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Abstract. In [J. Lond. Math. Soc. 109 (2024), e12884, 22 pages], the difference qKZ
equations were considered modulo a prime number p and a family of polynomial solutions
of the qKZ equations modulo p was constructed by an elementary procedure as suitable
p-approximations of the hypergeometric integrals. In this paper, we study in detail the first
family of nontrivial examples of the qKZ equations in characteristic p. We describe all solu-
tions of these qKZ equations in characteristic p by demonstrating that they all stem from the
p-hypergeometric solutions. We also prove a Lagrangian property (called the orthogonality
property) of the subbundle of the qKZ bundle spanned by the p-hypergeometric sections.
This paper extends the results of [arXiv:2405.05159] on the differential KZ equations to the
difference qKZ equations.
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1 Introduction

The Knizhnik–Zamolodchikov (KZ) differential equations are a system of linear differential equa-
tions, satisfied by conformal blocks on the sphere in the WZW model of conformal field theory,
see [4]. The quantum Knizhnik–Zamolodchikov (qKZ) equations are a difference version of the
KZ equations which naturally appear in the representation theory of Yangians (rational case)
and quantum affine algebras (trigonometric case), see [1, 3]. The qKZ equations may be regarded
as a deformation of the KZ differential equations.

As a rule one considers the KZ and qKZ equations over the field of complex numbers. Then
these differential and difference equations are solved in multidimensional hypergeometric inte-
grals.

In [6], the differential KZ equations were considered modulo a prime integer p. It turned
out that modulo p the KZ equations have a family of polynomial solutions. The construction
of these solutions was analogous to the construction of the multidimensional hypergeometric
solutions, and these polynomial solutions were called the p-hypergeometric solutions.

In [5], the rational sl2 qKZ equations with values in the n-th tensor power of the vector
representation L and an integer step κ were considered modulo p. A family of polynomial
solutions modulo p of these equations was constructed and called the p-hypergeometric solutions.

In this paper, we address the problem of whether all solutions of the qKZ equations in
characteristic p are generated by the p-hypergeometric solutions. We consider the first family
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of nontrivial examples of the qKZ equations and demonstrate that, indeed, in this case, all
solutions of the qKZ equations stem from the p-hypergeometric solutions.

Let K be a field of characteristic p. The qKZ equations for a function f(z1, . . . , zn) with
values in the K-vector space L⊗n and step κ ∈ K× have the form

f(z1, . . . , za − κ, . . . , zn) = Ka(z;κ)f(z), a = 1, . . . , n,

where the linear operators Ka(z;κ) are given in terms of the rational sl2 R-matrix, see (2.2).
The operators Ka(z;κ) commute with the diagonal action of sl2, and, therefore, it is sufficient
to solve the qKZ equations only with values in the space of singular vectors of a given weight.
In this paper, we study the qKZ equations with values in V := SingL⊗n[n − 2] ⊂ L⊗n, the
subspace of singular vectors of weight n− 2. We have dimV = n− 1.

There are two cases: κ ∈ K \ Fp and κ ∈ F×
p .

Theorem 1.1. Let p be a prime number that does not divide n. For κ ∈ K \ Fp, there does not
exist a nonzero rational V -valued function f(z1, . . . , zn) which is a solution of the qKZ equations
with parameter κ.

See Corollary 7.12.
Assume that κ ∈ F×

p . Let 0 < k < p be the positive integer such that κk ≡ −1 (mod p).
Let [x] denote the integer part of a real number and d(κ) :=

[
kn
p

]
. If p does not divide n,

then d(κ) + d(−κ) = n− 1 = dimV .
In [5], we constructed d(κ) V -valued p-hypergeometric solutions of the qKZ equations de-

noted Qℓp−1(z;κ), ℓ = 1, . . . , d(κ). In this paper, we show that these solutions are linearly
independent over the field K(z1, . . . , zn), see Theorem 5.6.

Theorem 1.2. Let p > n, κ ∈ F×
p , and 0 < d(κ) < n − 1. Let f(z) be a V -valued rational

function in z which is a solution the qKZ equations with step κ. Then f(z) is a linear combination
of the p-hypergeometric solutions Qℓp−1(z;κ), ℓ = 1, . . . , d(κ), with coefficients which are scalar
rational functions in zpi − zi, i = 1, . . . , n.

See Theorem 7.9. Notice that h(x) = xp−x ∈ K[x] is a 1-periodic polynomial, h(x+1) = h(x).
In particular, h(x+ κ) = h(x).

If d(κ) = n − 1 or 0, all solutions of the qKZ equations with values in V and step κ are
described in Section 7.4.

We prove the orthogonality relations for p-hypergeometric solutions of the qKZ equations
with steps κ and −κ.

Theorem 1.3. Let p > n and 0 < d(κ) < n − 1. Then for any ℓ ∈ {1, . . . , d(κ)} and m ∈
{1, . . . , d(−κ)}, we have

S
(
Qmp−1(−z;−κ), Qℓp−1(z;κ)

)
= 0,

where S is the Shapovalov form.

See Theorem 6.1.
Define the p-curvature operators of the qKZ equations with values in V and step κ by the

formula

Ca(z1, . . . , zn;κ) := Ka(z1, . . . , za − (p− 1)κ, . . . , zn;κ)

×Ka(z1, . . . , za − (p− 2)κ, . . . , zn;κ) · · ·Ka(z1, . . . , za − κ, . . . , zn;κ)

×Ka(z1, . . . , za, . . . , zn;κ),

for a = 1, . . . , n, and the reduced p-curvature operators by the formula

Ĉa(z1, . . . , zn;κ) := Ca(z1, . . . , zn;κ)− 1.

If f(z1, . . . , zn) is a solution of the qKZ equations, then Ĉaf = 0 for all a.
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Theorem 1.4. Let p > n. Then the reduced p-curvature operators have the following properties:

(i) If κ ∈ K \ Fp, then all reduced p-curvature operators Ĉa(z;κ), a = 1, . . . , n, are nondegen-
erate for generic z.

(ii) If κ ∈ F×
p and d(κ) = n − 1 or 0, then all reduced p-curvature operators Ĉa(z;κ), a =

1, . . . , n, are equal to zero.

(iii) If κ ∈ F×
p and 0 < d(κ) < n − 1, then all reduced p-curvature operators Ĉa(z;κ), a =

1, . . . , n, are nonzero. For every a, the span of the p-hypergeometric solutions Qℓp−1(z;κ),
ℓ = 1, . . . , d(κ), lies in the kernel of Ĉa(z, κ) and contains the image of Ĉa(z;κ). Also, for
all a, b,

Ĉa(z;κ)Ĉb(z;κ) = 0, Ĉa(z,−κ) + Ĉa(−z;κ)∗ = 0,

where for an operator T : V → V we denote by T ∗ the operator dual to T under the
Shapovalov form.

See Theorem 7.3 and Lemmas 7.7, 7.11.
In a suitable limit the difference qKZ equations on L⊗n degenerate to the differential KZ

equations on L⊗n,

κ
∂f

∂za
=

∑
j ̸=a

P (a,j) − 1

za − zj
f, a = 1, . . . , n,

where P (a,j) is the permutation operator of the a-th and j-th tensor factors of L⊗n.
In [8], the differential KZ equations over a field K of characteristic p with values in V ⊂ L⊗n

were studied in detail. Our paper extends the results of [8] from the differential KZ equations
to the difference qKZ equations. The proofs of Theorems 1.1, 1.2, and 1.4 are based on the
corresponding results in [8] for the differential KZ equations.

