Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 106, 23 pages      arXiv:2407.03534      https://doi.org/10.3842/SIGMA.2025.106

Myers-Steenrod Theorems for Metric and Singular Riemannian Foliations

Diego Corro ab and Fernando Galaz-García c
a) Fakultät für Mathematik, Karlsruher Institut für Technologie, Germany
b) School of Mathematics, Cardiff University, UK
c) Department of Mathematical Sciences, Durham University, UK

Received November 04, 2024, in final form December 01, 2025; Published online December 16, 2025

Abstract
We prove that the group of isometries preserving a metric foliation on a closed Alexandrov space $X$ is a closed subgroup of the isometry group of $X$. We obtain a sharp upper bound for the dimension of this subgroup and show that, when equality holds, the foliations that realize this upper bound are induced by fiber bundles whose fibers are round spheres or projective spaces. As a corollary, singular Riemannian foliations that realize the upper bound are induced by smooth fiber bundles whose fibers are round spheres or projective spaces.

Key words: Alexandrov space; submetry; isometry group; singular Riemannian foliation; Lie group.

pdf (527 kb)   tex (37 kb)  

References

  1. Alexandrino M.M., Bettiol R.G., Lie groups and geometric aspects of isometric actions, Springer, Cham, 2015.
  2. Alexandrino M.M., Briquet R., Töben D., Progress in the theory of singular Riemannian foliations, Differential Geom. Appl. 31 (2013), 248-267, arXiv:1203.6829.
  3. Alexandrino M.M., Radeschi M., Closure of singular foliations: the proof of Molino's conjecture, Compos. Math. 153 (2017), 2577-2590, arXiv:1608.03552.
  4. Becker J.C., Gottlieb D.H., Coverings of fibrations, Compos. Math. 26 (1973), 119-128.
  5. Berestovskii V.N., Submetries of space-forms of negative curvature, Sib. Math. J. 28 (1987), 552-562.
  6. Berestovskii V.N., Homogeneous manifolds with an intrinsic metric. II, Sib. Math. J. 30 (1989), 180-191.
  7. Berestovskii V.N., Locally compact homogeneous spaces with inner metric, J. Gen. Lie Theory Appl. 9 (2015), 1000223, 6 pages, arXiv:1412.7893.
  8. Berestovskii V.N., Guijarro L., A metric characterization of Riemannian submersions, Ann. Global Anal. Geom. 18 (2000), 577-588.
  9. Berestovskii V.N., Vershik A.M., Manifolds with intrinsic metric, and nonholonomic spaces, in Representation Theory and Dynamical Systems, Adv. Soviet Math., Vol. 9, American Mathematical Society, Providence, RI, 1992, 253-267.
  10. Bredon G.E., Introduction to compact transformation groups, Pure Appl. Math., Vol. 46, Academic Press, New York, 1972.
  11. Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. Math., Vol. 33, American Mathematical Society, Providence, RI, 2001.
  12. Burago Yu., Gromov M., Perelman G., A.D. Aleksandrov spaces with curvatures bounded below, Russian Math. Surveys 47 (1992), 3-51.
  13. Corro D., A-foliations of codimension two on compact simply-connected manifolds, Math. Z. 304 (2023), 63, 32 pages, arXiv:1903.07191.
  14. Corro D., Garcia K., Günther M., Kordaß J.-B., Bundles with even-dimensional spherical space form as fibers and fiberwise quarter pinched Riemannian metrics, Proc. Amer. Math. Soc. 149 (2021), 5407-5416, arXiv:2004.02518.
  15. Corro D., Kordaß J.-B., Short survey on the existence of slices for the space of Riemannian metrics, in Mexican Mathematicians in the World - Trends and Recent Contributions, Contemp. Math., Vol. 775, American Mathematical Society, Providence, RI, 2021, 65-84, arXiv:1904.07031.
  16. Corro D., Moreno A., Core reduction for singular Riemannian foliations and applications to positive curvature, Ann. Global Anal. Geom. 62 (2022), 617-634, arXiv:2011.05303.
  17. Deng S., Hou Z., The group of isometries of a Finsler space, Pacific J. Math. 207 (2002), 149-155.
  18. Díaz-Ramos J.C., Proper isometric actions, arXiv:0811.0547.
  19. Eschenburg J.H., Heintze E., Unique decomposition of Riemannian manifolds, Proc. Amer. Math. Soc. 126 (1998), 3075-3078.
  20. Farrell T., Gang Z., Knopf D., Ontaneda P., Sphere bundles with $1/4$-pinched fiberwise metrics, Trans. Amer. Math. Soc. 369 (2017), 6613-6630, arXiv:1505.03773.
