ λy(S2/S1) = λy(S2)− y
Q1

1−Q1
S2/S1 ⋆ (λy(S1)− 1),

λy(S2) ⋆ λy

(
C3/S2

)
= λy

(
C3
)
− y

Q2

1−Q2
C3/S2 ⋆ (λy(S2)− λy(S1)).

From the first relation, we can write

λy(S2) = λy(S1) ⋆ λy(S2/S1) + y
Q1

1−Q1
S2/S1 ⋆ (λy(S1)− 1),

which we can use to replace λy(S2) in the second relation. By some algebra, we obtain

(1 + yS1) ⋆ (1 + yS2/S1) ⋆
(
1 + yC3/S2

)
+ y2

Q1

1−Q1
S2/S1 ⋆ S1 ⋆

(
1 + yC3/S2

)
= λy

(
C3
)
− y

Q2

1−Q2
C3/S2 ⋆ (1 + yS1) ⋆ (1 + yS2/S1)

− y3
Q1Q2

(1−Q1)(1−Q2)
S1 ⋆ S2/S1 ⋆ C3/S2 + y

Q2

1−Q2
C3/S2 ⋆ (1 + yS1).

With the change of variables

S1 7→ P1, S2/S1 7→ (1−Q1)P2/P1, C3/S2 7→ (1−Q2)P3/P2

and equating the coefficients of y, y2, y3 in the two sides to obtain

� coefficient of y: P1 + (1−Q1)P2/P1 + (1−Q2)P3/P2 = C3;

� coefficient of y2: P2 + (1−Q1)P3/P1 + (1−Q2)P1P3/P2 = ∧2C3;

� coefficient of y3: P3 = ∧3C3.

These are the Toda relations for QKT (Fl(3)), calculated from (2.2).

5 Representatives for quantum K Schubert classes
in partial flag varieties

The goal of this section is to use the pushforward technique to obtain polynomial representatives
of Schubert classes in the equivariant quantum K rings of partial flag varieties. Our strategy is to
push forward the polynomials for the class of the point from QKT (Fl(n)) to QKT (Fl(r, n)), then
use the (left) divided difference operators defined in [42] in the rings QKT (Fl(r, n)) to deduce
a recursive procedure giving the other polynomials. The left divided difference operators were
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also used by Maeno, Naito, and Sagaki [40] to prove that the quantum double Grothendieck
polynomials represent Schubert classes in the Toda presentation of QKT (Fl(n)).

We use a different generating set from loc. cit., the exterior powers of the tautological bundles,
thus our representatives live in the (quantum) Whitney presentation introduced in Section 4.
A key feature of our polynomials, and unlike those from [40], is that they do not involve quantum
parameters.

5.1 Preliminaries on Schubert classes
and quantum divided difference operators

We start with recalling some basic facts about the Schubert classes and quantum divided differ-
ence operators in the equivariant quantum K theory.

We need the formula for the class of the Schubert point, proved in [40], which we later use
to find formulae for the other Schubert classes. To this aim, we briefly recall the definition of
the Schubert basis in the quantum K rings.

Regard Fl(n) as SLn /B, and let W := NSLnT/T ≃ Sn be the Weyl group, equipped with the
length function ℓ : W → N. It is a Coxeter group, generated by simple reflections si = (i, i+ 1)
for 1 ≤ i ≤ n − 1. Denote by w0 ∈ W be the longest element, so that dimFl(n) = ℓ(w0).
Let Wr ≤ W be the subgroup generated by the simple reflections si so that i is not among the
components of r, and let W r ⊂ W be the set of minimal length representatives for the cosets
of W/W r.

Set B− = w0Bw0 ⊂ SLn, the opposite Borel subgroup. For each w ∈ W , the flag variety Fl(n)
has a T -fixed point ew := nwB, where nw ∈ NSLnT/T is any representative of w. The (opposite)
Schubert cell is Xw,◦ := B−.nwB ⊂ Fl(n), and it is isomorphic to the affine space AdimFl(n)−ℓ(w).
One can similarly define Schubert cells in any partial flag variety Fl(r, n); alternatively, the
Schubert cells in Fl(r, n) are the images of the Schubert cells in Fl(n) under the (SLn-equivariant)
natural projection Fl(n) → Fl(r, n). The Schubert variety Xw is the (Zariski) closure of the
corresponding Schubert cell. Inclusion of Schubert varieties give the Bruhat (partial) order on
the set W r,

uW r ≤ vW r ⇔ Xu ⊃ Xv in Fl(r, n).