On the differential and difference equations in characteristic p and associated p-curvature see
also [2, 9].

2 Difference qKZ equations

2.1 Notations

In this paper, p is a prime and K a field of characteristic p.
Consider the Lie algebra sl2 over K with basis e, f , h and relations [e, f ] = h, [h, e] = 2e,

[h, f ] = −2f . Let L be the two-dimensional sl2-module with basis v1, v2 and the action ev1 = 0,
ev2 = v1, fv1 = v2, fv2 = 0, hv1 = v1, hv2 = −v2.

For a positive integer n > 1, consider the sl2-module L⊗n.
Let Il be the set of all l-element subsets of {1, . . . , n}. For a subset I ⊂ {1, . . . , n}, denote

vI = vi1 ⊗ · · · ⊗ vin ∈ L⊗n,

where ij = 2 if ij ∈ I and ij = 1 if ij /∈ I. Denote by L⊗n[n − 2l] the span of the vectors
{vI | I ∈ Il}. We have a direct sum decomposition,

L⊗n =

n⊕
l=0

L⊗n[n− 2l].

Let SingL⊗n[n− 2l] ⊂ L⊗n[n− 2l] be the subspace of singular vectors (the vectors annihilated
by e).
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2.2 qKZ equations

Define the rational R-matrix acting on L⊗2, R(u) = u−P
u−1 , where P is the permutation of tensor

factors of L⊗2. The R-matrix satisfies the Yang–Baxter and unitarity equations,

R(12)(u− v)R(13)(u)R(23)(v) = R(23)(v)R(13)(u)R(12)(u− v),

R(12)(u)R(21)(−u) = 1. (2.1)

The first equation is an equation in End
(
L⊗3

)
. The superscript indicates the factors of L⊗3 on

which the corresponding operators act.
Let z = (z1, . . . , zn). Define the qKZ operators K1, . . . ,Kn acting on L⊗n

Ka(z;κ) = R(a,a−1)(za − za−1 − κ) · · ·R(a,1)(za − z1 − κ)

×R(a,n)(za − zn) · · ·R(a,a+1)(za− za+1), (2.2)

where κ ∈ K× is a parameter.
The qKZ operators preserve the weight decomposition of L⊗n, commute with the sl2-action,

and form a discrete flat connection with step κ on the trivial bundle L⊗n ×Kn → Kn,

Ka(z1, . . . , zb − κ, . . . , zn;κ)Kb(z;κ) = Kb(z1, . . . , za − κ, . . . , zn;κ)Ka(z;κ)

for a, b = 1, . . . , n, see [3].
The system of difference equations with step κ,

s(z1, . . . , za − κ, . . . , zn) = Ka(z;κ)s(z), a = 1, . . . , n, (2.3)

for an L⊗n-valued function s(z), is called the qKZ equations with step κ.
Since the qKZ operators commute with the action of sl2 on L⊗n, the qKZ operators preserve

the subbundle SingL⊗n[n− 2l]×Kn → Kn for every integer l.
Define the translation operators Ta by

(Taf)(z1, . . . , za, . . . , zn) = f(z1, . . . , za − κ, . . . , zn).

The difference operators ∇a = T−1
a Ka(z;κ) are called the connection operators of the qKZ

difference connection. We have [∇a,∇b] = 0.

2.3 p-curvature of the qKZ connection

Define the p-curvature operators of the qKZ connection by

Ca(z;κ) = Ka(z1, . . . , za − (p− 1)κ, . . . , zn;κ)Ka(z1, . . . , za − (p− 2)κ, . . . , zn;κ) · · ·
×Ka(z1, . . . , za − κ, . . . , zn;κ)Ka(z1, . . . , za, . . . , zn;κ)

for a = 1, . . . , n. In other words, Ca = (∇a)
p.

For every a, the operator Ca(z;κ) acts on fibers of the bundle L⊗n × Kn → Kn and defines
an endomorphism of the qKZ connection,

Kb(z1, . . . , zn;κ)Ca(z1, . . . , zn;κ) = Ca(z1, . . . , zb − κ, . . . , zn;κ)Kb(z1, . . . , zn;κ).

The operators Ca(z;κ) commute, i.e., [Ca(z;κ), Cb(z;κ)] = 0.
If s(z;κ) is a flat section of the qKZ discrete connection,

s(z1, . . . , za − κ, . . . , zn;κ) = Ka(z;κ)s(z;κ), a = 1, . . . , n,
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then s(z;κ) is an eigenvector of the p-curvature operators with eigenvalue 1,

s(z;κ) = Ca(z;κ)s(z;κ), a = 1, . . . , n. (2.4)

An operator Ca(z;κ) is a rational function in z with the denominator

Da(z;κ) =
∏
j ̸=a

p−1∏
m=0

(za − zj −mκ− 1)

=
∏
j ̸=a

(
zpa − κp−1za + (−zj)

p + κp−1zj + (−1)p + κp−1
)
.

It is convenient to introduce the reduced p-curvature operators by the formula

Ĉa(z;κ) = Ca(z;κ)− 1, (2.5)

and the normalized p-curvature operators by the formula

C̃a(z;κ) = Da(z;κ)(Ca(z;κ)− 1).

The normalized p-curvature operators are polynomials in z of degree ⩽ (n− 1)p.

2.4 Differential KZ equations

For κ ∈ K×, the differential KZ operators

∇KZ
a = κ

∂

∂za
−

∑
j ̸=a

P (a,j) − 1

za − zj
, a = 1, . . . , n,

define a flat KZ connection on L⊗n×Kn → Kn,
[
∇KZ

a ,∇KZ
b

]
= 0. The operators ∇KZ

a commute
with the sl2-action on L⊗n. The system of equations

κ
∂f

∂za
=

∑
j ̸=a

P (a,j) − 1

za − zj
f, a = 1, . . . , n, (2.6)

is called the differential KZ equations with parameter κ. The KZ operators preserve every
subbundle SingL⊗n[n− 2l]×Kn → Kn. Denote

Ha(z) =
∑
j ̸=a

P (a,j) − 1

za − zj
,

the Gaudin Hamiltonians.
The p-curvature operators of the KZ connection are defined by the formula

CKZ
a (z;κ) :=

(
∇KZ

a

)p
.

They define an endomorphism of the KZ connection,
[
CKZ
a ,∇KZ

b

]
= 0.

An operator CKZ
a (z;κ) is a rational function in z with the denominator

DKZ
a (z;κ) =

∏
j ̸=a

(
zpa − zpj

)
.

It is convenient to introduce the normalized p-curvature operator by the formula

C̃KZ
a (z;κ) = DKZ

a (z;κ)CKZ
a (z;κ).

The normalized p-curvature operator is a homogeneous polynomial in z of degree (n − 2)p if
nonzero.
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2.5 KZ equations as a limit of qKZ equations

Let f(z1, . . . , zn) satisfy the qKZ equations,

f(z1, . . . , za − κ, . . . , zn) = Ka(z;κ)f(z), a = 1, . . . , n.

