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Abstract. Presently integrability turned out to be the key property in the study of duality
between superconformal gauge theories and strings in anti-de Sitter superspaces. Complexity
of the study of integrable structure in string theory is caused by complicated dependence
of background fields of the Type II supergravity multiplets, with which strings interact, on
the superspace coordinates. This explains an interest to study of limiting cases, in which
superstring equations simplify. In the present work, we considered the limiting case of zero
tension corresponding to null string. The representation in the form of the Lax equation
of null-string equations in (anti-)de Sitter space realized as a coset manifold is obtained.
Proposed is twistor interpretation of the Lagrangian of (null) string in anti-de Sitter space
expressed in terms of group variables.
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1 Introduction

Construction of consistent quantum theory that would unify gravity with the Standard model
remains an unsolved problem. String theory, which basic constituents are extended relativistic
objects such as strings and branes, offers an interesting direction for seeking a solution of this
problem. Application of the holographic principle in string theory led to hypothesis of the
AdS/CFT correspondence that suggests formulation of the quantum gravity in anti-de Sitter
superspaces on the basis of dual gauge theories on their conformal boundary [40, 56, 78].

However, it is also well known that the problem of finding energy spectrum even of free
superstrings in curved superspaces appears extremely difficult. It is explained by complicated
highly non-linear structure of dynamical equations of superstrings caused by interplay of the
background geometry and elastic force of the world sheet proportional to string tension. Possi-
ble simplified approach consists in quantization of small oscillations around particular classical
solutions of superstring equations (see, e.g., review [71]). Another approach is to consider
models of null (super)strings that are extended objects with zero tension [47, 68, 84, 85, 86].
In curved backgrounds, their dynamics is less complicated because of the absence of elastic
force [18, 20, 28, 29, 30, 36, 46, 65, 66]. It was suggested to consider null strings as the leading
order approximation in the perturbative approach to solution of the string equations in curved
spaces [30, 87].

Apart from perturbative approaches to solve string equations, applicable to a wide class of
curved spaces [30, 67, 87, 88], for certain backgrounds with high symmetry, in particular cosets
of (semisimple) Lie groups, there was proved classical integrability of respective two-dimensional
sigma-models. Their equations were presented in the form of the zero-curvature condition for
the Lax connection 1-form that depends on the spectral parameter [35, 55, 63]. Integrability
of two-dimensional sigma-models and strings on various group manifolds was examined also
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in [13, 79, 83]. It implies existence of an infinite number of the world-sheet conserved (non-)local
currents. There were elaborated powerful methods to find the spectrum of such models (see, e.g.,
reviews [19, 80]). Especially interesting among these coset spaces are de Sitter and anti-de Sitter
spaces, that are solutions of the vacuum Einstein equations with positive/negative cosmological
constant. They can be realized as the coset manifolds

SO(1,D)/SO(1,D —1) and  SO(2,D —1)/SO(1,D — 1),

respectively. Integrable structures of two-dimensional sigma-models in these spaces have been
extensively examined (see, e.g., [13, 22, 31, 41, 49]).

Presently, interest to supersymmetric integrable two-dimensional sigma-models and strings,
in particular in anti-de Sitter superspaces is mainly connected with the above mentioned appli-
cation of the holographic principle in string theory. It was triggered by proof of the classical
integrability [16] of equations of two-dimensional sigma-model on the PSU(2,2|4)/(SO(1,4) x
SO(5)) supercoset manifold. The latter is used to describe dynamics of the IIB superstring in
the AdS5 x S® superspace [45, 58]. Integrable structure of the superstring correlates with that
of dual D = 4 N = 4 supersymmetric Yang-Mills theory, initially studied in [59]. Moreover,
this motivated the search of integrable structures also in the lower-dimensional examples of the
AdS/CFT correspondence (see, e.g., reviews [32, 50]). However, on the string side of dualities
their identification and study are complicated by insufficiently high symmetries of relevant 10-
dimensional anti-de Sitter superspaces as opposed to the AdSs x S° superspace that is maximally
supersymmetric solution of the D = 10 chiral supergravity constraints.