Now let Ow ∈ KT (Fl(r, n)) be the K theory class given by the structure sheaf of Xw. The
Schubert cells give a stratification of Fl(n), and, more generally, of Fl(r, n). Then the classes Ow

form a basis for KT (Fl(r, n)) over KT (pt), when w varies in the quotient W/Wr. This implies
(by definition) that the classes Ow are a basis of QKT (Fl(r, n)), over the ground ring KT (pt)[[Q]].

As in [40], we identify KT (pt) with the group algebra Z[P ] = ⊕χ∈PZeχ of the weight lattice
P =

∑n−1
i=1 Zϖi of SLn, where ϖi, 1 ≤ i ≤ n − 1 are the fundamental weights. We also set

ϖ0 = ϖn = 0, and ϵj = ϖj −ϖj−1 for 1 ≤ j ≤ n.
In [42], left divided difference operators acting on QKT (Fl(r, n)) (in fact on the equivariant

quantum K ring of any homogeneous space G/P ) were constructed. These operators send
Schubert classes to Schubert classes, and were compatible with the quantum K product. We
recall next the salient facts, see Section 8.3 in loc. cit. for further details.

Regard Fl(r, n) as SLn /Pr, where Pr the parabolic group stabilizing the identity partial flag.
Left multiplication by a representative nw of an element w ∈ W induces an automorphism of
Fl(r, n) which is equivariant with respect to the automorphism of T given by t 7→ nwtn

−1
w .

Pulling back along this automorphism of Fl(r, n) gives a ring automorphism wL of KT (Fl(r, n)).
The following combines [42, Proposition 5.3, Lemma 5.4, and Proposition 5.5].

Proposition 5.1 (Mihalcea–Naruse–Su). The following hold:

1. wL(eχa) = ew(χ)wL(a) for any eχ ∈ KT (pt) and a ∈ KT (Fl(r, n)).
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2. wL is KSLn(Fl(r, n))-linear: for κ ∈ KSLn(Fl(r, n)) and a ∈ KT (Fl(r, n)),

wL(κ · a) = κ · wL(a).

3. wL commutes with the natural projection π : Fl(n) → Fl(r, n):

wL(π∗(a)) = π∗
(
wL(a)

)
, ∀a ∈ KT (Fl(n)).

In particular, the map wL on KT (Fl(r, n)) is determined by the map on KT (Fl(n)).

4. The automorphisms wL give an action of W on KT (Fl(r, n)). If si ∈ W is a simple
reflection, and Ow ∈ KT (Fl(r, n), then

sLi (Ow) =

{
eαiOw + (1− eαi)Osiw if siwWr < wWr,

Ow otherwise,

where αi is the simple positive root giving si.

The equivariant quantum K theory is functorial for isomorphisms. Thus one may extend
the action of W to an action on QKT (Fl(r, n)) by Q[[Q]]-linear ring automorphisms. Define the
(quantum) left divided difference operators by

δi :=
1

1− e−αi

(
id− e−αisLi

)
.

(
In [42, equation (13)] this operator is denoted by δ∨i .

)
These operators have the same proper-

ties as the ordinary Demazure operators, and they satisfy a Leibniz rule compatible with the
quantum K product. For reader’s convenience, we state these properties next, see [42, Proposi-
tion 8.3].

Proposition 5.2 (Mihalcea–Naruse–Su).

1. The quantum operators δi are Q[q]-linear, satisfy the braid relations, and (δi)
2 = δi.

2. For each w ∈ W r,

δi
(
OwWr

)
=

{
OsiwWr if siw < w,

OwWr otherwise.

3. (Leibniz rule) For any a, b ∈ QKT (Fl(r, n)),

δi(a ⋆ b) = δi(a) ⋆ b+ e−αisLi (a) ⋆ δi(b)− e−αisLi (a) ⋆ s
L
i (b).

4. The operator δi is a QKSLn
(Fl(r, n))-module homomorphism, that is, for any κ from

QKSLn
(Fl(r, n)) and η from QKT (Fl(r, n)),

δi(κ ⋆ η) = κ ⋆ δi(η).