Let α be a formal parameter. Define g(w1, . . . , wn;α) := f(w1/α, . . . , wn/α). Then

g(w1, . . . , wa − ακ, . . . , wn;α) = Ka(w/α;κ)g(w;α), a = 1, . . . , n, (2.7)

where

Ka(w/α;κ) = R(a,a−1)(wa − wa−1 − ακ;α) · · ·R(a,1)(wa − w1 − ακ;α)

×R(a,n)(wa − wn;α) · · ·R(a,a+1)(wa− wa+1;α),

R(u;α) =
u− αP

u− α
= 1− α

P − 1

u− α
.

Equation (2.2) gives

g − ακ
∂g

∂wa
+O

(
α2

)
=

(
1− αHa(w) +O

(
α2

))
g.

In the limit α → 0, we obtain the KZ differential equations

κ
∂g

∂wa
(w) = Ha(w)g(w).

Lemma 2.1. Let Ĉa(z;κ) be a reduced p-curvature operators of the qKZ connection. Then

CKZ
a (z;κ) = lim

α→0
Ĉa(z1/α, . . . , zn/α;κ)/α

p.

Proof. Let Ca,α be the p-curvature operator of equation (2.7). Clearly,

Ca,α(w;κ) = Ca(w1/α, . . . , wn/α;κ).

Hence we need to prove that

CKZ
a (w;κ) = lim

α→0
(Ca,α(w;κ)− 1)/αp. (2.8)

Let ∇a,α be the connection operator of the discrete connection (2.7),

(∇a,αg)(w) = Ka(w1/α, . . . , (wa + ακ)/α, . . . , wn/α;κ)g(w1, . . . , wa + ακ, . . . , wn).

Then

(∇a,αg)(w) = g − αHa(w)g + ακ
∂g

∂wa
+O

(
α2

)
.

Hence

(∇a,α − 1)g = α∇KZ
a g +O

(
α2

)
.

Thus

Ca,α(w;κ)− 1 = (∇a,α)
p − 1 = (∇a,α − 1)p = αp

(
∇KZ

a

)p
+O

(
αp+1

)
. ■

Corollary 2.2. The degree of the reduced p-curvature operator C̃a(z;κ) as a polynomial in z
is not greater than (n − 2)p. Moreover, we have C̃a(z;κ) = C̃KZ

a (z;κ) + f1(z), where f1(z) is
a polynomial in z of degree less than (n− 2)p.

Proof. The first statement of the corollary follows from the fact that the denominator of the
reduced p-curvature operator Ĉa(z;κ) is of degree (n − 1)p. Hence the numerator is of degree
not greater than (n− 2)p for the limit in (2.8) to exist. The second statement is clear. ■
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2.6 Limit of solutions

Let f(z1, . . . , zn) be a polynomial solution of the qKZ equations (2.3). Let deg f(z) = d
and f(z) = f0(z) + f1(z), where f0(z) is a homogeneous polynomial of degree d and f1(z) is
a polynomial of degree less than d.

Lemma 2.3. The polynomial f0(z) is a solution of the KZ equations (2.6).

Proof. Let α be a formal parameter. Define g(w1, . . . , wn;α) = αdf(w1/α, . . . , wn/α). Then
g(w1, . . . , wn;α) = f0(w)+αg1(w;α), where g1(w;α) = αd−1f1(w/α) is a polynomial in w and α.
We have

g(w1, . . . , wa − ακ, . . . , wn;α) = Ka(w/α;κ)g(w;α), a = 1, . . . , n.

Let

da(w;α) =
a−1∏
j=1

(wa − wj − ακ− α)
n∏

j=a+1

(wa − wj − α)

be the denominator of Ka(w/α;κ) and

na(w;α) =
(
wa − wa−1 − ακ− αP (a,a−1)

)
· · ·

(
wa − wa+1 − αP (a,a+1)

)
the numerator. Then (2.7) can be written as a polynomial equation

da(w;α)g(w1, . . . , wa − ακ, . . . , wn;α) = na(w;α)g(w;α) (2.9)

in the variables w and α. Equation (2.9) gives an equation in w for every fixed power of α
in (2.9). The equation corresponding to the first power of α after division by da(w; 0) becomes

κ
∂f0
∂wa

(w) =
∑
j ̸=a

P (a,j) − 1

wa − wj
f0(w). ■

2.7 Dual qKZ equations

Denote W = L⊗n. Let W ∗ be the dual space of W , and ⟨, ⟩ : W ∗ ⊗ W → K the canonical
pairing. Let K∗

a(z;κ) : W
∗ → W ∗ be the operators dual to the operators Ka(z;κ). Denote

K̃a(z;κ) = (K∗
a(z;κ))

−1.
We have

K̃a(z1, . . . , zb − κ, . . . , zn;κ)K̃b(z;κ) = K̃b(z1, . . . , za − κ, . . . , zn;κ)K̃a(z;κ)

for all a, b, and also

⟨x, y⟩ =
〈
K̃a(z;κ)x,Ka(z;κ)y

〉
(2.10)

for all a and x ∈ W ∗, y ∈ W .
The system of difference equations with step κ,

s̃(z1, . . . , za − κ, . . . , zn) = K̃a(z;κ)s̃(z), a = 1, . . . , n, (2.11)

for an W ∗-valued function s̃(z), is called the dual qKZ equations.
If s(z) is a solution of the qKZ equations (2.3) and s̃(z) is a solution of the dual qKZ

equations (2.11), then the function ⟨s̃(z), s(z)⟩ is κ-periodic with respect to every za,

−⟨s̃(z1, . . . , za − κ, . . . , zn), s(z1, . . . , za − κ, . . . , zn, )⟩ = ⟨s̃(z), s(z)⟩.
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The set of vectors {vI | I ⊂ {1, . . . , n}} is a basis of W . Define the nondegenerate symmetric
bilinear form S on W by the formula S(vI , vJ) = δI,J . The form is called the (tensor) Shapovalov
form. We identify W ∗ and W with the help of the Shapovalov form.

Under this identification, the operators R(i,j)(u) become symmetric. Using (2.1) we obtain
the following formula for the operators K̃a(z;κ) as operators on W ,

K̃a(z;κ) = R(a,a−1)(−za + za−1 + κ) · · ·R(a,1)(−za + z1 + κ)

×R(a,n)(−za + zn) · · ·R(a,a+1)(−za+ za+1).

In other words,

K̃a(z1, . . . , zn;κ) = Ka(−z1, . . . ,−zn;−κ),

S(Ka(−z1, . . . ,−zn;−κ)x,Ka(z1, . . . , zn;κ)y) = S(x, y)

for all x, y ∈ W .
Now the dual qKZ equations for a W -valued function s̃(z) take the form

s̃(z1, . . . , za − κ, . . . , zn) = Ka(−z1, . . . ,−zn;−κ)s(z), a = 1, . . . , n.

These formulas prove the following lemma.

Lemma 2.4. Let s(z) be a solution of the qKZ equations (2.3) with step κ and s̃(z) a solution
of the qKZ equations (2.3) with step −κ. Then the function S(s̃(−z), s(z)) is κ-periodic with
respect to every variable za,

S(s̃(−z1, . . . ,−(za − κ), . . . ,−zn), s(z1, . . . , za − κ, . . . , zn)) = S(s̃(−z), s(z)).

