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Abstract. In [J. Lond. Math. Soc. 109 (2024), e12884, 22 pages], the difference qKZ
equations were considered modulo a prime number p and a family of polynomial solutions
of the qKZ equations modulo p was constructed by an elementary procedure as suitable
p-approximations of the hypergeometric integrals. In this paper, we study in detail the first
family of nontrivial examples of the qKZ equations in characteristic p. We describe all solu-
tions of these qKZ equations in characteristic p by demonstrating that they all stem from the
p-hypergeometric solutions. We also prove a Lagrangian property (called the orthogonality
property) of the subbundle of the ¢KZ bundle spanned by the p-hypergeometric sections.
This paper extends the results of [arXiv:2405.05159] on the differential KZ equations to the
difference qKZ equations.
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1 Introduction

The Knizhnik-Zamolodchikov (KZ) differential equations are a system of linear differential equa-
tions, satisfied by conformal blocks on the sphere in the WZW model of conformal field theory,
see [4]. The quantum Knizhnik—Zamolodchikov (qKZ) equations are a difference version of the
KZ equations which naturally appear in the representation theory of Yangians (rational case)
and quantum affine algebras (trigonometric case), see [1, 3]. The ¢KZ equations may be regarded
as a deformation of the KZ differential equations.

As a rule one considers the KZ and qKZ equations over the field of complex numbers. Then
these differential and difference equations are solved in multidimensional hypergeometric inte-
grals.

In [6], the differential KZ equations were considered modulo a prime integer p. It turned
out that modulo p the KZ equations have a family of polynomial solutions. The construction
of these solutions was analogous to the construction of the multidimensional hypergeometric
solutions, and these polynomial solutions were called the p-hypergeometric solutions.

In [5], the rational sl qKZ equations with values in the n-th tensor power of the vector
representation L and an integer step x were considered modulo p. A family of polynomial
solutions modulo p of these equations was constructed and called the p-hypergeometric solutions.

In this paper, we address the problem of whether all solutions of the qKZ equations in
characteristic p are generated by the p-hypergeometric solutions. We consider the first family
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of nontrivial examples of the qKZ equations and demonstrate that, indeed, in this case, all
solutions of the qKZ equations stem from the p-hypergeometric solutions.

Let K be a field of characteristic p. The qKZ equations for a function f(z1,...,z2,) with
values in the K-vector space L®" and step x € K* have the form

f(ziyei2a — Kyoooyzn) = Ko(z56) f(2), a=1,...,n,

where the linear operators K,(z; k) are given in terms of the rational slp R-matrix, see (2.2).
The operators K,(z; k) commute with the diagonal action of sly, and, therefore, it is sufficient
to solve the qKZ equations only with values in the space of singular vectors of a given weight.
In this paper, we study the qKZ equations with values in V := Sing L®"[n — 2] C L®", the
subspace of singular vectors of weight n — 2. We have dimV =n — 1.

There are two cases: k € K\ Fy, and x € F.

Theorem 1.1. Let p be a prime number that does not divide n. For k € K\ F,, there does not
exist a nonzero rational V-valued function f(z1,...,z,) which is a solution of the ¢KZ equations
with parameter k.

See Corollary 7.12.

Assume that x € F. Let 0 < k < p be the positive integer such that xk = —1 (mod p).
Let [z] denote the integer part of a real number and d(k) := [%”] If p does not divide n,
then d(k) + d(—k) =n—1=dimV.

In [5], we constructed d(k) V-valued p-hypergeometric solutions of the qKZ equations de-
noted QP 1(z;k), £ = 1,...,d(k). In this paper, we show that these solutions are linearly
independent over the field K(z1,..., z,), see Theorem 5.6.

Theorem 1.2. Let p > n, k € F), and 0 < d(k) < n—1. Let f(z) be a V-valued rational
function in z which is a solution the gKZ equations with step k. Then f(z) is a linear combination
of the p-hypergeometric solutions QP (z;k), £ = 1,...,d(k), with coefficients which are scalar

rational functions in zf

— Zi, i=1,...,n.

See Theorem 7.9. Notice that h(x) = 2P—z € K[z] is a 1-periodic polynomial, h(x+1) = h(x).
In particular, h(z + k) = h(x).

If d(k) = n — 1 or 0, all solutions of the qKZ equations with values in V' and step k are
described in Section 7.4.

We prove the orthogonality relations for p-hypergeometric solutions of the qKZ equations

with steps k and —k.
Theorem 1.3. Let p > n and 0 < d(k) < n— 1. Then for any ¢ € {1,...,d(k)} and m €
{1,...,d(—k)}, we have
S(Q™ (=2 —r), Q7 (2;5)) = 0,
where S is the Shapovalov form.

See Theorem 6.1.
Define the p-curvature operators of the qKZ equations with values in V' and step « by the
formula

Co(z1y. . yzny k) = Ko(21,..y2a — (D= DK, ..., 2n3 K)

X Ko(21y- o326 — (D= 2)Ry ooy 2ns K) - Ko (21,00 s 20 — By o ooy 203 K)
X Ka(21y- oy Zay ooy 203 K),
for a =1,...,n, and the reduced p-curvature operators by the formula

C’a(zl, coyzni k) = Cg(z1, ..oy 2ny k) — L

If f(21,...,2n) is a solution of the qKZ equations, then C,f =0 for all a.
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Theorem 1.4. Let p > n. Then the reduced p-curvature operators have the following properties:
(i) If k € K\ Fp, then all reduced p-curvature operators C’a(z; k), a=1,...,n, are nondegen-
erate for generic z.

(ii) If k € F) and d(k) = n — 1 or 0, then all reduced p-curvature operators Co(z:K), a =
1,...,n, are equal to zero.

(iii) If k € Fy and 0 < d(k) < n — 1, then all reduced p-curvature operators C’a(z;/@), a =

1,...,n, are nonzero. For every a, the span of the p-hypergeometric solutions QP (z; k),
¢=1,...,d(k), lies in the kernel of Cy(z, k) and contains the image of Cy(z; k). Also, for
all a, b,

Ca(2:8)C(2:8) =0, Calz,—k) + Ca(—2K)" =0,

where for an operator T:V — V we denote by T the operator dual to T under the
Shapovalov form.