Part (1) implies that for each w ∈ W there are well defined operators δw acting on quan-
tum K ring QKT (Fl(r, n)). Furthermore, part (2) implies that if w ∈ W is a minimal length
representative in its coset in W/Wr, then

Ow = δww0

(
Ow0Wr

)
.
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5.2 Polynomial representatives

In this section, we use results of [40] to obtain a formula for the class of the Schubert point
in QKT (Fl(n)). Then we use Kato’s pushforward, and the left divided difference operators δw,
to obtain a recursive formula for the Schubert classes in any QKT (Fl(r, n)).

To start, note that, in geometric terms, the relations (4.1) are interpreted as follows (cf. [17,
20, 22]).

Theorem 5.3. For j = 1, . . . , k, the following relations hold in QKT (X):

λy(Sj) ⋆ λy(Sj+1/Sj)

= λy(Sj+1)− yrj+1−rj
Qj

1−Qj
det(Sj+1/Sj) ⋆ (λy(Sj)− λy(Sj−1)). (5.1)

Proposition 5.4. The following holds in QKT (Fl(n)):

∧pSk =
∑
J⊆[k]
|J |=p

( ∏
1≤j≤k
j,j+1∈J

1

1−Qj

)(∏⋆

j∈J
Sj/Sj−1

)
(5.2)

for 0 ≤ p ≤ k ≤ n, where ⋆ means the quantum K product.

Proof. We use double induction on p, k, with p = k = 0 case being clear. Assume that

∧p′Sk′ =
∑

J⊆[k′]
|J |=p′

( ∏
1≤j≤k′

j,j+1∈J

1

1−Qj

)(∏⋆

j∈J
Sj/Sj−1

)

for all (p′, k′) < (p, k), then considering the three cases for J ⊆ [k]: k /∈ J , k, k − 1 ∈ J , k ∈ J
and k − 1 /∈ J , we have∑

J⊆[k]
|J |=p

( ∏
1≤j≤k
j,j+1∈J

1

1−Qj

)(∏⋆

j∈J
Sj/Sj−1

)

= ∧pSk−1 + Sk/Sk−1 ⋆

(
1

1−Qk−1
∧p−1 Sk−1 −

Qk−1

1−Qk−1
∧p−1 Sk−2

)
= ∧pSk,

where the last equality follows from the Whitney relations (5.2). ■

After harmonizing conventions, and using Proposition 5.4, the following is a restatement
of [40, Proposition 3.1].

Corollary 5.5. In QKT (Fl(n)), we have

Ow0 =

n−1∏⋆

i=1

λ−1(e
−ϵn−iSi).

We illustrate the corollary next.

Example 5.6. We take n = 2, thus Fl(2) = P
(
C2
)
. Fix e1, e2 to be a basis for C2. For simplicity

we regard P1 as GL2 /B with T ′ = (C∗)2 acting naturally, and then restrict this action to SL2.
With these conventions, the Schubert point is Xw0 = ⟨e2⟩, and the localizations of S = OP1(−1)
at the fixed points P(⟨ei⟩), i = 1, 2, are S|P(⟨ei⟩) = eϵi . Then one easily checks that

Ow0 = 1− e−ϵ1S.
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Theorem 5.7. In QKT (Fl(r, n)), we have

Ow0 =

k∏⋆

i=1

ri+1−1∏⋆

j=ri

λ−1(e
−ϵn−jSi). (5.3)

Proof. LetX = Fl(r1, . . . , rk;n), Y = Fl
(
r1, . . . , r̂i, . . . , rk;n

)
, and let π : X → Y be the natural

projection. Corollary 5.5 implies that the claim is true for Fl(n). By induction, we assume
that (5.3) holds for X, and we compute its pushforward under π using Kato’s pushforward map
from Theorem 2.2. Note that all but the term including Si are pulled back from Y . By (5.1),
we have

λ−1(e
−ϵn−jSi) = λ−1(e

−ϵn−jSi−1) ⋆ λ−1(e
−ϵn−jSi/Si−1)

+
Qi−1

1−Qi−1
(−e−ϵn−j )ri+1−ri det(Si/Si−1) ⋆ (λ−1(e

−ϵn−jSi−1)− λ−1(e
−ϵn−jSi−2)),

where we used (the λ-ring formalism asserting) that λ−1(e
χ⊗E) = λ−eχ(E). Since the pushfor-

ward π∗
(
∧jSi/Si−1

)
=0 for any j > 0 by Proposition 2.1, π∗λ−1(e

−ϵn−jSi) = λ−1(e
−ϵn−jSi−1),

and the claim on Y follows from the projection formula. ■

We illustrate the formula in Theorem 5.7 in the case of Gr(2, 4). The Schubert classes in
Gr(2, 4) are typically indexed by partitions in the 2× 2 square; the dictionary to translate into
the indexing by Weyl group elements is the following:

O(1) = Os2Wr , O(2) = Os3s2Wr ,

O(1,1) = Os1s2Wr , O(2,1) = Os1s3s2Wr , O(2,2) = Os2s1s3s2Wr .