See also Corollary 7.10.

3 Pochhammer polynomials

For κ ∈ K and m a positive integer, define Pochhammer polynomial (t;κ)m ∈ K[t] by the
formula (t;κ)m =

∏m
i=1(t− (i− 1)κ).1 We have

(t− κ;κ)m = (t;κ)m
t− κm

t
, (t+ κ;κ)m = (t;κ)m

t+ κ

t− (m− 1)κ
.

(t+ z;κ)m =

m∑
i=0

(
m

i

)
(t;κ)i(z;κ)m−i,

(t;κ)i(t;κ)j =

min(i,j)∑
l=0

(
i

l

)(
j

l

)
l!κl(t;κ)i+j−l, (3.1)

(t;κ)m =

m∑
l=0

s1(m, l)κm−ltl,

tm =
m∑
l=0

s2(m, l)κm−l(t;κ)l, (3.2)

where the integers s1(m, l) and s2(m, l) are Stirling numbers of the first and second kind, re-
spectively. Notice that

s1(m,m) = s2(m,m) = 1. (3.3)

1See https://en.wikipedia.org/wiki/Falling_and_rising_factorials.

https://en.wikipedia.org/wiki/Falling_and_rising_factorials
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We also have (t;κ)p = tp − κp−1t,

(t+ z;κ)p = (t+ z)p − κp−1(t+ z) = tp − κp−1t+ zp − κp−1z = (t;κ)p + (z;κ)p.

We call a polynomial f(t) ∈ Fp[t] a quasi-constant if f(t − κ) = f(t). The quasi-constants
are polynomials in tp − κp−1t. A Pochhammer polynomial (t;κ)m is a quasi-constant if m is
divisible by p. Then (t;κ)pa =

(
tp − κp−1t

)a
.

Let A be a K-algebra, for example, A = K[z1, . . . , zn]. The polynomials {(t;κ)m | m ⩾ 0}
form an A-basis of the ring of polynomials A[t].

4 p-hypergeometric solutions for κ ∈ F×
p ⊂ K

4.1 Solutions in SingL⊗n[n − 2]

In this paper, we study solutions of the qKZ equations with values in V := SingL⊗n[n−2]. The
space L⊗n[n−2] has a basis v(i) = v1⊗· · ·⊗v2⊗· · ·⊗v1, i = 1, . . . , n, where the only v2 stays at
the i-th place. In this basis, the subspace V consists of all vectors with the sum of coordinates
equal to zero. We identify L⊗n[n− 2] with Kn and the subspace V with the vector space

{x ∈ Kn | x1 + · · ·+ xn = 0}. (4.1)

4.2 Master polynomial and weight functions

For κ ∈ F×
p , let 0 < k < p be the positive integer such that

κk ≡ −1 (mod p). (4.2)

Define master polynomial Φ(t, z;κ) =
∏n

a=1(t−za;κ)k, where k is defined in (4.2). For 1 ⩽ a ⩽ n,
define the weight functions

ηa(t, z) =
1

t− za

a−1∏
j=1

t− zj + 1

t− zj
, Qa(t, z;κ) = Φ(t, z;κ)ηa(t, z).

Notice that the formula for the function ηa(t, z) does not depend on p and κ.

Lemma 4.1. The function Qa(t, z;κ) is a product of n Pochhammer polynomials:

Qa(t, z;κ) =

a−1∏
j=1

(t− zj − κ;κ)k

 (t− za − κ;κ)k−1

 n∏
j=a+1

(t− zj ;κ)k

 .

Define a vector of polynomials

Q(t, z;κ) = (Q1(t, z;κ), . . . , Qn(t, z;κ))
⊺ =

∑
i

Qi(z;κ)(t;κ)i, (4.3)

where M⊺ denotes the transpose matrix of a matrix M and Qi(z;κ) =
(
Qi

1(z;κ), . . . , Q
i
n(z;κ)

)⊺
are vectors of polynomials in z.

Example 4.2. For n = 2,

Q(t, z;κ) =
(
(t1 − z1 − κ;κ)k−1(t1 − z2;κ)k, (t1 − z1 − κ;κ)k(t1 − z2 − κ;κ)k−1

)⊺
.
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Theorem 4.3 ([5, Theorem 5.1]). For any positive integer ℓ, the vector Qℓp−1(z;κ) of polyno-
mials in z is a solutions of the qKZ equations with step κ and values in V = SingL⊗n[n− 2], in

particular,
∑n

a=1Q
ℓp−1
a (z;κ) = 0, see (4.1).

Let [x] denote the integer part of a real number x. The vector Qℓp−1(z;κ) is zero if ℓ ̸∈{
1, . . . ,

[
nk
p

]}
for degree reasons. The vectors of polynomials Qℓp−1(z;κ), ℓ = 1, . . . ,

[
nk
p

]
,

are called the p-hypergeometric solutions of the qKZ equations with step κ and values in V .
Denote d(κ) =

[
nk
p

]
.

Notice that if nk
p < 1, then there are no p-hypergeometric solutions.

4.3 Step −κ

The integer k satisfies the inequalities 0 < k < p and the congruence κk ≡ −1 (mod p), see (4.2).
Then the integer p−k satisfies the inequalities 0 < p−k < p and the congruence −κ(p−k) ≡ −1
(mod p). Hence Φ(t, z;−κ) =

∏n
a=1(t− za;−κ)p−k. Recall that

Qa(t, z;−κ) = Φ(t, z;−κ)ηa(t, z),

Q(t, z;−κ) = (Q1(t, z;−κ), . . . , Qn(t, z;−κ))⊺ =
∑
i

Qi(z;−κ)(t;−κ)i.

Corollary 4.4. The vectors

Qℓp−1(z;−κ), ℓ = 1, . . . ,

[
n(p− k)

p

]
,

are solutions of the qKZ equations with step −κ and values in V .

If p does not divide n, then the total number of p-hypergeometric solutions of the qKZ
equations with values in V and steps κ and −κ equals[

nk

p

]
+

[
n(p− k)

p

]
= n− 1 = dimV.

4.4 p-hypergeometric solutions of KZ equations

In this subsection, we remind the construction in [6] of polynomial solutions modulo p of the
differential KZ equations with values in V = SingL⊗n[n− 2].

Let 0 < k < p be the positive integers such that κk ≡ −1 (mod p). Define master polyno-
mial Φ̄(t, z, κ) =

∏n
a=1(t− za)

k. For 1 ⩽ a ⩽ n, define the weight functions

w̄a(t, z) =
1

t− za
, Q̄a(t, z;κ) = Φ̄(t, z;κ)w̄a(t, z).

Then Q̄a(t, z;κ) is a polynomial in t, z. Define a vector of polynomials in t, z,

Q̄(t, z;κ) =
(
Q̄1(t, z;κ), . . . , Q̄n(t, z;κ)

)⊺
=

∑
i

Q̄i(z;κ)ti,

where Q̄i(z;κ) =
(
Q̄i

1(z;κ), . . . , Q̄
i
n(z;κ)

)⊺
are vectors of polynomials in z.