  21. Ferus D., Karcher H., Münzner H.F., Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981), 479-502.
  22. Fukaya K., Yamaguchi T., Isometry groups of singular spaces, Math. Z. 216 (1994), 31-44.
  23. Galaz-Garcia F., Guijarro L., Isometry groups of Alexandrov spaces, Bull. Lond. Math. Soc. 45 (2013), 567-579, arXiv:1109.4878.
  24. Galaz-Garcia F., Radeschi M., Singular Riemannian foliations and applications to positive and non-negative curvature, J. Topol. 8 (2015), 603-620, arXiv:1302.4593.
  25. Gromoll D., Walschap G., Metric foliations and curvature, Progr. Math., Vol. 268, Birkhäuser, Basel, 2009.
  26. Grove K., Geometry of, and via, symmetries, in Conformal, Riemannian and Lagrangian Geometry (Knoxville, TN, 2000), Univ. Lecture Ser., Vol. 27, American Mathematical Society, Providence, RI, 2002, 31-53.
  27. Grove K., A panoramic glimpse of manifolds with sectional curvature bounded from below, St. Petersburg Math. J. 29 (2018), 3-31.
  28. Grove K., Petersen P., A radius sphere theorem, Invent. Math. 112 (1993), 577-583.
  29. Guijarro L., Santos-Rodríguez J., On the isometry group of ${\rm RCD}^*(K,N)$-spaces, Manuscripta Math. 158 (2019), 441-461, arXiv:1608.06467.
  30. Guijarro L., Walschap G., Submetries vs. submersions, Rev. Mat. Iberoam. 27 (2011), 605-619, arXiv:0909.4650.
  31. Hall B., Lie groups, Lie algebras, and representations. An elementary introduction, 2nd ed., Grad. Texts in Math., Vol. 222, Springer, Cham, 2015.
  32. Kapovitch V., Lytchak A., The structure of submetries, Geom. Topol. 26 (2022), 2649-2711, arXiv:2007.01325.
  33. Kobayashi S., Transformation groups in differential geometry, Class. Math., Springer, Berlin, 1995.
  34. Lange C., Orbifolds from a metric viewpoint, Geom. Dedicata 209 (2020), 43-57, arXiv:1801.03472.
  35. Lee J.M., Introduction to smooth manifolds, 2nd ed., Grad. Texts in Math., Vol. 218, Springer, New York, 2013.
  36. Lytchak A., Submetrien von Alexandrov-Räumen, available at http://www.mi.uni-koeln.de/ alytchak/preprints/sub.pdf, 2022.
  37. Lytchak A., Some regularity of submetries, Ann. Global Anal. Geom. 65 (2024), 15, 19 pages, arXiv:2307.14284.
  38. Lytchak A., Thorbergsson G., Curvature explosion in quotients and applications, J. Differential Geom. 85 (2010), 117-139.
  39. Lytchak A., Wilking B., Smoothness of submetries, arXiv:2411.15324.
  40. Maksymenko S., Polulyakh E., Actions of groups of foliated homeomorphisms on spaces of leaves, arXiv:2006.01953.
  41. Manoussos A., On the action of the group of isometries on a locally compact metric space, Münster J. Math. 3 (2010), 233-236, arXiv:0902.0319.
  42. Manoussos A., Strantzalos P., On the group of isometries on a locally compact metric space, J. Lie Theory 13 (2003), 7-12.
  43. Mendes R.A.E., Lifting isometries of orbit spaces, Bull. Lond. Math. Soc. 53 (2021), 1621-1626, arXiv:2004.00097.
  44. Mendes R.A.E., Radeschi M., A slice theorem for singular Riemannian foliations, with applications, Trans. Amer. Math. Soc. 371 (2019), 4931-4949, arXiv:1511.06174.
  45. Molino P., Riemannian foliations, Progr. Math., Vol. 73, Birkhäuser, Boston, MA, 1988.
  46. Moreno A., Point leaf maximal singular Riemannian foliations in positive curvature, Differential Geom. Appl. 66 (2019), 181-195, arXiv:1804.09335.
  47. Myers S.B., Steenrod N.E., The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939), 400-416.
  48. Radeschi M., Clifford algebras and new singular Riemannian foliations in spheres, Geom. Funct. Anal. 24 (2014), 1660-1682, arXiv:1401.2546.
  49. Sosa G., The isometry group of an ${\rm RCD}^*$ space is Lie, Potential Anal. 49 (2018), 267-286, arXiv:1609.02098.
  50. van Dantzig D., van der Waerden B.L., Über metrisch homogene Räume, Abh. Math. Sem. Univ. Hamburg 6 (1928), 367-376.
  51. Wilking B., Nonnegatively and positively curved manifolds, in Surveys in Differential Geometry, Surv. Differ. Geom., Vol. 11, International Press, Somerville, MA, 2007, 25-62, arXiv:0707.3091.

Previous article  Next article  Contents of Volume 21 (2025)