Example 5.8 (Theorem 5.7 for Gr(2, 4)). Denote by S the tautological subbundle. Using (for
instance) a localization argument, one calculates that

λy(S) = (1 + yeϵ1)(1 + yeϵ2)O∅ − yeϵ2(1 + yeϵ1)O(1) − yeϵ1O(1,1).

Thus for any weight χ,

λ−1(e
χS) = 1− eχS + e2χ ∧2 S

can be expanded into a combination of Schubert classes. Then one checks directly that

λ−1(e
−ϵ2S) ⋆ λ−1(e

−ϵ1S) = O(2,2).

The relevant multiplications are1

O(1) ⋆O(1) = (1− eϵ3−ϵ2)O(1) + eϵ3−ϵ2O(2) + eϵ3−ϵ2O(1,1) − eϵ3−ϵ2O(2,1),

O(1) ⋆O(1,1) = (1− eϵ3−ϵ1)O(1,1) + eϵ3−ϵ1O(2,1),

O(1,1) ⋆O(1,1) = eϵ3+ϵ2−2ϵ1O(1,1) − eϵ3+ϵ2−2ϵ1O(2,1) − eϵ3−ϵ1O(1,1) + eϵ3−ϵ1O(2,1)

− eϵ2−ϵ1O(1,1) + eϵ2−ϵ1O(2,2) +O(1,1).

Next we state the main result of this section. Recall the Whitney presentation Φ: S[[Q]]/IQ →
QKT (Fl(r, n))) from (4.2).

1These can be calculated for example with A. Buch’s Equivariant Schubert Calculator, available at https:

//sites.math.rutgers.edu/~asbuch/equivcalc/.

https://sites.math.rutgers.edu/~asbuch/equivcalc/
https://sites.math.rutgers.edu/~asbuch/equivcalc/
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Theorem 5.9. Let r = (r1, . . . , rk). Under the isomorphism Φ, the elements

Gw(X) := Φ−1

(
δw

(
k∏⋆

i=1

ri+1−1∏⋆

j=ri

λ−1(e
−ϵn−jSi)

))

are sent to Wr-symmetric polynomials in the variables X(j) for j = 1, . . . , k, such that

Φ(Gw(X)) = Ow ∈ QKT (Fl(r, n)).

Furthermore, the polynomials Gw(X) are independent of the Novikov variables Qi for 1 ≤ i ≤ k.

Proof. This follows from Proposition 5.2: polynomial representatives for all Schubert classes
can be obtained by applying the quantum left divided difference operators δi to the identity (5.3)
above. This process does not introduce any Q’s. ■

The proposition may be interpreted as saying that the same polynomials representing Schu-
bert classes in KT (Fl(r, n)) also represent their quantizations in QKT (Fl(r, n)); of course, the
ideal of relations in QKT (Fl(r, n)) needs to be quantized.

We illustrate next the calculation of the polynomials representing Schubert classes in the ring
QKT (Gr(2, 4)).

Example 5.10. We use left divided difference operators to find polynomial representatives for
all Schubert classes in QKT (Gr(2, 4)), knowing from Theorem 5.7 the representative for the
Schubert point.

Recall that αi = ϵi − ϵi+1, and denote by S the class of the tautological subbundle. First,
observe that δi

(
eχ ⊗ ∧kS

)
= δi(e

χ)⊗ ∧kS by Proposition 5.2 (4), and

δi(e
χ) =

eχ, si(χ) = χ,

eχ
1− (e−αi)1+⟨χ,α∨

i ⟩

1− e−αi
, otherwise.

It follows that

δi

(
e−kϵj ∧k S

)
=


e−kϵj ∧k S, j ̸= i, i+ 1,

0, j = i, k = 1,

−e−(ϵi+ϵi+1) ∧2 S, j = i, k = 2,

e−kϵi+1
(
1 + e−αi + · · ·+ e−(k−1)αi

)
∧k S, j = i+ 1, k ≥ 1.