See Theorem 7.3 and Lemmas 7.7, 7.11.
In a suitable limit the difference qKZ equations on L®" degenerate to the differential KZ
equations on L®",

af _ZP<G’J>—1f

,‘{ =
0z, Za — Zi
j#a J

a=1,...,n,

where P(%9) is the permutation operator of the a-th and j-th tensor factors of L®".

In [8], the differential KZ equations over a field K of characteristic p with values in V' C L®"
were studied in detail. Our paper extends the results of [8] from the differential KZ equations
to the difference qKZ equations. The proofs of Theorems 1.1, 1.2, and 1.4 are based on the
corresponding results in [8] for the differential KZ equations.

On the differential and difference equations in characteristic p and associated p-curvature see
also [2, 9].

2 Difference qKZ equations

2.1 Notations

In this paper, p is a prime and K a field of characteristic p.

Consider the Lie algebra sl over K with basis e, f, h and relations [e, f] = h, [h, €] = 2e,
[h, f] = —2f. Let L be the two-dimensional sly-module with basis vy, vy and the action ev; = 0,
evy = v, fur = vo, fuo =0, hvy = vy, hve = —vs.

For a positive integer n > 1, consider the slp-module L&™,

Let Z; be the set of all [-element subsets of {1,...,n}. For a subset I C {1,...,n}, denote

vy = v, ® - @y, € LE",

where i; = 2 if i; € I and i; = 1 if i; ¢ I. Denote by L®"[n — 2[] the span of the vectors
{vr | I € Z;}. We have a direct sum decomposition,

L?" = @ L n — 21].
=0

Let Sing L®"[n — 2[] C L®"[n — 2[] be the subspace of singular vectors (the vectors annihilated
by e).
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2.2 qKZ equations

11‘;113 , where P is the permutation of tensor

factors of L®2. The R-matrix satisfies the Yang-Baxter and unitarity equations,

Define the rational R-matrix acting on L®?, R(u) =

R (4 — ) R () R (v) = R () R (w) R (1, — v),
R () RPY (—u) = 1. (2.1)

The first equation is an equation in End (L®3). The superscript indicates the factors of L3 on
which the corresponding operators act.
Let z = (21,...,2,). Define the gKZ operators K7, ..., K, acting on L®"

Ko(z k) = R V(2 — 24 1 — k) - - ROV (24 — 2y — k)
X R(a7n) (Za — ZTL) o R(G,C’r‘rl) ('ZG —_ ZCL+1)7 (2.2)

where k € K* is a parameter.
The qKZ operators preserve the weight decomposition of L®", commute with the sly-action,
and form a discrete flat connection with step & on the trivial bundle L®" x K" — K",

Koz, 2 = Ky zns R) Ky (25 6) = K21, -5 20 = Ky 205 K) K25 5)

for a,b=1,...,n, see [3].
The system of difference equations with step x,

(215 ey 2a — Ry ooy 2n) = Ko(z58)s(2), a=1,...,n, (2.3)

for an L®"-valued function s(z), is called the qKZ equations with step .

Since the qKZ operators commute with the action of sly on L™, the qKZ operators preserve
the subbundle Sing L®"[n — 2{] x K™ — K" for every integer [.

Define the translation operators T, by

(Taf) (21 2Zay-y2n) = f(21y- oy 2a — Ky ooy Zn).

The difference operators V, = T, !K,(z;) are called the connection operators of the qKZ
difference connection. We have [V, V3] = 0.

2.3 p-curvature of the qKZ connection
Define the p-curvature operators of the qKZ connection by

Co(z;6) = Ko(21,- - v2a — (0= D)k, ooy 2ns K)Ko(21, ooy 2a — (D — 2)Ky oy Zns K) - - -

X Ko(21y0 ooy 2a — Byeoy 20 B)Ka(21, -y Zay - oy 203 K)

fora =1,...,n. In other words, C, = (V,)P.
For every a, the operator C,(z; k) acts on fibers of the bundle L®" x K" — K" and defines
an endomorphism of the qKZ connection,

Kp(z1, .-y 203 K)Co(21y - ooy 2ni K) = Co(21, ooy 20 — Ky o ooy 20y K)Kp(21, -0 205 K).

The operators C,(z; k) commute, i.e., [Cy(z; k), Cy(z; k)] = 0.
If s(z; k) is a flat section of the qKZ discrete connection,

S$(21y e es2a — Bye ooy 2ny k) = Ko(z;8)8(25 k), a=1,...,n,
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then s(z; k) is an eigenvector of the p-curvature operators with eigenvalue 1,
s(z; k) = Cu(z;R)s(2z; K), a=1,...,n. (2.4)
An operator C,(z; k) is a rational function in z with the denominator

p—1
Dy(z;k) = H H(za—zj—mm—l)

j#am=0
= H (22 — kP zg + (—2)P + &Pz 4+ (—1)P + kP7T).
j#a
It is convenient to introduce the reduced p-curvature operators by the formula
Ca(2; k) = Ca(z;5) — 1, (2.5)
and the normalized p-curvature operators by the formula

Co(z; k) = Da(z;K)(Calz; k) — 1).

The normalized p-curvature operators are polynomials in z of degree < (n — 1)p.

2.4 Differential KZ equations

For k € K*, the differential KZ operators

o plai) 1
vKZ 2 N T —1,....n,
a H@za Z Zq — % “ "
jF#a

define a flat KZ connection on L®" x K™ — K", [foz, V?Z] = 0. The operators VE? commute
with the slp-action on L®". The system of equations

(a.g) _
afzzuf, a=1,...,n, (2.6)

K
0z, Za — Zi
j#a J

is called the differential KZ equations with parameter . The KZ operators preserve every
subbundle Sing L#"[n — 2I] x K" — K". Denote

pPlag) 1
Ho(2) =)  ———,
jFa T

the Gaudin Hamiltonians.
The p-curvature operators of the KZ connection are defined by the formula

CRZ(3 k) = (ng)p.

They define an endomorphism of the KZ connection, [CCIL(Z, V?Z] =0.
An operator CX%(z; k) is a rational function in z with the denominator

KZ(,. .\ _
D% (z k) = H (2P — zf)
j#a
It is convenient to introduce the normalized p-curvature operator by the formula

CN‘CIL(Z(Z; K) = Dﬁfz(z; /ﬁ)CffZ(z; K).

