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Abstract. We investigate trace formulas in e-deformed W-algebras, highlighting a novel
connection to the modular double of g-deformed W-algebras. In particular, we show that
torus correlators in the additive (Yangian) setting reproduce sphere correlators in the
trigonometric setup, possibly with the inclusion of a non-perturbative completion. From
a dual perspective, this mechanism implements a gauge theoretic 2d—3d uplift, where a cir-
cle direction in the world-sheet transmutes to a compact space-time direction in a non-trivial
manner. We further discuss a unified picture of deformed W-algebras driven by trace for-
mulas, suggesting a deeper algebraic layer related to the massive and massless form-factor
approach to integrable QFT and 2d CFT.
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1 Introduction

In this letter, we study quiver W, ., algebras introduced in [35], which can be viewed as the
additive (or Yangian) counterpart of quiver Wy, 4, algebras [22]. The former lie at the bottom
of the rational/trigonometric/elliptic classification borrowed from integrable systems, the top
layer W, 4, being also known [11, 21, 33]. While it is fairly straightforward to follow the
hierarchy from the elliptic to rational case by taking appropriate limits, the natural question
arises whether the lower layers also capture some aspects of the upper ones. Such a possibility
is partially hinted by the representation theory of affine Yangian, quantum toroidal and elliptic
algebras, which exhibit striking similarities.!

We approach the question by exploiting the continuous free boson representation of W, .,
algebras and computing some observables to be matched across the hierarchy, specifically at the
trigonometric level. Which type of observables is naturally suggested by the dual string/gauge
theoretic realization of the relevant algebras in the BPS sector of 4d/5d/6d theories — including
co-dimension 2 defects — with 8 supercharges on the Q-background times a point/circle/torus [31].
For instance, S-duality in IIB string theory implies the equivalence between partition functions
of 5d linear quivers with unitary gauge groups and adjoint matter and 6d theories with funda-
mentals: geometrically, both the Calabi—Yau backgrounds involve a compact direction — either
due to the adjoint or the torus — and are simply related via the fiber-base exchange [16]. From
the algebraic viewpoint, the identification of certain correlators — interpreted as gauge theo-
retic partition functions — between the trigonometric and elliptic setups can be traced back

'In the Yangian case the free boson representation is more subtle and the S-automorphism is apparently lost,
even though it reverberates in certain observables [18, 27, 35].
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to Miki S-automorphism or, in practice, to Clavelli-Shapiro trace technique: this trick allows
torus correlators — i.e., traces over the entire free boson Fock space — to be recasted as sphere
correlators — i.e., vacuum expectation values — at the cost of doubling the number of bosons, an
operation which effectively implements the elliptic deformation. This mechanism was already
discussed in [22, 35] to connect trigonometric observables/5d instanton partition functions with
the elliptic/6d ones: the algebraic or world-sheet circle direction — i.e., the trace — transmutes
to an emergent compact space-time direction.

Main result

This web of relationships naturally suggests that the trigonometric g-deformation can be realized
by looking at torus correlators within the e-deformation. From the gauge theoretic perspective,
this operation should be dual to the dimensional uplift 2d—3d.? In the following, we argue this
connection does indeed take place in an interesting manner: not only the trace implements the
desired jump, but it does so in a way that automatically generates a non-perturbative completion
in the sense of the modular double [30]. In other words, granted that the 2-point functions
of the W, ., screening currents S(X) are the main building blocks to construct (integrated)
correlators/gauge theoretic partition functions [1, 2], namely

(S(X)S(X')) = 1-loop determinants on C,
then we find
Tr(e_TL(O)S(X)S(X')) = 1-loop determinants on S®.

In previous works, such compact result stemmed from a fusion [34] echoing left/right factor-
ization in 2d CFT or topological/anti-topological factorization in gauge theories on compact
spaces [5, 36]. From the viewpoint of integrated correlators, projecting to a “chiral” C x S!
factor? amounts to choosing the “perturbative” contour, which neglects the “non-perturbative”

poles.?