Theorem 4.5 ([6]). For any positive integer ℓ, the vector Q̄ℓp−1(z;κ) is a solution of the dif-
ferential KZ equations with parameter κ and values in V = SingL⊗n[n− 2].
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The vector Q̄ℓp−1(z;κ) is zero if ℓ ̸∈
{
1, . . . ,

[
nk
p

]}
for degree reasons. The vectors

Q̄ℓp−1(z, κ), ℓ = 1, . . . ,

[
nk

p

]
,

are called the p-hypergeometric solutions of the differential KZ equations with parameter κ and
values in V .

Notice that Q̄a(t, z;κ) are homogeneous polynomials in variables t, z of degree nk − 1,
and Q̄ℓp−1(z;κ) are vectors of homogeneous polynomials in z of degree nk − ℓp.

4.5 Top-degree part of p-hypergeometric solutions

It turns out that the top-degree part of a p-hypergeometric solution Qℓp−1(z;κ) of the qKZ
equations is the p-hypergeometric solution Q̄ℓp−1(z;κ) of the KZ equations.

We start with an abstract lemma. Let t, z1, . . . , zn, α be variables. Given a homogeneous
polynomial P (t, z1, . . . , zn, α) of degree d in the variables t, z, α and an integer e, 0 ⩽ e ⩽ d, we
construct two polynomials P̄e(z1, . . . , zn) and Pe(z1, . . . , zn, 0) as follows.

On the one hand, we have

P (t, z1, . . . , zn, α) =
∑

d0+···+dn+1=d

ad0,...,dn+1t
d0zd11 · · · zdnn αdn+1 . (4.4)

Then

P (t, z1, . . . , zn, 0) =
∑

d0+···+dn=d

ad0,...,dn,0t
d0zd11 · · · zdnn . (4.5)

Denote

P̄e(z1, . . . , zn) =
∑

e+d1+···+dn=d

ae,d1,...,dn,0z
d1
1 · · · zdnn ,

the coefficient of te in (4.5).
On the other hand, applying formula (3.2) to each td0 at (4.4), we rewrite this sum as

P (t, z1, . . . , zn, α) =
∑

d0+···+dn+1=d

bd0,...,dn+1(t;α)d0z
d1
1 · · · zdnn αdn+1 . (4.6)

Denote

Pe(z1, . . . , zn, α) =
∑

e+d1+···+dn+1=d

be,d1,...,dn+1z
d1
1 · · · zdnn αdn+1 ,

the coefficient of (t;α)e in (4.6). Then

Pe(z1, . . . , zn, 0) =
∑

e+d1+···+dn=d

be,d1,...,dn,0z
d1
1 · · · zdnn .

Lemma 4.6. We have Pe(z1, . . . , zn, 0) = P̄e(z1, . . . , zn).

Proof. By formula (3.3), we have ae,d1,...,dn,0 = be,d1,...,dn,0 for any e, d1, . . . , dn. This implies
the lemma. ■

Corollary 4.7 ([5]). Let Qℓp−1(z;κ) be a p-hypergeometric solution of the qKZ equations from
Theorem 4.3. Then Qℓp−1(z;κ) = Q̄ℓp−1(z;κ) + · · · , where Q̄ℓp−1(z;κ) is the corresponding p-
hypergeometric solution of the KZ equations from Theorem 4.5, and the dots denote the terms
of degree less than nk − ℓp = deg Q̄ℓp−1(z;κ).

Proof. The corollary is proved by application of Lemma 4.6 to the polynomial Q(t, z;κ)
and integer e = ℓp − 1. Then it is easy to see that P̄ℓp−1(z1, . . . , zn) = Q̄ℓp−1(z;κ) and
Pℓp−1(z1, . . . , zn, 0) is the top-degree part of Qℓp−1(z;κ). ■
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5 Linear independence

5.1 Lexicographical order

Define length-lexicographical order on monomials v = zd11 · · · zdnn : v < w if degree(v) <degree(w)
or if degree(v) =degree(w) and v is smaller than w in lexicographical order.

For a polynomial f(z) =
∑

d1,...,dn
ad1,...,dnz

d1
1 · · · zdnn denote by Lf(z) the nonzero summand

ad1,...,dnz
d1
1 · · · zdnn with the lexicographically largest monomial zd11 · · · zdnn . We call Lf(z) the

leading term of f(z).

5.2 Leading terms

For ℓ ∈ {1, . . . , d(κ)}, let r(ℓ) be the unique non-negative integer such that

r(ℓ)k ⩽ nk − ℓp < (r(ℓ) + 1)k.

We have r(1) > r(2) > · · · . Denote

ga = (n− r(ℓ))k − ℓp, uℓ =
(−1)nk−ℓp

k

(
k

a

)
(0, . . . , 0, k − a, k, . . . , k)⊺ ∈ Fn

p ,

where k − a is the r(ℓ) + 1-st coordinate. Notice that the integers k and k − a are not divisible
by p, and uℓ ∈ Fn

p is a singular vector since the sum of its coordinates equals zero.

Lemma 5.1 ([7, Lemma 3.1]). Assume that p does not divide n and ℓ ∈ {1, . . . , d(κ)}. Then
the leading term of Q̄ℓp−1(z;κ) is given by the formula

L Q̄ℓp−1(z;κ) = (z1 · · · zr(ℓ))kzar(ℓ)+1uℓ.

Lemma 5.2. Assume that p does not divide n and ℓ ∈ {1, . . . , d(κ)}. Let Qℓp−1(z;κ) be the
corresponding p-hypergeometric solution of the qKZ equations and Q̄ℓp−1(z;κ) the corresponding
p-hypergeometric solution of the KZ equations. Then their leading terms are equal,

LQℓp−1(z;κ) = L Q̄ℓp−1(z;κ).

Proof. The lemma follows from Corollary 4.7. ■

Corollary 5.3. If p does not divide n and ℓ ∈ {1, . . . , d(κ)}, then the leading term of Qℓp−1(z;κ)
is given by the formula

LQℓp−1(z;κ) = (z1 · · · zr(ℓ))kzar(ℓ)+1uℓ. (5.1)

Example 5.4. Let n = 3 and d(κ) =
[
3k
p

]
= 1. Then p

3 < k < 2p
3 . In this case there is exactly

one p-hypergeometric solution Qp−1(z;κ). If p
2 < k < 2p

3 , then the leading term of Qp−1(z;κ) is

zk1z
2k−p
2

(−1)3k−p

k

(
k

2k − p

)
(0, p− k, k)⊺.

If p
3 < k < p

2 , then the leading term of Qp−1(z;κ) is

z3k−p
1

(−1)k

k

(
k

3k − p

)
(p− 2k, k, k)⊺.

Consider the collections of the n-vectors Qℓp−1(z;κ), ℓ = 1, . . . , d(κ), as an (n×d(κ))-matrix.
For I = {1 ⩽ i1 < · · · < id(κ) ⩽ n}, denote by MI(z, κ) the (d(κ) × d(κ))-minor of that matrix
located at the rows with indices in I.
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Lemma 5.5. If p does not divide n and I = {r(d(κ)) < · · · < r(1)}, then the minor MI(z;κ) is
a nonzero polynomial.

Proof. The lemma is a corollary of formula (5.1). ■

Theorem 5.6. If p does not divide n, then the p-hypergeometric solutions Qℓp−1(z;κ), ℓ =
1, . . . , d(κ), of the qKZ equations are linearly independent over the field K(z).