The normalized p-curvature operator is a homogeneous polynomial in z of degree (n — 2)p if
nonzero.
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2.5 KZ equations as a limit of qKZ equations
Let f(z1,...,2n) satisfy the qKZ equations,
f(z1, oy 2a — Kye ooy zn) = Ko(z38) f(2), a=1,...,n.

Let « be a formal parameter. Define g(wy, ..., ws;a) = f(wi/a,...,wy/a). Then
g(wi, ..., we — ak, ..., wy;a) = Ky(w/o; k)g(w; o), a=1,...,n, (2.7)
where
Ko(w/a; k) = R4 D (w, — w1 — ar;a) - RO (w, —w) — ak; a)
X R(am)(wa — Wn; a) T R(a,a+1) (wa — Wa+1; a)7
—aP P-1
R(u;a):u Y 1-a .
U—« U—«
Equation (2.2) gives
0
g—akK j +0(a?) = (1 — aHy(w) + O(a?))g.
a
In the limit & — 0, we obtain the KZ differential equations
0
5 () = Ha(w)g(w)
Lemma 2.1. Let C’a(z; k) be a reduced p-curvature operators of the gKZ connection. Then
CXZ(2: k) = lim Cy(21/a, ..., 2n/; K)/aP.
a—0
Proof. Let C, , be the p-curvature operator of equation (2.7). Clearly,
Coa(w;k) = Co(wr/a,. .., wp/a; k).
Hence we need to prove that
CRZ(w; k) = lim (Cyo(w; k) — 1) /aP. (2.8)
a—0
Let Vg, be the connection operator of the discrete connection (2.7),
(Vaa9)(w) = Ko(wi/a, ..., (we + ak)/a,...,w, /o5 k) g(wr, ..., we + ak, ..., wy)
Then
dg 2
(Vaa9)(w) =g —aHg(w)g + aky + O(a?).
Wq,
Hence
(Vaa—1)g= on[IfZg + (9(042).
Thus
Coa(w;k) —1=(Vea)! —1=(Vga—1)P = ap(VEfZ)p + (’)(apﬂ). [ |

Corollary 2.2. The degree of the reduced p-curvature operator C’a(z; K) as a polynomial in z
is not greater than (n — 2)p. Moreover, we have Cy(z; k) = CX%(2; k) + f1(2), where f1(2) is

a polynomial in z of degree less than (n — 2)p.

Proof. The first statement of the corollary follows from the fact that the denominator of the
reduced p-curvature operator Cy(z; k) is of degree (n — 1)p. Hence the numerator is of degree
not greater than (n — 2)p for the limit in (2.8) to exist. The second statement is clear.
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2.6 Limit of solutions

Let f(z1,...,2n) be a polynomial solution of the qKZ equations (2.3). Let degf(z) = d
and f(z) = fo(2) + f1(2), where fp(2z) is a homogeneous polynomial of degree d and fi(z) is
a polynomial of degree less than d.

Lemma 2.3. The polynomial fo(z) is a solution of the KZ equations (2.6).

Proof. Let a be a formal parameter. Define g(wy,...,w,;a) = a?f(w1/a,...,w,/a). Then
g(wi, ..., wy;a) = folw)+agr(w; o), where g1 (w; o) = a? 1 fi(w/a) is a polynomial in w and .
We have
g(wi, ..., we — ak, ..., wy;a) = Ky(w/o; k)g(w; o), a=1,...,n.
Let
a—1 n
do(w; ) = H(wa —wj —ak — ) H (Wwq —wj — @)
j=1 j=a+1

be the denominator of K,(w/«a; k) and
na(w;a) = (Wq — Wa—1 — K — aP(“’CL*l)) s (Wa — Wag1 — aP(“’aH))
the numerator. Then (2.7) can be written as a polynomial equation

do(w;a)g(wi, ..., we — K, ..., wy; ) = ng(w; a)g(w; @) (2.9)

in the variables w and a. Equation (2.9) gives an equation in w for every fixed power of «
in (2.9). The equation corresponding to the first power of « after division by d,(w;0) becomes

(a,5) _
O Py N5} .

ow w ;
. jAa T

2.7 Dual qKZ equations

Denote W = L®". Let W* be the dual space of W, and (,): W* @ W — K the canonical
pairing. Let Kj(z;k): W* — W™ be the operators dual to the operators K,(z;x). Denote
Ko(z;k) = (Kg(2/)) 7"

We have

Ko(z1,ooos20— Ry ooy 20 K)Kp(258) = Kp(21, -2y 20 — Ry oo oy 203 6) Ko (25 K)
for all a, b, and also
(z,y) = (Ka(2; Kz, Ka(2; K)y) (2.10)

forall o and z € W* y € W.
The system of difference equations with step x,

5(21, - -s2a — By ooy 2n) = Ko(2;8)8(2), a=1,...,n, (2.11)

for an W*-valued function §(z), is called the dual qKZ equations.
If s(z) is a solution of the qKZ equations (2.3) and 5(z) is a solution of the dual qKZ
equations (2.11), then the function (5(z), s(z)) is k-periodic with respect to every zg,

—(8(21, -y 20 — Ry ooy 20 )y S(21, ooy 20 — Ky ooy 2y ) = (8(2), 8(2)).
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The set of vectors {vy | I C {1,...,n}} is a basis of W. Define the nondegenerate symmetric
bilinear form S on W by the formula S(vr,vs) = 07, ;. The form is called the (tensor) Shapovalov
form. We identify W* and W with the help of the Shapovalov form.

Under this identification, the operators R(7)(u) become symmetric. Using (2.1) we obtain
the following formula for the operators K, (z; k) as operators on W,

Ko(z;5) = RO (=24 + 201 + K) - ROV (=24 + 21 + k)
X R(“’")(—za +zp) - R(“’a+1)(—za + Za41)-
In other words,

R{l(zly <5 2n; K:) = Ka(—Zl, ceey T RN _K’)a
S(Ka(—21, <oy TR0 —/{)l‘,Ka(Zl, <5 2 H)Q) = S(:B,y)

for all z,y € W.
Now the dual qKZ equations for a W-valued function §(z) take the form

5(21y o520 — Kyeovy2n) = Ko(=21, ..., —2n; —K)s(2), a=1,...,n.
These formulas prove the following lemma.