By Theorem 5.7, O(2,2) is equal to

λ−1(e
−ϵ1S) ⋆ λ−1(e

−ϵ2S) =
(
1− e−ϵ1S + e−2ϵ1 ∧2 S

)
⋆
(
1− e−ϵ2S + e−2ϵ2 ∧2 S

)
.

We have that δ2
(
O(2,2)

)
= O(2,1). We now calculate δ2

(
O(2,2)

)
by means of the Leibniz rule from

Proposition 5.2. We obtain

O(2,1) = λ−1(e
−ϵ1S) ⋆

(
1− e−(ϵ2+ϵ3) ∧2 S

)
,

O2 = δ1
(
O(2,1)

)
= 1− (e−ϵ1−ϵ2 + e−ϵ2−ϵ3 + e−ϵ1−ϵ3) ∧2 S + (e−ϵ1−ϵ2−ϵ3)S ⋆ ∧2S,

O(1,1) = δ3
(
O(2,1)

)
= λ−1(e

−ϵ1S),
O(1) = δ1

(
O(1,1)

)
= 1− e−(ϵ1+ϵ2) ∧2 S,

O∅ = δ1
(
O(1)

)
= 1.
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Finally, we can rewrite the operators δi as operators ρi acting on Z
[
T±1
1 , . . . , T±1

n

]
by

ρi =
Ti − Ti+1si
Ti − Ti+1

,

where si replaces each Tj by Tsi(j), and further extend it to

S[[Q]] = Z
[
e1
(
X(j)

)
, . . . , erj

(
X(j)

)
, e1
(
Y (j)

)
, . . . , erj+1−rj

(
Y (j)

)]k
j=1

[[Q]]⊗ Z
[
T±1
1 , . . . , T±1

n

]
by Z

[
e1
(
X(j)

)
, . . . , erj

(
X(j)

)
, e1
(
Y (j)

)
, . . . , erj+1−rj

(
Y (j)

)]k
j=1

[[Q]]-linearity. Given w ∈ Sn with
reduced expression w = si1 . . . sil , we define

ρw = ρi1 . . . ρil .

Since the operators ρi satisfy the braid relations, the operator ρw doesn’t depend on the choice
of reduced expression. We may restate Theorem 5.9 as follows.

Theorem 5.11. For w ∈ W r, the isomorphism Φ: S[[Q]]/IQ → QKT (Fl(r, n)) sends the class of

ρw

(
k∏

i=1

ri+1−1∏
j=ri

ri∏
ℓ=1

(
1− T−1

n−jX
(i)
ℓ

))

to Ow.

We have not seen similar polynomials in the study of quantum K theory of flag manifolds.

A Toda relations from finite difference operators
(after Anderson–Chen–Tseng)

The proof of the Toda relations in [39] relies on Kato’s earlier results [29]. For the quantum
K ring QKT (Fl(n)), there is another proof of these relations, using an argument combining the
results of Iritani, Milanov and Tonita [26] with results of Givental and Lee [15]. More precisely,
it is shown in [26] that the symbols of finite difference operators annihilating the K-theoretic J
function of a varietyX give relations in the quantum K ring ofX. Givental and Lee’s results from
loc. cit. imply that the K-theoretic J function of the complete flag variety is an eigenfunction
of the (finite difference) Toda Hamiltonians. This observation was made in the unpublished
note [1] of Anderson–Chen–Tseng, but removed from the published version of their paper. For
the sake of completeness, we give a brief account below, and in the process fill in some of the
details to make the argument complete.

We start with recalling the definition of the K-theoretic J-function of the complete flag
variety X = Fl(n). Denote by Pi = ∧iSi; it is known that these line bundles algebra gen-
erate KT (Fl(n)) over KT (pt); see, e.g., [19, Proposition 3.1]. Furthermore, the curve classes
associated to the Novikov variables Qi are dual to the classes c1

(
∧iS∗

i

)
. For a fixed effective

(multi)degree d ∈ H2(X), let L be the cotangent line bundle at the unique marked point on the
moduli space M0,1(X, d). Let also ϕα, ϕα denote Poincaré-dual bases for KT (X). (For example,
one may take Schubert classes Ow, and their duals – the ideal sheaves of the boundary of the
opposite Schubert varieties.) The small J-function of X, denoted by JX , is defined by

JX(q) := (1− q)
∏
i

P
ln(Qi)

ln(q)

i

∑
d,α

Qd

〈
ϕα

1− qL

〉
0,1,d

ϕα.