Proof. The statement follows from formula (5.1) and the fact that the vectors uℓ are linearly
independent over K. ■

6 Orthogonality relations

6.1 Statement

Recall that d(−κ) =
[n(p−k)

p

]
.

Theorem 6.1. Let p > n and 0 < d(κ) < n − 1. Then for any ℓ ∈ {1, . . . , d(κ)} and m ∈
{1, . . . , d(−κ)}, we have

S
(
Qmp−1(−z;−κ), Qℓp−1(z;κ)

)
=

n∑
a=1

Qmp−1
a (−z;−κ)Qℓp−1

a (z;κ) = 0, (6.1)

where S is the Shapovalov form.

The theorem is proved in Sections 6.2 and 6.3.

Remark. It is easy to see that the Shapovalov form on V is nondegenerate if p does not divide n.
Indeed, the vectors e1 = (1,−1, 0, . . . , 0), e2 = (0, 1,−1, 0, . . . , 0), . . . , en−1 = (0, . . . , 0, 1,−1)
form a basis of V , and the determinant of the Shapovalov form in this basis equals n.

Remark. Formula (6.1) and Corollary 4.7 imply the orthogonality relations for the p-hypergeo-
metric solutions of the KZ equations,

S
(
Q̄mp−1(−z;−κ), Q̄ℓp−1(z;κ)

)
=

n∑
a=1

Q̄mp−1
a (−z;−κ)Q̄ℓp−1

a (z;κ). = 0. (6.2)

Two different proofs of formula (6.2) are given in [8, Theorem 3.11] and [8, Appendix A].

6.2 Special restrictions

Let I ⊂ {1, . . . , n} be a nonempty subset, I = {1 ⩽ i1 < i2 < · · · < ia ⩽ n}. Denote SI the
system of equations

zib = ((b− 1)k − 1)κ, b = 1, . . . , a. (6.3)

For a polynomial f(z), define f(z)SI
to be the polynomial f(z) in which the variables (zi)i∈I

are replaced by multiples of κ according to formulas (6.3).

Lemma 6.2. Let Q(t, z;κ) be the vector of polynomials defined by (4.3). Let I = {1 ⩽ i1 <
i2 < · · · < ia ⩽ n} ⊂ {1, . . . , n} be a nonempty subset. Then

Q(t, z;κ)SI
= (t;κ)ak−1(P1(t, z), . . . , Pn(t, z))

⊺,

where P1(t, z), . . . , Pn(t, z) are suitable polynomials of degree (n− a)k.
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Proof. The proof is straightforward. ■

Corollary 6.3. Let Qℓp−1(z;κ) be a p-hypergeometric solution and ℓp < ak. Then

Qℓp−1(z;κ)SI
= 0. (6.4)

Proof. For j = 1, . . . , n, the j-th coordinate of Q(t, z;κ)SI
equals (t;κ)ak−1Pj(t, z). Using (3.1),

we rewrite this as
∑

i⩾ak−1 ci(z)(t;κ)i for suitable ci(z). We observe that (t;κ)ℓp−1 does not enter
this sum. This proves the corollary. ■

6.3 Proof of Theorem 6.1

Denote

Gℓ,m(z;κ) = S
(
Qmp−1(−z;−κ), Qℓp−1(z;κ)

)
.

Then

Gℓ,m(−z;κ) = S
(
Qmp−1(z;−κ), Qℓp−1(−z;κ)

)
= S

(
Qℓp−1(−z;κ), Qmp−1(z;−κ)

)
= Gm,ℓ(z;−κ).

Hence, Gℓ,m(z;κ) = 0 for all ℓ, m if and only if Gm,ℓ(z;−κ) = 0.
By Lemma 2.4, the function Gℓ,m(z;κ) is a polynomial in Fp[z

p
1 − z1, . . . , z

p
n − zn]. Denote

h(x) = xp − x.

Lemma 6.4. Given ℓ and m, we have

Gℓ,m(z;κ) = c0 +
n−ℓ−m∑
b=1

∑
1⩽j1<···<jb⩽n

cj1,...,jbh(zj1) · · ·h(zjb), c0, cj1,...,jb ∈ Fp.

Proof. On the one hand, we have

degQℓp−1(z;κ) = kn− ℓp and degQmp−1(−z;−κ) = (p− k)n−mp.

Hence degGℓ,m(z;κ) ⩽ (n− ℓ−m)p.
On the other hand, for any j = 1, . . . , n, we have degzj Gℓ,m(z;κ) ⩽ p since degzj Q(t, z;κ) = k

and degzj Q(t,−z;−κ) = p− k. These two remarks prove the lemma. ■

The p-hypergeometric solution Qℓp−1(z, κ) is associated with the integer 0 < k < p such
that κk ≡ −1 (mod p), while the p-hypergeometric solution Qmp−1(z,−κ) is associated with
the integer 0 < p − k < p such that −κ(p − k) ≡ −1 (mod p). Given m, ℓ, we say that k is
a good parameter if ℓ(p−k) < mk. We say that p−k is a good parameter ifmk < ℓ(p−k). Notice
that mk ̸= ℓ(p−k). Otherwise p must divide ℓ+m which is impossible since ℓ+m ⩽ n− 1 < p.

Having the two integers k, p − k and two solutions Qℓp−1(z;κ) and Qmp−1(z;−κ), we may
and will assume that k denotes the good parameter.

Lemma 6.5. Given Qℓp−1(z;κ) and Qmp−1(z;−κ), assume that k is a good parameter. Then
Gℓ,m(z;κ) = 0.

Proof. Let {1, . . . , n} = I ∪ J be a partition where |I| = ℓ + m and |J | = n − ℓ − m. We
may apply formula (6.4) to Qℓp−1(z;κ) with a = ℓ +m since k is a good parameter and hence
ℓp < (ℓ+m)k. Hence we have Gℓ,m(z;κ)I = 0, where

Gℓ,m(z;κ)I = c0 +
n−ℓ−m∑
b=1

∑
{j1<···<jb}⊂J

cj1,...,jbh(zj1) . . . h(zjb). (6.5)

Hence the right-hand side polynomial at (6.5) is the zero polynomial for any subset I with
|I| = ℓ+m. Therefore, Gℓ,m(z;κ) is the zero polynomial. ■

Lemma 6.5 implies Theorem 6.1.
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7 Invariant subbundles

7.1 Subbundle of qKZ connection

Assume that p > n and κ ∈ F×
p . Consider the discrete qKZ connection on the direct prod-

uct V ×Kn → Kn, where V = {x ∈ Kn | x1 + · · ·+ xn = 0} and the qKZ operators are defined
by formula (2.2),

Ka(z;κ) = R(a,a−1)(za − za−1 − κ) · · ·R(a,1)(za − z1 − κ)

×R(a,n)(za − zn) · · ·R(a,a+1)(za− za+1).

The connection has singularities at the points of Kn where the qKZ operators have poles or are
degenerate.