Lemma 2.4. Let s(z) be a solution of the ¢KZ equations (2.3) with step k and 3(z) a solution
of the ¢KZ equations (2.3) with step —k. Then the function S(5(—z),s(z)) is k-periodic with
respect to every variable z,,

S(8(=z1y. oy —(2a — K)ye ooy —2n),8(21, - oy 20 — Ky ooy 2)) = S(8(—2), s(2)).

See also Corollary 7.10.

3 Pochhammer polynomials

For k € K and m a positive integer, define Pochhammer polynomial (t;k),, € K]t] by the
formula (t;K)m =[]0 (t — (i — 1)x).! We have

t—rkm t+kK

(t — KR; /i)m = (t, K,)m ; s (t + K K/)m = (t, H)mm
(t+ 2 K)m Z(m> )i(2 K)m—i»

=0

min(%,5) ;
it = Y (1) ()6 (3.1)

1=0
(6 K)m = Y s1(m, D™t
1=0
£ =" sy(m, D™t k), (3.2)
1=0

where the integers s1(m, 1) and so(m, ) are Stirling numbers of the first and second kind, re-
spectively. Notice that

s1(m,m) = sa(m, m) = 1. (3.3)

!See https://en.wikipedia.org/wiki/Falling_and_rising_factorials.
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We also have (¢ k), = tP — kP~1t,
(t+z;8)p = (t4+2)P — kPNt +2) =P — kPTH 4 2P — kP 2 = (L 6)p + (25 K)p.

We call a polynomial f(t) € IF,[t] a quasi-constant if f(t — k) = f(t). The quasi-constants
are polynomials in #* — kP~'t. A Pochhammer polynomial (¢; k), is a quasi-constant if m is
divisible by p. Then (t; k)pq = (t? — kP~1£)".

Let A be a K-algebra, for example, A = K]z1,...,2,]. The polynomials {(t; k), | m > 0}
form an A-basis of the ring of polynomials A[t].

4 p-hypergeometric solutions for kK € IF; CK

4.1 Solutions in Sing L®"[n — 2]

In this paper, we study solutions of the ¢KZ equations with values in V' := Sing L®"[n —2]. The
space L®"[n — 2] has a basis v =@ ®ua®---®uy, i =1,...,n, where the only vy stays at
the i-th place. In this basis, the subspace V consists of all vectors with the sum of coordinates
equal to zero. We identify L®"[n — 2] with K" and the subspace V with the vector space

(€K |21+ + 2, = 0}, (4.1)

4.2 Master polynomial and weight functions

For k € )\, let 0 < k < p be the positive integer such that
kk=—-1 (mod p). (4.2)

Define master polynomial ®(¢, z; k) = [[_; (t—za; k), where k is defined in (4.2). For 1 < a < n,
define the weight functions

a—1

1 t—z;+1
na(ta Z) = t— Za ]]1 t _sz 9 Qa(ta zZ3 H’) = (P(taz; K’)na(t’z)‘

Notice that the formula for the function 74(t, z) does not depend on p and k.

Lemma 4.1. The function Q(t, z; k) is a product of n Pochhammer polynomials:

a—1 n
Qalt, z; k) = H(t—Zj—/i; Rk | (t— 24 — Ky R)k—1 H (t—2j;K)k
j=1 j=a+1

Define a vector of polynomials

Qt,z;r) = (Q1(t,2;3K), ..., Qu(t, z; k)T = Z Q'(z; k) (t; )5, (4.3)

where MT denotes the transpose matrix of a matrix M and Q*(z; k) = (Qil(z; K)oy QL (2 H))T
are vectors of polynomials in z.

Example 4.2. For n = 2,

Qt,z k) = ((t1 — 21 — Ky K)k—1(tt — 225 K), (1 — 21 — Ky K)p(t1 — 22 — K3 K)p—1) -
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Theorem 4.3 ([5, Theorem 5.1]). For any positive integer £, the vector QP~1(z; k) of polyno-
mials in z is a solutions of the qKZ equations with step k and values in V = Sing L®"[n — 2], in
particular, Y 1, ff’*l(z;ﬁ;) =0, see (4.1).

Let [z] denote the integer part of a real number z. The vector Q?~!(z;k) is zero if ¢ ¢
{1,..., ["7]‘:]} for degree reasons. The vectors of polynomials QP 1(z; k), £ = 1,..., [%ﬂ’
are called the p-hypergeometric solutions of the qKZ equations with step « and values in V.

Denote d(k) = [%ﬂ

Notice that if "7!‘3 < 1, then there are no p-hypergeometric solutions.

4.3 Step —k

The integer k satisfies the inequalities 0 < k < p and the congruence kk = —1 (mod p), see (4.2).
Then the integer p— k satisfies the inequalities 0 < p—k < p and the congruence —k(p—k) = —1
(mod p). Hence ®(t,z;—k) = [[_,(t — 24; —K)p—k. Recall that

Qolt,z;—k) = O(t, 2; —K)na(t, 2),
Qt,z;—k) = (Q1(t,z; —K), ..., Qun(t,z; —k))T = Z Qi(z; —K)(t; —K);.

Corollary 4.4. The vectors

QP Y (z;—k), (=1,..., [”(pp_k)} ,

are solutions of the qKZ equations with step —x and values in V.

If p does not divide n, then the total number of p-hypergeometric solutions of the qKZ
equations with values in V' and steps k and —« equals

2] 25 oo

4.4 p-hypergeometric solutions of KZ equations

In this subsection, we remind the construction in [6] of polynomial solutions modulo p of the
differential KZ equations with values in V = Sing L®"[n — 2].

Let 0 < k < p be the positive integers such that kk = —1 (mod p). Define master polyno-
mial ®(t, 2, k) = [[I_, (t — 24)*. For 1 < a < n, define the weight functions

1

W (t, z) = P
a

) Qa(tz;’k"‘) - (i)(tvz;’%)u_)a(t? Z)

Then Q,(t, z; k) is a polynomial in ¢, z. Define a vector of polynomials in t, z,

Qt,z; k) = (Ql(t,z;ﬁ), o, Qnl(t, 2 ﬁ))T = ZQi(z;/ﬁ)ti,

where Q'(z; k) = (Qﬁ(z, K)oy QL (2 /<a))T are vectors of polynomials in z.

