|
SIGMA 21 (2025), 099, 25 pages arXiv:2405.11051
https://doi.org/10.3842/SIGMA.2025.099
Darboux Transformation of Diffusion Processes
Alexey Kuznetsov and Minjian Yuan
Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
Received February 04, 2025, in final form November 12, 2025; Published online November 24, 2025
Abstract
Darboux transformation of a second-order linear differential operator is a well-known technique with many applications in mathematics and physics. We study Darboux transformation from the point of view of Markov semigroups of diffusion processes. We construct the Darboux transform of a diffusion process through a combination of Doob's $h$-transform and a version of Siegmund duality. Our main result is a simple formula that connects transition probability densities of the two processes. We provide several examples of Darboux transformed diffusion processes related to Brownian motion and Ornstein-Uhlenbeck process. For these examples, we compute explicitly the transition probability density and derive its spectral representation.
Key words: diffusion process; Darboux transform; Sturm-Liouville theory; Markov semigroup; Doob's transform; Siegmund duality.
pdf (531 kb)
tex (34 kb)
References
- Assiotis T., Random surface growth and Karlin-McGregor polynomials, Electron. J. Probab. 23 (2018), 106, 81 pages, arXiv:1709.10444.
- Assiotis T., On the singular values of complex matrix Brownian motion with a matrix drift, Bernoulli 29 (2023), 1686-1713, arXiv:2107.05028.
- Assiotis T., O'Connell N., Warren J., Interlacing diffusions, in Séminaire de Probabilités L, Lecture Notes in Math., Vol. 2252, Springer, Cham, 2019, 301-380, arXiv:1607.07182.
- Bagrov V.G., Samsonov B.F., Darboux transformation and elementary exact solutions of the Schrödinger equation, Pramana 49 (1997), 563-580.
- Bonnefont M., Joulin A., Intertwining relations for one-dimensional diffusions and application to functional inequalities, Potential Anal. 41 (2014), 1005-1031, arXiv:1304.3595.
- Borodin A.N., Salminen P., Handbook of Brownian motion - facts and formulae, 2nd ed., Probab. Appl., Birkhäuser, Basel, 2002.
- Clifford P., Sudbury A., A sample path proof of the duality for stochastically monotone Markov processes, Ann. Probab. 13 (1985), 558-565.
- Comtet A., Tourigny Y., Excursions of diffusion processes and continued fractions, Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), 850-874, arXiv:0906.4651.
- Cox J.T., Rösler U., A duality relation for entrance and exit laws for Markov processes, Stochastic Process. Appl. 16 (1984), 141-156.
- Crum M.M., Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955), 121-127.
- Darboux G., Sur une proposition relative aux équations linéaires, Comptes Rendus Acad. Sci. 94 (1882), 1456-1459.
- Desmettre S., Leobacher G., Rogers L.C.G., Change of drift in one-dimensional diffusions, Finance Stoch. 25 (2021), 359-381, arXiv:1910.11904.
- Fill J.A., Lyzinski V., Strong stationary duality for diffusion processes, J. Theoret. Probab. 29 (2016), 1298-1338, arXiv:1402.5706.
- García-Ferrero M.Á., Gómez-Ullate D., Milson R., A Bochner type characterization theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl. 472 (2019), 584-626, arXiv:1603.04358.
- Gómez-Ullate D., Grandati Y., Milson R., Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials, J. Phys. A 47 (2014), 015203, 27 pages, arXiv:1306.5143.
- Gómez-Ullate D., Grandati Y., Milson R., Durfee rectangles and pseudo-Wronskian equivalences for Hermite polynomials, Stud. Appl. Math. 141 (2018), 596-625, arXiv:1612.05514.
- Gómez-Ullate D., Milson R., Exceptional orthogonal polynomials and rational solutions to Painlevé equations, in Orthogonal Polynomials, Tutor. Sch. Workshops Math. Sci., Birkhäuser, Cham, 2020, 335-386.
- Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems, Math. Phys. Stud., Vol. 26, Springer, Dordrecht, 2005.
- Itô K., McKean Jr. H.P., Diffusion processes and their sample paths, Grundlehren Math. Wiss., Springer, Berlin, 1974.
- Karatzas I., Shreve S.E., Brownian motion and stochastic calculus, Grad. Texts in Math., Vol. 113, Springer, New York, 1988.
- Kolokol'tsov V.N., Stochastic monotonicity and duality of one-dimensional Markov processes, Math. Notes 89 (2011), 652-660, arXiv:1002.4773.
- Kotani S., Watanabe S., Kreǐn's spectral theory of strings and generalized diffusion processes, in Functional Analysis in Markov Processes, Lecture Notes in Math., Vol. 923, Springer, Berlin, 1982, 235-259.
- Mandl P., Analytical treatment of one-dimensional Markov processes, Grundlehren Math. Wiss., Springer, New York, 1968.
- Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991.
- Mijatović A., Urusov M., On the martingale property of certain local martingales, Probab. Theory Related Fields 152 (2012), 1-30.
- Patie P., Savov M., Zhao Y., Intertwining, excursion theory and Krein theory of strings for non-self-adjoint Markov semigroups, Ann. Probab. 47 (2019), 3231-3277, arXiv:1706.08995.
- Pupasov A.M., Samsonov B.F., Exact propagators for soliton potentials, SIGMA 1 (2005), 020, 7 pages, arXiv:quant-ph/0511238.
- Pupasov A.M., Samsonov B.F., Günther U., Exact propagators for SUSY partners, J. Phys. A 40 (2007), 10557-10587, arXiv:math-ph/0702088.
- Pupasov-Maksimov A.M., Propagators of isochronous an-harmonic oscillators and Mehler formula for the exceptional Hermite polynomials, Ann. Physics 363 (2015), 122-135, arXiv:1502.01778.
- Siegmund D., The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes, Ann. Probability 4 (1976), 914-924.
- Sousa R., Guerra M., Yakubovich S., Convolution-like structures, differential operators and diffusion processes, Lecture Notes in Math., Vol. 2315, Springer, Cham, 2022.
- Tóth B., Generalized Ray-Knight theory and limit theorems for self-interacting random walks on ${\bf Z}^1$, Ann. Probab. 24 (1996), 1324-1367.
- Yuan M., On ultraspherical polynomials and Wronskian determinants of trigonometric functions, unpublished.
|
|