The R-matrix R(u) = u−P
u−1 has a pole if u = 1 and is degenerate if u = −1. Denote by Hi,j,m

the affine hyperplane in Kn defined by the equation zi − zj − m = 0 where 1 ⩽ i < j ⩽ n,
m ∈ Fp. Let Ā◦ be the arrangement in Kn of all hyperplanes Hi,j,m. Let Ā = Kn − Ā◦ denote
its complement. The qKZ operators are well-defined over Ā and are nondegenerate.

Assume that 0 < d(κ) < n − 1. Then the p-hypergeometric solutions Qℓp−1(z;κ), ℓ =
1, . . . , d(κ), define flat sections of the qKZ connection which we call the p-hypergeometric sec-
tions.

Recall the minors MI(z;κ) defined for any I = {1 ⩽ i1 < · · · < id(κ) ⩽ n} in Section 5.2
with the help of these p-hypergeometric sections. Denote by A(κ) the Zariski open subset of Ā
consisting of points b ∈ Ā such that at least one of the minors MI(z;κ) is nonzero at b.

For any point b ∈ A(κ), the vectors Qℓp−1(b, κ), ℓ = 1, . . . , d(κ), are linearly independent and
span a d(κ)-dimensional K-vector subspace S(b, κ) of V . These subspaces S(b, κ), b ∈ A(κ),
form a vector subbundle S(κ) → A(κ) of the trivial bundle V ×A(κ) → A(κ).

Remark. Notice that the minors MI(z;κ) are polynomials in z with coefficients in Fp and are
independent of the field K. Notice also that the base A(κ) is invariant with respect to the affine
translations, (z1, . . . , zn) 7→ (z1, . . . , za − κ, . . . , zn), a = 1, . . . , n.

The subbundle S(κ) → A(κ) is invariant under the qKZ connection, and the p-hypergeometric
sections form a flat basis of the space of its sections.

We also consider the quotient bundle Q(κ) → A(κ) with fibers V/S(b, κ). The qKZ connec-
tion on V ×A(κ) → A(κ) induces a discrete connection on Q(κ) → A(κ) which we also call the
qKZ connection. Notice that the rank of Q(κ) → A(κ) equals

dimV − rankS(κ) = n− 1−
[
nk

p

]
=

[
n(p− k)

p

]
= d(−κ).

If d(κ) = 0, we define A(κ) = Ā. In this case, we define S(κ) → A(κ) to be the rank 0
subbundle of V ×A(κ) and also define Q(κ) → A(κ) to be V ×A(κ).

7.2 Subbundle of dual qKZ connection

Assume that p > n and κ ∈ F×
p . Consider the dual discrete qKZ connection on V × Kn → Kn

defined by formulas (2.11) and (2.7). The dual qKZ operators Ka(−z1, . . . ,−zn;−κ), a =
1, . . . , n, are well-defined over Ā and are nondegenerate.

Assume that 0 < d(−κ) < n−1. This assumption is equivalent to the assumption 0 < d(κ) <
n − 1. Consider the p-hypergeometric solutions Qmp−1(z;−κ), m = 1, . . . , d(−κ), of the qKZ
equations step −κ. Then the V -valued polynomials Qmp−1(−z;−κ), m = 1, . . . , d(−κ), define
flat sections of the dual qKZ connection which we also call the p-hypergeometric sections.
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Recall the minors MI(z;−κ) defined for any I = {1 ⩽ i1 < · · · < id(−κ) ⩽ n} in Sec-
tion 5.2 with the help of the p-hypergeometric solutions Qmp−1(z;−κ), m = 1, . . . , d(−κ). De-
note by B(κ) the Zariski open subset of Ā consisting of points b ∈ Ā such that at least one of
the polynomials MI(−z;−κ) is nonzero at b.

For any point b ∈ B(κ), the vectors Qmp−1(−b,−κ), m = 1, . . . , d(−κ), are linearly inde-
pendent and span a d(−κ)-dimensional K-vector subspace S∗(b,−κ) of space V . These sub-
spaces S∗(b,−κ), b ∈ B(κ), form a vector subbundle S∗(κ) → B(κ) of the trivial bundle
V × B(κ) → B(κ).

The subbundle S∗(κ) → B(κ) is invariant with respect to the dual qKZ connection, and the
p-hypergeometric sections Qmp−1(−z;−κ), m = 1, . . . , d(−κ), form a flat basis of the space of
its sections.

Consider the restriction of the bundles S∗(κ) → B(κ) and Q(κ) → A(κ) to A(κ)∩B(κ). For
any b ∈ A(κ) ∩ B(κ), the Shapovalov form defines a nondegenerate pairing

S : S∗(b,−κ)⊗ V/S(b, κ) → K

of the fibers of these bundles, by Theorem 6.1. The discrete connections on S∗(κ) → B(κ)
and Q(κ) → A(κ) are dual with respect to the Shapovalov form, that is, for any u ∈ S∗(b,−κ),
v ∈ V/S(b, κ), and a = 1, . . . , n, we have S(u, v) = S(Ka(−b;−κ)u,Ka(b;κ)v).

Define p-quasi-hypergeometric sections T ℓ(z;κ), ℓ = 1, . . . , d(−κ), of the bundleQ(κ) → A(κ)
over A(κ) ∩ B(κ) by the formulas

S
(
Qmp−1(−b,−κ), T ℓ(b, κ)

)
= δℓ,m, m = 1, . . . , d(−κ).

Lemma 7.1. Assume that p > n and 0 < d(−κ) ⩽ n − 1. Then p-quasi-hypergeometric
sections T ℓ(z;κ), ℓ = 1, . . . , d(−κ), of the quotient bundle Q(κ) → A(κ)∩B(κ) form a flat basis
of the space of sections of that bundle.

Proof. The proof is straightforward. ■

If d(−κ) = 0, we define B(κ) = Ā. We also define S∗(κ) → B(κ) to be the rank 0 subbundle
of V × B(κ).

Example 7.2. Let n = 2. Then V is of dimension 1. For p = 5, k = κ = 3, we have d(3) = 1,
and the qKZ connection has a flat basis given by the p-hypergeometric solution

Q4(z1, z2) = (−2z1 + 2z2 + 2, 2z1 − 2z2 − 2).

For p = 5. k = κ = 2, we have d(2) = 0, and the qKZ connection has a flat basis given by the
p-quasi-hypergeometric solution

T 1(z1, z2, 2) =

(
3

2z1 − 2z2 + 2
,

3

−2z1 + 2z2 − 2

)
.

7.3 Reduced p-curvature operators

Let Ĉa(z;κ), a = 1, . . . , n, be the reduced p-curvature operators of the qKZ discrete connection
on V ×Kn → Kn, see (2.5).

Theorem 7.3. If p > n, κ ∈ F×
p , and 0 < d(κ) < n − 1, then the span of the p-hypergeo-

metric sections Qℓp−1(z;κ), ℓ = 1, . . . , d(κ), lies in the kernel of Ĉa(z, κ) and contains the image
of Ĉa(z;κ) for every a = 1, . . . , n.

If d(κ) = p− 1 or 0, then all reduced p-curvature operators equal zero.
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Corollary 7.4. We have Ĉa(z;κ)Ĉb(z;κ) = 0, a, b = 1, . . . , n.