Theorem 4.5 ([6]). For any positive integer £, the vector QP~1(z; k) is a solution of the dif-
ferential KZ equations with parameter  and values in V = Sing L®"[n — 2].
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The vector QP! (z; k) is zero if £ ¢ {1, R [%ﬂ} for degree reasons. The vectors

QP 1(z, k), (=1,..., [TZ{:} ,

are called the p-hypergeometric solutions of the differential KZ equations with parameter x and
values in V.

Notice that Q.(t,z;) are homogeneous polynomials in variables ¢, z of degree nk — 1,
and Q~1(z; k) are vectors of homogeneous polynomials in z of degree nk — £p.

4.5 Top-degree part of p-hypergeometric solutions

It turns out that the top-degree part of a p-hypergeometric solution Qgp_l(z; k) of the qKZ
equations is the p-hypergeometric solution Q?~!(z; k) of the KZ equations.

We start with an abstract lemma. Let t,z21,...,2,, @ be variables. Given a homogeneous
polynomial P(¢, z1,. .., zp, @) of degree d in the variables ¢, z, & and an integer e, 0 < e < d, we
construct two polynomials P.(z1,...,2,) and P.(z1,...,2,,0) as follows.

On the one hand, we have

P(t,z1,...,2p, ) = Z ad07,,,7dn+1td°zf1 . -zg"ad"“. (4.4)
do+-+dnt1=d
Then
d n
P(t,z1,...,2p,0) = Z adow,dmgtdozll e zg . (4.5)
do+-++dn=d
Denote
_ J 3
Pe(Zh L 7zn) - Z ae,dl,...,dn,ozll e Zg )

etdy+-tdn=d

the coefficient of ¢¢ in (4.5).
On the other hand, applying formula (3.2) to each t% at (4.4), we rewrite this sum as

. d dn dn
P(t,z1,...,2n,a) = Z bdg,....dnsr (B3 Q) do 21" - - - 2yt (4.6)
d0+"'+dn+1:d
Denote
}: d dn - dn
Pe(zl7"'7zn7a) = bezdlv"'vdn+1zll Zn @ +17
etdi++dpp1=d

the coefficient of (¢; ). in (4.6). Then

d d
Pe(zl, cee 9 Zmy 0) = E be,dl,..,,dn,ﬂzll e Zn .
eddi+-+dn=d

3

Lemma 4.6. We have P.(z1,...,2n,0) = Pe(21,...,2n).

Proof. By formula (3.3), we have ae¢gd, . d.0 = bed,... d,0 for any e,di,...,d,. This implies
the lemma. |

Corollary 4.7 ([5]). Let Q~'(z; k) be a p-hypergeometric solution of the ¢KZ equations from
Theorem 4.3. Then QP (z;k) = QP (2;k) + -+ -, where QP71 (z; k) is the corresponding p-
hypergeometric solution of the KZ equations from Theorem 4.5, and the dots denote the terms
of degree less than nk — fp = deg QP (z; k).

Proof. The corollary is proved by application of Lemma 4.6 to the polynomial Q(t,z;k)
and integer e = fp — 1. Then it is easy to see that Pp_i(21,...,2,) = QP '(2;k) and
Pyy_1(21, ..., 2n,0) is the top-degree part of QP (2 k). |



12 E. Mukhin and A. Varchenko

5 Linear independence

5.1 Lexicographical order

Define length-lexicographical order on monomials v = z1d1 coezln: < w if degree(v) <degree(w)

or if degree(v) =degree(w) and v is smaller than w in lexicographical order.

For a polynomial f(z) =3, Qdy....d, 20 - 2% denote by Lf(z) the nonzero summand

Gdl,...,dnzfl e zg" with the lexicographically largest monomial zfl ~ooz8n . We call Lf(z) the

leading term of f(z).

5.2 Leading terms

For ¢ € {1,...,d(k)}, let (¢) be the unique non-negative integer such that
r(0)k <nk —fp < (r(f) + 1)k.

We have (1) > r(2) > ---. Denote

(_1)nk—€p

ga=(n=r(O)k—tp, =

k
< )(o,...,o,k—a,k,...,k)Tng,

a

where k — a is the r(¢) 4+ 1-st coordinate. Notice that the integers k and k — a are not divisible
by p, and uy € I} is a singular vector since the sum of its coordinates equals zero.

Lemma 5.1 ([7, Lemma 3.1]). Assume that p does not divide n and £ € {1,...,d(rk)}. Then
the leading term of Q~1(z; k) is given by the formula

L QZP_I(Z; k)= (21 'zr(e))kZ?(g)HW-

Lemma 5.2. Assume that p does not divide n and £ € {1,...,d(x)}. Let Q"1(z;K) be the
corresponding p-hypergeometric solution of the ¢KZ equations and Q=1 (z; k) the corresponding
p-hypergeometric solution of the KZ equations. Then their leading terms are equal,

LQP ! (z5) = LQP (23 k).
Proof. The lemma follows from Corollary 4.7. |

Corollary 5.3. Ifp does not dividen and £ € {1,...,d(k)}, then the leading term of QP (z; k)
is given by the formula

LQ"P Yzk) = (2 - 'zr(g))sz(g)ﬂw. (5.1)

Example 5.4. Let n = 3 and d(k) = [%] =1. Then £ <k < %p. In this case there is exactly
one p-hypergeometric solution QP! (z; k). If § < k < %p, then the leading term of QP~!(z; k) is

_p (=13 Lk
s T

If £ <k < B, then the leading term of QP~!(z; k) is

Zkap (_1)k k
! k 3k—p

)(p— 2%, ki, k)T

Consider the collections of the n-vectors Q=1 (z; k),
For I = {1 <1 < -+ <ig) < n}, denote by M/(z, k)
located at the rows with indices in I.

¢=1,...,d(k), as an (n x d(k))-matrix.
the (d(k) x d(k))-minor of that matrix
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Lemma 5.5. If p does not divide n and I = {r(d(r)) < --- <r(1)}, then the minor M(z; k) is
a monzero polynomial.

Proof. The lemma is a corollary of formula (5.1). [

Theorem 5.6. If p does not divide n, then the p-hypergeometric solutions QP (z; k), £ =
1,...,d(k), of the ¢KZ equations are linearly independent over the field K(z).