Further motivations and connections to other works

(1) The main motivation behind this letter is the idea that trigonometric and elliptic W-
algebras should emerge explicitly from massive integrable QFTs, just as ordinary W-
algebras arise from (massless) 2d CFTs. In this regard, the original AGT correspon-
dence [3, 41] goes far beyond a mere identification of symmetries: it relates a specific
class of 4d N = 2 gauge theories [14] to specific 2d conformal models (Liouville/Toda).
In the deformed setup, substantial progress has been achieved on the gauge theoretic
side, but less so on the other: while the representation theory of quantum toroidal alge-
bras is now well-developed and inspired by gauge/string theory constructions, very little
is known about the associated integrable QFTs.> Nevertheless, the natural theoretical
framework to study the latter can be found in the form-factor approach [38]. In partic-
ular, Lukyanov [25] developed bosonization techniques that express form-factors through

*We will often trade 4d/5d/6d theories for their 2d/3d/4d vortex defects to simplify the discussion. From the
algebraic viewpoint, the main difference regards the types of representations involved.

3We recall that S® admits the genus 1 Heegaard splitting into two solid tori C x S?.

It is well-known that 1-loop determinants of 3d ' = 2 gauge theories on S* can be written in terms of the
Double Sine function, which has two towers of simple poles at discrete points along two directions in the complex
plane, usually denoted by b, 1/b. It is customary to refer to the poles along b as perturbative while those along 1/b
as non-perturbative. See also [36] for a Borel resummation analysis.

®The gauge/Bethe side of the story [32] is more developed, but we do not touch it here.
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trace formulas — a language well suited to the present work.® We hope that contextualiz-
ing the deformed W-algebras within the form-factor program may shed more light on the
relevant massive models dual to higher-dimensional gauge theories.

(2) A renewed interest in the massless form-factor program [10, 12, 42] and the realization of
affine Yangian/W,, ., algebras in this context, may trigger some progress on long-standing
open issues in 2d CFT, such as the computation of Toda 3-point functions — [9, 17, 28] for
a string/gauge theoretic approach — or holographic problems [6, 39]. We provide further
comments in this direction in the last section.

(3) When computing integrated correlators, one can in principle consider all poles, namely
also those captured by the non-perturbative contour. Since certain Wy, 4, correlators are
dual to open string amplitudes, it would be interesting to consider our findings in view of
various proposals for a non-perturbative definition of (refined) topological strings [15, 23].

(4) On the more algebraic side, the realization of 3d A/ = 2 holomorphic blocks as torus
correlators in W, ., may also help explaining their quantum modular properties [7, 8].
Furthermore, the W, ., /Wy, g, connection may clarify why the (refined) topological vertex
can be understood both as a quantum toroidal intertwiner [4] (trigonometric viewpoint)
and a VOA character [37] (affine Yangian viewpoint).

The rest of this letter is organized as follows. In Section 2, we briefly review some definitions and
conventions around Wy, 4, and W, ., algebras, at least for the simplest A; case. In Section 3, we
compute the trace of the product of two screening currents of the W, ., (A1) algebra, matching
the 2-point function in the modular double completion of Wy, 4,(A1). In Section 4, we comment
further our results and outline directions for future work. In Appendix A, we summarize the
relevant special functions. In Appendix B, we give a proof of Clavelli-Shapiro formula.