Proof of Theorem 7.3. The span lies in the kernel of Ĉa(z;κ) by formula (2.4).
The operator Ĉa(z;κ) annihilates the span, hence Ĉa(z;κ) induces a well-defined operator

on the fibers of the quotient bundle Q(κ) → A(κ). This induced operator is the a-th reduced p-
curvature operator of the qKZ connection on the quotient bundle. The quotient bundle has a flat
basis of p-quasi-hypergeometric sections over the Zariski open subset A(κ) ∩ B(κ). Hence all
reduced p-curvature operators of the qKZ connection on the quotient bundle are zero. Therefore
the image of Ĉa(z;κ) is contained in the span.

If d(κ) = p − 1, then S(κ) → A(κ) coincides with V × A(κ) → A(κ), and all reduced
p-curvature operators are zero by formula (2.4).

If d(κ) = 0, then p-quasi-hypergeometric sections form a flat basis of the space of sections
of V ×A(κ) → A(κ), and again all reduced p-curvature operators are zero by formula (2.4). ■

Lemma 7.5. If p > n, κ ∈ F×
p , and 0 < d(κ) < n − 1, then every reduced p-curvature opera-

tor C̃a(z;κ) is nonzero.

Proof. Consider a normalized p-curvature operator C̃KZ
a (z, κ) of the associated differential KZ

equations. In a basis of V , the entries of the matrix of the operator C̃KZ
a (z, κ) are homogeneous

polynomials in z of degree (n−2)p. By Corollary 2.2, in the same basis, the entries of the matrix
of the operator C̃a(z, κ) are polynomials in z of degree (n − 2)p whose top-degree parts equal
the corresponding entries of the matrix of the operator C̃KZ

a (z, κ).
It is proved in [8, Theorem 1.13] that if p > n, κ ∈ F×

p , then every reduced p-curvature
operator C̃KZ

a (z, κ) is a (nonzero) operator of rank 1. Hence every reduced p-curvature opera-
tor C̃a(z, κ) is a nonzero operator. ■

Example 7.6. For n = 3, we have dimV = 2. Let p > 3 and d(κ) = 1. Then d(−κ) = 1. For
a = 1, 2, 3, the kernel of the reduced p-curvature operator Ĉa(z, κ) is generated by Qp−1(z, κ)
and the image of Ĉa(z, κ) is generated by Qp−1(z, κ). Such an operator is determined uniquely
up to multiplication by a scalar rational function in z.

For an operator F : V → V , denote by F ∗ : V → V the operator dual to F under the
Shapovalov form, S(F ∗x, y) = S(x, Fy).

Lemma 7.7. We have

Ĉa(z,−κ) = −Ĉa(−z;κ)∗. (7.1)

Proof. We have S(x, y) = S(Ca(−z;−κ)x,Ca(z;κ)y) by formulas (2.10) and (2.7). Hence
Ca(−z;−κ) =

(
Ca(z;κ)

−1
)∗
. We also have (Ca(z;κ)− 1)2 = 0 by Corollary 7.4. Then

Ca(z;κ)
−1 = (1 + (Ca(z;κ)− 1))−1 = 1− (Ca(z;κ)− 1)

and Ca(−z;−κ)− 1 = 1− Ca(z;κ)
∗. ■

Corollary 7.8. The normalized p-curvature operators satisfy the equation

C̃a(z;−κ) = (−1)nC̃a(−z;κ)∗. (7.2)

Proof. Formula (7.2) follows from equation (7.1) and the following formulas:

C̃a(z;κ) = (Ca(z;κ)− 1)
∏
j ̸=i

(zi − zj , κ)p,

C̃a(−z;−κ) = (Ca(−z;−κ)− 1)
∏
j ̸=i

(−zi + zj ,−κ)p. ■
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7.4 All solutions of qKZ equations for κ ∈ F×
p

Theorem 7.9. Let p > n, κ ∈ F×
p , and 0 < d(κ) < n − 1. Let f(z) be a V -valued rational

function in z which is a solution of the qKZ equations with step κ. Then f(z) is a linear
combination of the p-hypergeometric solutions Qℓp−1(z;κ), ℓ = 1, . . . , d(κ), with coefficients
which are rational functions in zpi − zi, i = 1, . . . , n.

Recall that if d(κ) = n − 1, then the qKZ connection has a basis of flat sections given by
the p-hypergeometric sections by Theorem 5.6, and if d(κ) = 0, then the qKZ connection has
a basis of flat sections given by the p-quasi-hypergeometric solutions, by Lemma 7.1.

Proof. For a = 1, . . . , n, consider the normalized p-curvature operators C̃KZ
a (z, κ) and C̃a(z, κ).

Both of these operators are polynomials in z, and the polynomial C̃KZ
a (z, κ) is the top-degree

part of the polynomial C̃a(z, κ). The polynomial C̃KZ
a (z, κ) is nonzero by [8, Theorem 1.13] and

hence C̃a(z, κ) is a nonzero operator.

It was proved in [8, Theorem 1.8] that if p > n, κ ∈ F×
p , and 0 < d(κ) < n−1, then all solutions

of the KZ equations are linear combinations of the p-hypergeometric solutions. Hence the
intersection of kernels of the operators C̃KZ

a (z, κ), a = 1, . . . , n, is of dimension d(κ) for generic z,
and the span of images of the operators C̃KZ

a (z, κ), a = 1, . . . , n, is of dimension n− 1− d(κ) for
generic z. Therefore, the span of images of the operators C̃a(z, κ), a = 1, . . . , n, has dimension
at least n − 1 − d(κ) for generic z. This implies that the span of values of flat sections of the
qKZ connection is of dimension not larger than d(κ) for generic z. But we have d(κ) flat linear
independent p-hypergeometric sections Qℓp−1(z;κ), ℓ = 1, . . . , d(κ). Hence any flat section of
the qKZ connection is a linear combination of the p-hypergeometric sections with 1-periodic
coefficients. ■

Corollary 7.10. Let p > n, κ ∈ F×
p , and 0 < d(κ) < n − 1. Let f(z) and g(z) be V -valued

rational functions in z where f(z) is a solution the qKZ equations with step κ and g(z) is
a solution the qKZ equations with step −κ. Then

S(g(−z), f(z)) = 0. (7.3)

Formula (7.3) follows from Theorems 7.9 and 6.1.

7.5 qKZ connection with κ ∈ K \ Fp

Lemma 7.11. Let p > n and κ ∈ K\Fp . Then all the normalized p-curvature operators C̃a(z;κ),
a = 1, . . . , n, are nondegenerate for generic z.

Proof. Formula (3.19) in [8] describes the spectrum of the p-curvature operators CKZ
a (z;κ) of

differential KZ equations. The formula shows that all p-curvature operators CKZ
a (z;κ) are non-

degenerate for generic z. In a basis of V , the matrices of C̃KZ
a (z;κ) are homogeneous polynomials

in z of degree (n − 2)p. Hence their determinants are nonzero homogeneous polynomials in z.
By Corollary 2.2, the determinants of the normalized p-curvature operators C̃a(z;κ) are nonzero
polynomials. The lemma follows. ■

Corollary 7.12. For p > n and κ ∈ K \ Fp, there does not exist a nonzero rational V -valued
function f(z) which is a flat section of the qKZ connection with parameter κ.

Proof. If f(z) is a flat section, then it lies in the kernel of every normalized p-curvature oper-
ator C̃a(z;κ). That contradicts to Lemma 7.11. ■
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