Proof. The statement follows from formula (5.1) and the fact that the vectors u, are linearly
independent over K. |

6 Orthogonality relations

6.1 Statement

Recall that d(—k) = [@}.

Theorem 6.1. Let p > n and 0 < d(k) < n—1. Then for any ¢ € {1,...,d(k)} and m €
{1,...,d(—k)}, we have

n

S(Q (~2 ), Q7 (z5m) = Y0 QMm@ (zim) = O (61

a=1
where S is the Shapovalov form.
The theorem is proved in Sections 6.2 and 6.3.

Remark. It is easy to see that the Shapovalov form on V' is nondegenerate if p does not divide n.
Indeed, the vectors e; = (1,—1,0,...,0), e2 = (0,1,-1,0,...,0), ..., ep—1 = (0,...,0,1,—1)
form a basis of V', and the determinant of the Shapovalov form in this basis equals n.

Remark. Formula (6.1) and Corollary 4.7 imply the orthogonality relations for the p-hypergeo-
metric solutions of the KZ equations,

n

S(Qmp*l(—z; —K), er*l(z; IQ)) = Z @leil(—zﬁ _"G)Qgpil('z; k). = 0. (6.2)

a=1

Two different proofs of formula (6.2) are given in [8, Theorem 3.11] and [8, Appendix A].

6.2 Special restrictions

Let I C {1,...,n} be a nonempty subset, I = {1 < i3 < iz2 < --- < ig < n}. Denote S; the
system of equations

zi, = ((b— 1)k — 1)k, b=1,...,a. (6.3)

For a polynomial f(z), define f(z)s, to be the polynomial f(z) in which the variables (z;)icr
are replaced by multiples of k according to formulas (6.3).

Lemma 6.2. Let Q(t,z;k) be the vector of polynomials defined by (4.3). Let I = {1 < i1 <
ig < -+ <ig<n}C{l,...,n} be a nonempty subset. Then

Qt, z;k)s; = (t;K)ak—1(P1(t, 2), ..., Pa(t, 2))7,

where Py(t,z),...,Py(t,z) are suitable polynomials of degree (n — a)k.
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Proof. The proof is straightforward. |

Corollary 6.3. Let er*l(z; k) be a p-hypergeometric solution and lp < ak. Then
Qépfl(z; "f)SI =0. (64)

Proof. For j =1,...,n, the j-th coordinate of Q(¢, z; k)5, equals (t; k)qx—1P;(t, 2). Using (3.1),
we rewrite this as ;- ., ¢i(2)(t; k); for suitable ¢;(z). We observe that (¢; k)g,—1 does not enter
this sum. This proves the corollary. |

6.3 Proof of Theorem 6.1

Denote

Gem(zi k) = S(Q™ (=2 —r), QP! (2:5)).
Then
Gem(=z k) = S(Q (2 =), QP (=2 k)
= S(Q% M (=2;k), Q" (2 —K)) = Gme(z;—5).
Hence, Gy (z; k) = 0 for all £, m if and only if G, ¢(z; —k) = 0.
By Lemma 2.4, the function Gy,,(z; k) is a polynomial in Fp[2} — 21,...,25 — 2,]. Denote
h(z) = 2P — x.
Lemma 6.4. Given £ and m, we have
n——l—m
Gf,m(Z; K)=co+ Z Z cj17-~-7jbh(zj1) T h(’zjb)7 €05 Gy, € Fp-
b=1 1<ji<-<jgp<n
Proof. On the one hand, we have
deg Q% (2 k) = kn — tp and deg Q™7 (—2; —r) = (p — k)n — mp.
Hence deg Gy (23 £) < (n — € —m)p.
On the other hand, for any j = 1,...,n, we have degzj Grm(2z; k) < psince degzj Qt,z;k) =k
and deg, Q(t, —z; —K) = p — k. These two remarks prove the lemma. |

The p-hypergeometric solution QP~1(z, ) is associated with the integer 0 < k < p such
that kk = —1 (mod p), while the p-hypergeometric solution Q™P~1(z, —k) is associated with
the integer 0 < p — k < p such that —k(p — k) = —1 (mod p). Given m, ¢, we say that k is
a good parameter if £(p—k) < mk. We say that p—k is a good parameter if mk < ¢(p—k). Notice
that mk # {(p — k). Otherwise p must divide £+ m which is impossible since £+m < n—1 < p.

Having the two integers k, p — k and two solutions Q= 1(z; k) and Q™ ~1(z; —k), we may
and will assume that k£ denotes the good parameter.

Lemma 6.5. Given Q"' (z;k) and Q™' (z; —k), assume that k is a good parameter. Then
Gim(z; k) =0.

Proof. Let {1,...,n} = I UJ be a partition where |I| = ¢+ m and |J| = n—£¢—m. We
may apply formula (6.4) to Q?~1(2; k) with a = £ + m since k is a good parameter and hence
lp < (€ +m)k. Hence we have Gy ,,(z;x); = 0, where

n——f—m

Gim(zik)=cot+ Y > Chih(z) - h(z,). (6.5)

b=1 {ji<-<jp}CJ

Hence the right-hand side polynomial at (6.5) is the zero polynomial for any subset I with
|I| = £ + m. Therefore, Gy, (2; k) is the zero polynomial. [

Lemma 6.5 implies Theorem 6.1.
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7 Invariant subbundles

7.1 Subbundle of qKZ connection

Assume that p > n and k € ]F;. Consider the discrete qKZ connection on the direct prod-
uct V x K® — K", where V = {z € K" | z; + - - - + 2, = 0} and the qKZ operators are defined
by formula (2.2),

Ko(z6) = R V(2 — 24 1 — k) - - ROV (24 — 2y — k)

X RO (2 = ) RO (2 — 2440)

The connection has singularities at the points of K™ where the qKZ operators have poles or are
degenerate.

The R-matrix R(u) = ?;If has a pole if u = 1 and is degenerate if u = —1. Denote by H; ;
the affine hyperplane in K" defined by the equation z; — z; —m = 0 where 1 <@ < j < n,
m € Fp. Let A° be the arrangement in K™ of all hyperplanes H;jm. Let A =K" — A° denote
its complement. The qKZ operators are well-defined over A and are nondegenerate.