2 Brief review and conventions

The g-Virasoro algebra

For the sake of simplicity, we focus here on the W (1 (A1) algebra, namely g-Virasoro.” The gen-
eralization to arbitrary quiver W-algebras is straightforward.® In order to start with, let us con-
sider the Heisenberg algebra generated by oscillators {a,,, m € Z\{0}} and zero modes {P, Q},
with non-trivial commutation relations

1

[am,an] — _7(qm/2 . q—m/2) (t_m/Q . tm/2)C[m] (P)Ormn.0; [P, Q] =2,

m
where Cl™(p) = (pm/2 + p_m/Q) is the deformed Cartan matrix of A; and p = qt~!'. For
any given a € C, we consider dual Fock modules over the charged Fock vacua |a) = e*?/2|0)
and (a| = (0]e~*Q/2 with the canonical pairing (0/0) = 1. In particular,

Pla) = a|a), an|a) =0, (ala_,, =0, m € Zsy.

The g-Virasoro screening current? has the following free boson representation:

m

amTr
S(x) =: es(ﬁ) o S(l’) = — Z W —+ \/BQ -+ \/BP lna?,
m#0

SAlready in the early papers on the subject many formulas similar to ours can be found, see, e.g., [19] and [26].

"It is customary to set q1 = q and g2 = t~! to match the refined topological string literature.

8Following, e.g., [22], one has to introduce an index for each node and a non-trivial deformed Cartan matrix,
not necessarily associated to a Lie algebra, encoding the structure of the quiver. The extension to fractional
quivers is also possible following [20].

9There is a second screening current related to this one by q <> t~1.
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where t = ¢°. The normal ordering symbol : : arranges all the positive modes and P to the
right. For definitiveness, in the following we shall consider the chamber |gq| < 1, then the OPE
of the screening current with itself is

. 1 e
S(2)S(+') = S(2)S(x) : /w q>°°(‘°”““/”“” oo 26 (2.1)

(92" /23 4)oo (Y /25 q) 00
The corresponding 2-point function is the main building block to construct non-trivial (integral)
correlators of suitably chosen vertex operators, therefore this is the object we study in this letter.

The e-Virasoro algebra

The e-Virasoro algebra can be thought of as the additive counterpart of g-Virasoro. The former
can be deduced from the latter by a careful scaling limit, part of which consists in parametrizing

quihglv tEeh€27 pEeihéJra erth €4 =e1 t+ €9,
and taking i — 0. Then the screening current'? takes the free boson representation (we use the
same symbol)

a e’kX
S(X) =% s(X) z][dkmﬁ(w +/BPX,

where the oscillator modes, now labelled by a continuous parameter k € R, satisfy the non-trivial
commutation relations

[a(k), a(¥)] = _% sinh(e1k/2) sinh(e2k/2)5 (k + k) C(k),

with C(k) = 2cosh(e+k/2). The Fock modules and normal ordering are defined as before,
while the dashed integral means the contribution from around the origin (zero mode) is to be
regularized (e.g., via principal value or some subtraction scheme). The OPE of the screening
current with itself then reads as

(X — X' —ele) )T (X — X' +e1e
S(X)S(X') = S(X)8(X) : 1§1<X . Xf\;’)rll) ()1<(— X'+ ;;1') k

6_75162.

3 Wi, .4, Sphere correlators as W, ., torus correlators

We move from 2-point functions, i.e., v.e.v. or sphere correlators, to torus correlators. We
shall adapt Clavelli-Shapiro trace technique to the continuous setup needed for the free boson
representation of W, ., algebras. Let us review their formula for the discrete case first (we
refer to Appendix B for a proof and further details). Let us introduce a grading operator Ly
which satisfies [Lo, a,] = —nay, and define the torus correlator ((0/0|0)) = Tr(q"0), where O
is some operator written in terms of the non-zero modes of the Heisenberg algebra and q' € C*
the elliptic parameter. The trace is taken over the entire Fock space. The Clavelli-Shapiro
trace technique tells us that we can equivalently compute'® (0]0]0)) ~ (0|0|0), where O is the
elliptic version of the operator O, namely the former is obtained from the latter through the
substitution

a, b,

+ b_n, a_, —a_, — m, n e Z>0,

0T here is another one with 1 and e exchanged which we do not consider here.
"'The proportionality factor turns out to be 1/(q’;q")

oo’
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where the oscillators a,,, b,, satisfy the same Heisenberg algebra and commute with each other.
Similarly, in the continuous case we define a grading operator such that'? [L(0), a(k)] = —k a(k),
namely