This problem manifests itself already in the case of the AdSs/CFT3 correspondence [2]. This
is the instance of duality between gauge fields and strings, in which the ITA superstring theory
in the AdS; x CP? superspace, that breaks 8 of 32 supersymmetries, [39] is described as the
superconformal Chern—Simons-matter gauge theory in three dimensions. In [3, 70], there has
been constructed two-dimensional OSp(4/6)/(SO(1,3) x U(3)) supercoset sigma-model along
the same lines as the PSU(2,2[4)/(SO(1,4) x SO(5)) one. However, it correctly describes only
a subsector of the AdS, x CP? superstring dynamics [3, 39, 70]. In the domain of applicability
of the OSp(4]6)/(SO(1,3) x U(3)) sigma-model, the classical integrability of its equations was
proved in [3, 70] by extending the argument of [16]. To prove integrability of the complete set
of dynamical equations of the AdS,; x CP? superstring, one has to find extension of the Lax
connection of the OSp(4[6)/(SO(1,3) x U(3)) sigma-model by contributions of eight Grassmann
coordinates for broken supersymmetries of the AdS,; x CP? superspace. In the absence of the
systematic approach for proving classical integrability of dynamical equations, attempts were
made to find such an extension order by order in these eight coordinates [23, 69], in particular
using the k-symmetry gauge freedom [72].

This explains an interest to study the limiting cases, in which the AdS; x CP? superstring
equations are simplified, and proof of their integrability becomes feasible. One of such limits
corresponds to infinite tension of the superstring, in which it shrinks to a point superparti-
cle. Integrability of its equations in the AdS; x CP? superspace has been proved in [73, 74].
Moreover, it has been shown that the Lax pair that enters the Lax representation for the su-
perparticle’s equations retains some information about structure of the Lax connection of the
tensile superstring.

Examined here is the opposite limit of zero tension that corresponds to the null string, and
the Lax representation of its equations is found. We focus on the world-sheet structure of this
Lax representation. So, we restrict ourselves to the case of bosonic null string in the (anti-)de
Sitter space. Integrability of its equations is anticipated in view of integrability of tensile string
equations [13, 83] and the fact that null string equations in conformally-flat space-times are
exactly solvable [66, 67].
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2 Formulations of null strings in flat and curved spaces

Null string Lagrangian was proposed by A. Schild [68] £ (§) = %g(g), where g = det g;; is
the determinant of induced world-sheet metric g;;(§) = 0; X () G (X (€ ))0; X (&), gt (X)
is the metric of (curved) space-time with coordinates X™ and & = (7,0) are local world-
sheet coordinates. It contains the first power of the determinant of induced world-sheet metric
rather than its square root as in the case of the Nambu—Goto string. Schild’s Lagrangian was
generalized in [47, 84, 85, 86] by introducing world-sheet scalar density F(§) of weight —1 that
multiplies this determinant

9(&)
2 = 2oL (2.1)
2E(¢)
rendering the null string action S = [ d%6.Z(€) reparametrization invariant. In such a formula-
tion, Lagrangian equations for the space-time coordinate fields are non-linear.
Another formulation of the tensionless string [54]

s [@ez©.  2© =50 (2.2)

includes a pair of auxiliary fields that make up world-sheet vector density p‘(¢). Like in the
Polyakov formulation [21, 33, 64]

s [@ez©. 2O =5Vl (23

equations for the space-time coordinate fields are linear.

Other formulations of the null string (and brane) Lagrangian that additionally include tangent
to the world-sheet components of the local Cartan frame were examined in [7, 8, 11, 84, 85, 86].
They are classically equivalent to those mentioned above and were generalized to null super-
strings (and superbranes) resulting in irreducible realization of the k-symmetry of the action for
arbitrary amount of the space-time supersymmetry.

All these formulations of the null string arise as the tension-to-zero limit of respective ten-
sile string formulations. The Lagrangian (2.1) is the limiting case of the Nambu—Goto string
reformulation [84, 85, 86]

2
s=[@cz©o,  2©- ng% - B (2.4)

that allows us to take the tension-to-zero limit in the same way as one takes massless limit in
the massive point particle model
X2 2 X2

5 5 L=

5= / L), L) = (2.5)

The formulation (2.2) can be derived either from the Nambu-Goto or the Polyakov La-
grangians. To this end one expresses the Lagrangian in terms of the space-time coordinates
and momenta in order to get parametrization of auxiliary world-sheet metric appropriate for
the limiting transition, then integrates out the momenta and takes the limit. Also the limit can
be taken in the phase-space formulation resulting in the null string Lagrangian expressed via
canonical variables [37, 38, 84, 85, 86], from which (2.2) can be obtained. The details can be
found in the original work [54] and have been recapitulated more recently in [24]. Both Polyakov
formulation (2.3) and that with auxiliary scalar density (2.4) can be derived from the unified
formulation of [48].
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Analogously null (super)string formulations including local Cartan frame components [7, 8,
11, 84, 85, 86] can be derived from respective tensile (super)string formulations [9, 12, 77] (see,
e.g., [6]).