Assume that 0 < d(k) < n — 1. Then the p-hypergeometric solutions Q7= (z;k), £ =
1,...,d(k), define flat sections of the qKZ connection which we call the p-hypergeometric sec-
tions.

Recall the minors Mj(z; k) defined for any I = {1 < i1 < -+ < ig) < n} in Section 5.2
with the help of these p-hypergeometric sections. Denote by A(k) the Zariski open subset of A
consisting of points b € A such that at least one of the minors M;(z; k) is nonzero at b.

For any point b € A(k), the vectors Q?~1(b, k), £ = 1,...,d(k), are linearly independent and
span a d(k)-dimensional K-vector subspace S(b, k) of V. These subspaces S(b, k), b € A(k),
form a vector subbundle S(x) — A(k) of the trivial bundle V' x A(x) — A(k).

Remark. Notice that the minors Mj(z; k) are polynomials in z with coefficients in F,, and are
independent of the field K. Notice also that the base A(k) is invariant with respect to the affine
translations, (21,...,2n) = (21,...,20 — Ky.o oy 2n)y a=1,...,n.

The subbundle S(k) — A(k) is invariant under the ¢KZ connection, and the p-hypergeometric
sections form a flat basis of the space of its sections.

We also consider the quotient bundle Q(k) — A(k) with fibers V/S(b, k). The gKZ connec-
tion on V x A(k) — A(k) induces a discrete connection on Q(x) — A(x) which we also call the
qKZ connection. Notice that the rank of Q(k) — A(k) equals

n(p — k)
p

dim V' — rank S(x) = n— 1 — [”k] _ [

p |~

If d(k) = 0, we define A(x) = A. In this case, we define S(k) — A(x) to be the rank 0
subbundle of V' x A(k) and also define Q(k) — A(k) to be V x A(k).

7.2 Subbundle of dual qKZ connection

Assume that p > n and x € F;. Consider the dual discrete gKZ connection on V' x K" — K"
defined by formulas (2.11) and (2.7). The dual qKZ operators Kq(—z1,...,—2n;—K), @ =
1,...,n, are well-defined over A and are nondegenerate.

Assume that 0 < d(—k) < n—1. This assumption is equivalent to the assumption 0 < d(k) <
n — 1. Consider the p-hypergeometric solutions Q™ ~!(z; —k), m = 1,...,d(—x), of the gKZ
equations step —#. Then the V-valued polynomials Q™ ~!(—z; —k), m = 1,...,d(—k), define
flat sections of the dual qKZ connection which we also call the p-hypergeometric sections.
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Recall the minors Mj(z; —k) defined for any I = {1 < i3 < -+ < ig_, < n} in Sec-
tion 5.2 with the help of the p-hypergeometric solutions Q™= !(z; —k), m = 1,...,d(—k). De-
note by B(k) the Zariski open subset of A consisting of points b € A such that at least one of
the polynomials Mj(—z; —k) is nonzero at b.

For any point b € B(k), the vectors Q™1 (—b, —k), m = 1,...,d(—k), are linearly inde-
pendent and span a d(—x)-dimensional K-vector subspace S*(b, —k) of space V. These sub-
spaces S*(b,—k), b € B(k), form a vector subbundle S*(x) — B(k) of the trivial bundle
V x B(k) = B(k).

The subbundle S*(k) — B(k) is invariant with respect to the dual gKZ connection, and the
p-hypergeometric sections Q™! (—z; —k), m = 1,...,d(—k), form a flat basis of the space of
its sections.

Consider the restriction of the bundles $*(k) — B(k) and Q(k) — A(k) to A(k) N B(k). For
any b € A(k) N B(k), the Shapovalov form defines a nondegenerate pairing

S: §*(b,—r)@V/S(b,r) = K

of the fibers of these bundles, by Theorem 6.1. The discrete connections on S*(k) — B(k)
and Q(k) — A(k) are dual with respect to the Shapovalov form, that is, for any u € $*(b, —k),
veV/S(b,k), and a =1,...,n, we have S(u,v) = S(Ky(—b; —kr)u, Kq(b; k)v).

Define p-quasi-hypergeometric sections T¢(z; k), £ = 1,...,d(—k), of the bundle Q(k) — A(k)
over A(k) N B(k) by the formulas

S(QP7 (b, —k), T*b,K)) = 6m, M =1,....d(—K).

Lemma 7.1. Assume that p > n and 0 < d(—k) < n — 1. Then p-quasi-hypergeometric
sections T*(z; k), £ =1,...,d(—k), of the quotient bundle Q(x) — A(k) NB(k) form a flat basis
of the space of sections of that bundle.

Proof. The proof is straightforward. |

If d(—k) = 0, we define B(x) = .A. We also define S*(k) — B(k) to be the rank 0 subbundle
of V- x B(k).

Example 7.2. Let n = 2. Then V is of dimension 1. For p =5, k = k = 3, we have d(3) = 1,
and the gKZ connection has a flat basis given by the p-hypergeometric solution

Q4(z1, 29) = (=221 + 229 + 2,221 — 229 — 2).

For p = 5. k =k = 2, we have d(2) = 0, and the qKZ connection has a flat basis given by the
p-quasi-hypergeometric solution

T (21, 29,2) = ( 5 5 >

221 —222—|—2’ —2z1 + 229 — 2

7.3 Reduced p-curvature operators

Let C’a(z; k), a =1,...,n, be the reduced p-curvature operators of the qKZ discrete connection
on V x K" — K", see (2.5).

Theorem 7.3. If p > n, k €F), and 0 < d(k) < n — 1, then the span of the p-hypergeo-
metric sections QPN (z; k), £ = 1,...,d(r), lies in the kernel of Cy(z, k) and contains the image
of C’a(z; k) for everya=1,...,n.

If d(k) =p—1 or 0, then all reduced p-curvature operators equal zero.
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Corollary 7.4. We have Cy(z;8)Cy(2;5) =0, a,b=1,...,n

Proof of Theorem 7.3. The span lies in the kernel of Cy(z; &) by formula (2.4).

The operator Cy(z; ) annihilates the span, hence C,(2; k) induces a well-defined operator
on the fibers of the quotient bundle Q(x) — A(x). This induced operator is the a-th reduced p-
curvature operator of the qKZ connection on the quotient bundle. The quotient bundle has a flat
basis of p-quasi-hypergeometric sections over the Zariski open subset A(x) N B(k). Hence all
reduced p-curvature operators of the qKZ connection on the quotient bundle are zero. Therefore
the image of C’a(z; k) is contained in the span.