B oo k2 a(—k:)a(k)
L(0) = _]é dk4 sinh(key/2) sinh(key/2)C (k)

We now fix 7 € C and aim to compute traces weighted by e ") Applying the same strategy

as before, we get the formula (0/O|0Y) ~ (0]O|0), where on the right-hand side the following
substitutions are implied

a(k) - ;‘f_)k +b(—k),  a(—k) = a(-k) -

k € Ryg.

As before, the a(k), b(k) operators satisfy the same algebra and commute with each other.
Some regularization scheme is understood and discussed in the following.

Let us now apply this result to compute the weighted trace of two e-Virasoro screening
currents (up to zero modes), namely

(0IS(X)S(X")|0)
[ +00 (1 KX =X"+e1/2) (gher/2 _ gke2/2) (ehe+/2 4 e—ka+/2)]
0

k (L) (1_c )
+ Jk e k(T—X+X'—€1/2) (ek52/2 _ e—k62/2) (ek6+/2 + e—k€+/2)
X exp —]é ? (1—61651)(1—671”) .

Now it comes the key observation. If we adopt the Hankel regularization separately for the two
integrals as outlined below (A.1), we don’t seem to get something sensible to be interpreted
in the g-Virasoro context. Indeed, using the integral representation (A.l), we would naively
expect the appearance of a certain combination of Double Gamma functions which would nicely
combine into the ratio (2.1) of g-Pochhammers (up to zero mode contributions) thanks to the
identity (A.2). However, the validity of (A.1) would require 7 and £e; to all lie on the same side
with respect to the imaginary axis, which cannot be the case. Interestingly, the case at hand
is a rare example where there is in fact another regularization, simpler to understand. We first
combine the two integrals into a single one by performing the change of variable k — —k in the
second piece, so that

. R +° Jk efk(X—X/+61/2) (ek52/2 _ efksg/Q) (eks+/2 4 efke+/2)
/ — -
<O|S(X)S(X )|O> - [][—oo k (1 — e—ka1) (1 — e—k‘T)

The dashed integration can now be naturally taken along the entire real axis with a small
deformation around the origin in order to avoid it (equivalently, the contour can run parallel
to the real axis slightly below/above). Using the integral representation (A.3), the expression
above is the “compact version” of the expected naive result (up to zero mode contributions),
namely

. ~ So(X — X'|1,61)S2(X — X' +eq|re1) p2ni8y_xr
S(X)S(X' = ! ’ T (X =X"+7/2)
<0‘ ( ) ( )|O> SQ(X —X’+51|T,81)SQ(X — X’ —82’7',51)6 ’

(3.1)

where the g-Pochhammers are replaced by double sine functions.
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Figure 1. Sketch of the rational/trigonometric/elliptic classification of the deformed W-algebras and

the related limits and uplifts one can implement on gauge theoretic observables (for simplicity, at co-

dimension 2 in 4d/5d/6d) and the involved special functions or observables.

4 Discussion and outlook

The results above can be placed at the bottom-right corner of the cartoon in Figure 1, which
provides a schematic overview of the rational /trigonometric/elliptic classification of deformed W-
algebras and their associated gauge-theoretic backgrounds, along with the interrelations realized
via appropriate limits and uplifts.

(1)

At the top level, we encounter the (master) elliptic deformation, which admits two lim-
iting cases, named trigonometric and hyperbolic. In gauge theoretic terms, the former
is associated to the Cg; X S' background, the latter to the compact space Sg’l /7 This
structure is mirrored in the corresponding 2-point functions/1-loop determinants, which
are expressed in terms of g-Pochhammers or double sine functions respectively. From
a practical perspective, both cases are accessible because of the automorphic properties of
the key building block — the elliptic Gamma function.