We will explain later the meaning and the effect of the factor P
ln(Qi)/ ln(q)
i . We also note that the

presence of the prefactors (1 − q) and
∏

i P
ln(Qi)/ ln(q)
i varies in the literature. Our description
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agrees with the one used by Givental and Lee in [15], and corresponds to the function denoted
by J̃ in [26].

We recall some basics on the formalism of difference operators. Consider commuting variables
q, x1, . . . , xn, and define the difference operators

Ti := qxi∂xi =
∞∑
k≥0

1

k!
((ln q)xi∂xi)

k.

(
More generally, for a differential operator f, one defines the q-difference operator qf = e(ln q)f =∑∞
j=0

1
j!((ln q)f)

j .
)
Note that

Ti

(
x±1
j

)
=

∞∑
k=0

1

k!
(ln(q)xi∂xi)

(
x±1
j

)
= q±δijx±1

j ,

which explains the ‘difference operator’ terminology. More generally, for any Laurent polynomial
in commuting variables xi, we have

Tif(x1, . . . , xi, . . . , xn) = f(x1, . . . , qxi, . . . , xn),

i.e., Ti is an automorphism of the Laurent polynomial ring Z
[
q±1;x±1

1 , . . . , x±1
n

]
. We use this

expression to extend the definition of Ti to any function in the indeterminates q, x1, . . . , xn.
Now consider the subring of Laurent polynomials

Z
[
q±1;Q±1

1 , . . . , Q±1
n−1

]
↪→ Z

[
q±1;x±1

1 , . . . , x±1
n

]
obtained by sending Qi 7→ q−1 xi+1

xi
. The restriction of Ti to this subring is given by

Ti = q−Qi∂Qi qQi−1∂Qi−1 , (A.1)

where qQi∂Qi are the difference operators on the subring in Qi’s.
With that in mind, we can now explain the meaning of the factor P

ln(Qi)

ln(q) . The difference
operators qQi∂Qi act on functions in Qi’s, and one calculates that

qQi∂Qi

(
P

ln(Qj)

ln(q)
)
= P

ln(q
δij Qj)

ln(q) = P δijP
ln(Qj)

ln(q) .

In other words, the factor P
ln(Qi)

ln(q) should be regarded as a formal variable which transforms
according to the rule above under the difference operators.

The relations in the quantum K ring are given by the Hamiltonians of the finite difference
(or relativistic) Toda lattice. There is some ambiguity in the exact expressions for the Toda
Hamiltonians, since their construction depends on choices; see, e.g., [15, Remark 5]. We follow
here the approach from [13], but we will also need to make some changes of variables, in order
to fit with the conventions in our main reference [15]. For the convenience of the reader, we
briefly included some of the details below.

The Hamiltonians of the q-deformed type A Toda chain have the form

Hk =
∑

0=i0<···<ik≤n

k∏
l=1

(
1− xil

xil−1

)1−δil−il−1,1
k∏

l=1

Til , k = 1, . . . , n, (A.2)

where q and xi are commuting variables, and Ti = qxi∂xi is the q-difference operator above. It
was proved in [13] that the operators Hk are limits of Macdonald operators, and the latter are
known to commute. This implies that Hk also commute.
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As above, let Qi = q−1xi+1xi
−1, with Q0 = Qn = 0. Then, using (A.1), one can rewrite (A.2)

as

Hk =
∑

0=i0<···<ik≤n

k∏
l=1

(1− qQil−1)
1−δil−il−1,1

k∏
l=1

q
−Qil

∂Qil q
Qil−1∂Qil−1 , k = 1, . . . , n.

Replacing q by q−1, we obtain

Ĥk =
∑

0=i0<···<ik≤n

k∏
l=1

(
1− q−1Qil−1

)1−δil−il−1,1

k∏
l=1

q
Qil

∂Qil
−Qil−1∂Qil−1

=
∑

0=i0<···<ik≤n

k∏
l=1

q
Qil

∂Qil
−Qil−1∂Qil−1

k∏
l=1

(1−Qil−1)
1−δil−il−1,1 , k = 1, . . . , n.