If d(k) = p— 1, then S(k) — A(k) coincides with V x A(k) — A(k), and all reduced
p-curvature operators are zero by formula (2.4).

If d(k) = 0, then p-quasi-hypergeometric sections form a flat basis of the space of sections
of V x A(k) = A(k), and again all reduced p-curvature operators are zero by formula (2.4). W

Lemma 7.5. If p > n, sk € FX, and 0 < d(k) < n — 1, then every reduced p-curvature opera-
tor Co(z; k) is nonzero.

Proof. Consider a normalized p-curvature operator CX%(z, x) of the associated differential KZ
equations. In a basis of V, the entries of the matrix of the operator é’}fz(z, k) are homogeneous
polynomials in z of degree (n—2)p. By Corollary 2.2, in the same basis, the entries of the matrix
of the operator Cy(z, x) are polynomials in z of degree (n — 2)p whose top-degree parts equal
the corresponding entries of the matrix of the operator CX%(z, k).

It is proved in [8, Theorem 1.13] that if p > n, x € F), then every reduced p-curvature
operator CXZ%(2, k) is a (nonzero) operator of rank 1. Hence every reduced p-curvature opera-
tor Cy(2, k) is a nonzero operator. [

Example 7.6. For n = 3, we have dimV = 2. Let p > 3 and d(x) = 1. Then d(—x) = 1. For
a = 1,2,3, the kernel of the reduced p-curvature operator C, (2,k) is generated by QP~1(z, k)
and the image of Ca(z, k) is generated by QP~!(z, ). Such an operator is determined uniquely
up to multiplication by a scalar rational function in z.

For an operator F': V. — V, denote by F*: V — V the operator dual to F' under the
Shapovalov form, S(F*z,y) = S(z, Fy).

Lemma 7.7. We have
Colz,—k) = —Co(—2; K)". (7.1)

Proof. We have S(z,y) = S(Cy(—z;—k)x,Co(z;k)y) by formulas (2.10) and (2.7). Hence
Co(—2z;—k) = (Ca(z;£)71)". We also have (Cq(2; k) — 1)? = 0 by Corollary 7.4. Then

Calz:8) 1 = (14 (Calz:8) = 1)) " =1 = (Culz;5) = 1)
and Cy(—z;—k) — 1 =1—Cy(z; k)" [
Corollary 7.8. The normalized p-curvature operators satisfy the equation

Culz;—k) = (=1)"Co(—2; K)*. (7.2)
Proof. Formula (7.2) follows from equation (7.1) and the following formulas:

Ca(z; 1) = (Calz; ) = 1) [ [ (21 — 2j, ),
J#
Co(—=2;—K) = (Cal—2;—K) — 1)H(—Zi+2j,—li)p. [
JFi
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7.4 All solutions of qKZ equations for k € F;;

Theorem 7.9. Let p > n, k € Fj, and 0 < d(k) < n—1. Let f(z) be a V-valued rational
function in z which is a solution of the qKZ equations with step k. Then f(z) is a linear
combination of the p-hypergeometric solutions QP (z;k), £ = 1,...,d(r), with coefficients
which are rational functions in 2 — z;, i =1,...,n.

Recall that if d(k) = n — 1, then the qKZ connection has a basis of flat sections given by
the p-hypergeometric sections by Theorem 5.6, and if d(x) = 0, then the qKZ connection has

a basis of flat sections given by the p-quasi-hypergeometric solutions, by Lemma 7.1.

Proof. For a = 1,...,n, consider the normalized p-curvature operators C’fz(z, k) and Cy(z, K).
Both of these operators are polynomials in z, and the polynomial C’ffz(z, k) is the top-degree
part of the polynomial C,(z, x). The polynomial C’gz(z, k) is nonzero by [8, Theorem 1.13] and
hence C,(z, k) is a nonzero operator.

It was proved in [8, Theorem 1.8] that if p > n, x € F, and 0 < d(k) < n—1, then all solutions
of the KZ equations are linear combinations of the p-hypergeometric solutions. Hence the

intersection of kernels of the operators CN'CI;Z(Z, k), a=1,...,n,is of dimension d(k) for generic z,
and the span of images of the operators CX%(z, k), a = 1,. .51, is of dimension n — 1 — d(k) for
generic z. Therefore, the span of images of the operators Cy(z, k), a = 1,...,n, has dimension

at least n — 1 — d(k) for generic z. This implies that the span of values of flat sections of the
gqKZ connection is of dimension not larger than d(x) for generic z. But we have d(k) flat linear

independent p-hypergeometric sections Q?~!(z;x), £ = 1,...,d(x). Hence any flat section of
the qKZ connection is a linear combination of the p-hypergeometric sections with 1-periodic
coefficients. |

Corollary 7.10. Let p > n, k € F), and 0 < d(k) < n —1. Let f(z) and g(z) be V-valued
rational functions in z where f(z) is a solution the gKZ equations with step k and g(z) is
a solution the gKZ equations with step —k. Then

S(g(—2), £(2)) = 0. (7.3)

Formula (7.3) follows from Theorems 7.9 and 6.1.

7.5 gKZ connection with k € K\ F),

Lemma 7.11. Letp > n and k € K\F, . Then all the normalized p-curvature operators Cul(z; k),
a=1,...,n, are nondegenerate for generic z.

Proof. Formula (3.19) in [8] describes the spectrum of the p-curvature operators CX?%(z; k) of
differential KZ equations. The formula shows that all p-curvature operators C}fz(z; K) are non-
degenerate for generic z. In a basis of V', the matrices of CN'CIfZ(z; k) are homogeneous polynomials
in z of degree (n — 2)p. Hence their determinants are nonzero homogeneous polynomials in z.
By Corollary 2.2, the determinants of the normalized p-curvature operators éa(z; K) are nonzero
polynomials. The lemma follows. |

Corollary 7.12. For p > n and k € K\ F,, there does not exist a nonzero rational V-valued
function f(z) which is a flat section of the ¢KZ connection with parameter k.

Proof. If f (z) is a flat section, then it lies in the kernel of every normalized p-curvature oper-
ator Cy(z; k). That contradicts to Lemma 7.11. [
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