At the intermediate level, the trigonometric deformation can be uplifted to the elliptic
one [33], corresponding to the Cq, x ']T?{, background. The hyperbolic deformation maps
to the modular double upgrade (see, e.g., [30] for an extensive discussion of that construc-
tion), whereas the elliptic uplift replaces Sg’l Ir with Sgl . X S! on the gauge theoretic side
(see, e.g., [24]). In any case, the Yangian/additive deformation can be reached by scaling
limits.

!2This can be thought of as the scaling limit ALy — L(0) for A — 0.
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(3) At the bottom level, the Yangian/additive deformation was derived in [35] by implement-
ing the gauge theoretic dimensional reduction on the algebraic side. In this letter, we
went backward and showed the trace implements the hyperbolic deformation or, equiva-
lently, the 2d—3d uplift in the compact sense — cf. bottom-right part of Figure 1. This
interpretation is further supported by the observation that trace manipulations with con-
tinuous free bosons require a regularization scheme, the simplest being a discretization
of the modes [25] — cf. bottom-left part of Figure 1. Subsequently, the continuous limit
applied to torus/elliptic correlators — cf. top-right part of Figure 1 — precisely yields the
hyperbolic deformation, thus completing the circle.

As we mentioned in the introduction, contextualizing the deformed W-algebras within the
form-factor program may shed some light on the massive integrable QFTs dual to higher-
dimensional gauge theories. This letter is only a first step in this direction. Another intriguing
research line is to explore whether the cartoon in Figure 1 conceals an additional deeper layer
below the e-deformation. In this case, the observables of the Yangian deformation should in
turn arise from trace formulas associated with a more fundamental algebra. This would estab-
lish a direct connection with the massless form factor approach to 2d CFT — a possibility we
intend to investigate elsewhere.

A Multiple Gamma and sine functions

We follow the reference [29]. For z,w; € C all lying on the same side with respect to the
imaginary axis of the complex plane, the multiple Gamma function has the following integral
representation:

dk e kz
In(—k
27ik o )H§:1 (1 —ehwi)

where C is the Hankel contour, v the Euler—-Mascheroni constant and B,, the multiple Bernoulli
polynomials. This type of representation is useful whenever one has to deal with divergent
integrals extending from 0 to co as the substitution

S dk
dk - - - In(—k)---
/0 %fé%ik n(=k)

yields a sensible regularization around the origin. See, e.g., [35] and references therein for more
details.

There is an identity [13] converting the product of two multiple Gamma functions into a mul-
tiple g-Pochhammer, namely

T (2|w) = exp [:!(_anw(w) + 7§ (A1)

I (z]1,0)T(1 — 2|1, —a) =

(73 )00

(T;0)00 = (e%i‘”;e%ial, .. ,62”1%*1)00. (A.2)

The multiple sine function for Rew; > 0, Re Zj wj > Rez > 0 has a similar integral repre-
sentation

i e k=
S (2l) = exp | (-1 T B (ale) ~ § d (A3)

RFi0 ? H;:1 (1 — e_k‘“j)

where the contour runs parallel to the real axis avoiding the origin.
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B Clavelli-Shapiro trace technique

We offer a step-by-step proof of Clavelli-Shapiro trace formula, which cannot be easily found
in the literature. We aim to compute Z = Tr xLOO(a7 aT), where O is some operator-valued
function of a, af, the usual annihilation/creation operators, and Lo = afa is the occupation
number operator. They satisfy the non-trivial commutation relations [a, aﬂ =1, [Lo,a] = —a,
[Lo,aT] = af. The Fock modules (over which we compute the trace) are generated by the
vacua (0|, |0) such that a|0) = (0|al = 0, with (0|0) = 1. Normalized basis states are given by