Remark A.1. The substitutions above ensure that the first Hamiltonian Ĥ1 agrees with the
one used in [15]. The substitution chosen in [1] produces similar operators, but with the q-shifts
and the Novikov terms in the opposite order.

The following key result of Givental and Lee [15, Theorem 2] shows that the J function is an
eigenfunction for JFl(n).

Theorem A.2 (Givental–Lee). Ĥ1JFl(n) = CnJFl(n).

We also need the following lemma of Givental–Lee [15].

Lemma A.3 ([15, p. 9]). Let D be a difference operator commuting with Ĥ1. Then, if J is an
eigenfunction of D modulo Q, then J is an eigenfunction of D whose eigenvalue is the same as
the one modulo Q.

From this, we deduce that JFl(n) is an eigenfunction of the higher Toda Hamiltonians, using
their commutativity with Ĥ1 and by computing their eigenvalues modulo Q.

Corollary A.4. For any 1 ≤ k ≤ n, the following holds:

ĤkJFl(n) = ∧k(Cn)JFl(n).

Proof. The case k = 1 is Theorem A.2. Suppose 2 ≤ k ≤ n. Since Ĥk commutes with Ĥ1, we
need only verify that JFl(n) is an eigenfunction of Ĥk modulo Q, thanks to Lemma A.3.

To this end, we first observe

ĤkJFl(n) = Ĥk

(
(1− q)

∏
i

P
ln(Qi)

ln(q)

i

)
+ o(Qi)

=
∑

0=i0<···<ik≤n

k∏
l=1

Pil

Pil−1

(
(1− q)

∏
i

P
ln(Qi)

ln(q)

i

)
+ o(Qi).

Thus, modulo Q, we have the eigenvalue equation

ĤkJFl(n) =
∑

0=i0<···<ik≤n

k∏
l=1

Pil

Pil−1
JFl(n)

= ek

(
P1

P0
,
P2

P1
, . . . ,

Pn

Pn−1

)
JFl(n) = ∧k(Cn)JFl(n). ■
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We now use [26, Proposition 2.12] which shows that the symbols of Toda Hamiltonians give
relations in quantum K theory.

Theorem A.5 (Iritani–Milanov–Tonita). Let D = D
(
qQi∂Qi , q,Q,Λi

)
be any q-difference oper-

ator with coefficients in KT (pt)[q
±1][[Qi]], such that it is regular at q = 1. Then

DJX = 0 =⇒ D
(
P̂i, 1, Q,Λi

)
= 0 ∈ QKT (X).

Remark A.6. The result of Iritani, Milanov and Tonita is stated non-equivariantly, and for
the big quantum K ring and the corresponding big J function. However, an inspection of their
proof shows that it works in the equivariant situation as well. Furthermore, if one starts with
the small quantum K ring, then all arguments extend to that situation, and the result also holds
for the small quantum K ring and the small J function. For further details, see [23].

One subtle point is that P̂i is a certain Q-deformation of the line bundle Pi: it is the restriction
to the small quantum K ring of an operator denoted by Ai,com in [26, Corollary 2.9], which arises
as a solution to a certain Lax-type equation. However, results of both Anderson, Chen, Tseng,
and Iritani in [2, Lemma 6], and also by Kato in [29, Theorem 1.35] show that in fact no
quantization is needed.

Proposition A.7. For the flag variety Fl(n), d̂et(Si) = det(Si).

We note in passing that an analogue of Proposition A.7 holds for any homogeneous spaceG/P ,
but we do not need this generality here.

Combining Theorem A.5 and Proposition A.7 with Corollary A.4 yields the following corol-
lary.

Corollary A.8. The following identities hold in QKT (Fl(n)):

∑
0=i0<···<ik≤n

k∏
l=1

Pil

Pil−1
(1−Qil−1)

1−δil−il−1,1 = ∧kCn, k = 1, . . . , n,

where P0 = Pn = 1.

Remark A.9. Theorem 4.9 of [30] gives a presentation of the quasimap quantumK-ring of T ∗Fl
whose limit to the is described in Theorem 5.5. The relations are based on the trigonometric
Ruijsenaars–Schneider model. After further taking into account a restriction from GLn to SLn,
the ‘Toda limit’ recovers the relations in this paper. We are grateful to P. Koroteev who explained
this procedure to us.
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