(af)" (a)"
In) = N 0),  (n] = (0] Vo Z>0-

We start noticing that Z can be rewritten as a vacuum expectation value rather than as a trace
by introducing another set of oscillators b, bf satisfying the very same commutation relations
and commuting with a, al. Indeed

00 a,al)e ™ o) = 3 (0122 0 (a,al) 2PN

m!
n,m>0

n T
. a’ i, 1 (a

n,m>0
_ a" (af)™
= n;o <O|g$ OO(a, aT)W|O>m'5m7n
= Z (n|z™O(a, aT)|n>.

n>0

We must now compute the left-hand side in an alternative way by exploiting ordering and
disentangling identities. Firstly, due to [aTbT,a] = —bf, [aTbT,aT] = [aTbT,bT] =0, the BCH
formula implies e—albigea’d’ — 5 4 bf, e—albiafealdl — al, and therefore

(0c*Pz™0 (a, a")e*™'|0) = (0]c*Pz"c*®' O (a + bT,af) |0).

Now the fact that Ly is the grading/dilation operator for the a, a’ modes (or the BCH formula
again) implies 2~ Loeabylo = 2P o

(0le*Pate*® O (a + bf, af) ) = (0]e"2e* 'O (a + b, a1)0).

Using the commutation rule [—aTbT,:rab] = av(anf + bTb) and the BCH formula once more,
namely e—aTbTexabeaTbT — e:v(ab-i—aaT-‘rbTb-‘raTbT) we get

<O‘ezabeaTbTO(a n bT, aT) |0> _ <0|ew(a+bT)(aT+b)O(a + ij aT) |O>

In order to evaluate the exponential operator on the vacuum, we can follow at least two routes.
The elegant one is based on the observation that alb’ = E, ab=F, [E,F] = afa+bb+1=H
close the ordinary sly algebra, for which disentangling identities are known to reproduce [40]

<0‘er(F+H+E) — e In(1—zx) <0|eﬁF

The less elegant one is based on brute force computation. In this case we can expand the
exponential

z(a—i—bT (af+b) _ Z Z < ) bT k a"— k< >(a1)jbn—j7
J

n>0 " k,j=0
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and use the action of the oscillators on the Fock states, namely

(@)™ = Van -1 —m+ Din—ml,  (nla™ = /I + 1) (0 m)(n+ml,
to obtain
ez(a+bT)(aT+b) _ 2 n+j (:L‘ab)"
(0] <0n§>:0 J< ; ) -

The sum over j (operator-independent part) is a known generating function (|z| < 1)

2("}) -

7>0

Finally, using e?Pafe=2P = af + b, e@Pbfe=2P = b + a, we deduce the formula
b
7 — e~ 0(1-2) 010 _a blal— — = )|o.
e 00— +bhal —7——= | 0)

This derivation can be generalized to the case of multiple independent oscillators, both in the
discrete case and in the continuous case whenever a suitable regularization scheme is employed to
make sense of continuous products and singular integrals (e.g., via discretization, multiplicative
integrals and deformed contours). We refer to [19] for a discussion in a related context.

In our application to the e-deformation, the regularization via discretization, namely f dk —
R nzoand a(k) — an /N (see also [25]), brings us back to the g-deformation recalled in Section 2.
In that case, as shown in [24, 33], torus correlators computed via Clavelli-Shapiro formula can
be written in terms of elliptic Gamma functions (I'¢), which in the continuous limit 7 — 0 reduce
to hyperbolic Gamma functions (i.e., double sine functions S2) thanks to the known asymptotic
identity

T, (e2wira;|e27rirw1 7 eQwirwg) 7";0 e_ﬁ(%—wl—wﬁsé (2w, w2)—1.
Up to zero mode contributions (which need to be taken care of separately) and divergent con-
stant prefactors (which cancel in normalized correlators), this is a double check that (3.1) (and
therefore the contour prescription we used) is the correct result.
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