The opposite limit of infinite tension is also of considerable interest since it produces massless
(super)particle models. Their dynamics is much simpler than that of (super)strings and quantum
spectrum contains finite number of the lowest (super)string states. When string tension becomes
very strong, its oscillations are damped that can be expressed as dX™ (7,0)/8c = 0. This
condition leaves only zero modes in the Fourier expansion of the space-time coordinate fields
in 0. It is used in reduction procedure of a (p + 1)-brane to p-brane (see, e.g., [34]). Then there
remains just one term in the Polyakov Lagrangian (2.3)

T / TT W
$(§)|8Xml(7',a)/80:0 = 75 -7 X2'

So that integrating in o and taking the limit 7" — oo gives massless particle action (2.5), in
which the Lagrange multiplier e(7) = — limp_,o Tls/—77"" and the string length I, ~ T-1/2.
Note that there can be defined different procedures to take the infinite tension limit that produce
from the Polyakov string not only massless particle but also the ambitwistor string [17, 57] and
even the null string [6].

In the above discussion, the background on which (null) string propagates has not been
specified. Below we specialize to the case of coset manifolds and, in particular, of the (anti-
)de Sitter space. There vielbein 1-form is identified with the Cartan forms associated with
generators of the quotient algebra. As a result, Lagrangian equations of the null string in
these spaces in the formulation [54] take the form of the first-order partial differential equations
for the Cartan forms similarly to the case of two-dimensional sigma-models [35, 81, 82] and
tensile superstrings [10, 16]. In the next section, we present them as the first-order differential
Lax equation for the Lax pair that takes value in the symmetry algebra of the group manifold
similarly to the Lax connection of two-dimensional sigma-models [35, 55, 63, 79] and tensile
strings [13, 83]. Since the Hamiltonian formalism plays important role in study of integrable
models and original derivation of the null string Lagrangian of [54] uses it, we also consider
the first-order representation for the null string Lagrangian that includes components of the
momentum density conjugate to the space-time coordinates. We obtain equations of the null
string and expressions for the Lax pair components in terms of these phase-space variables.
Then the Lax representations in configurational space and phase space are compared with those
for tensile string in the (anti-)de Sitter space-time.

3 Lax representation of null string equations
in (anti-)de Sitter space

3.1 Group-theoretic description of geometry of (anti-)de Sitter space

Relations of the s0(2, D—1) isometry algebra of the D-dimensional anti-de Sitter space and of the
s50(1, D) isometry algebra of the D-dimensional de Sitter space can be presented in the uniform
way [May, Mea) = NaaMpe — NacMpa — MoaMac + MoeMaa, Where —ngp = m1 =+ =np_1p-1 =1
and npp = s with s = —1 for anti-de Sitter space and 41 for de Sitter space. These relations in
the form, in which generators of the so(2,D — 1)/so(1, D — 1) (so(1, D)/so(1, D — 1)) quotient
algebra are manifestly separated, are known as (a)dsp algebra

[Mpy, Mpg] = —sMya, My, Mpa) = —noas Mpy + Mya Mpa,
(Mo, Mergr] = Narar My ot — Narer My ar — Ny ar Moy + My Marar
a,b,d,d=0,...,D—1.
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Define Cartan 1-form with value in the (a)dsp algebra
C(d) =9 'd9 = 2GP% (d)Mpy + GV (d) My € (a)dsp, (3.1)

where ¢4 € SO(2,D —1)/SO(1, D — 1) for anti-de Sitter space and ¥ € SO(1,D)/SO(1,D — 1)
for de Sitter space. By definition, the Cartan form obeys the Maurer—Cartan equation that in
terms of differential forms is written as dC(d) = C(d) A C(d). It splits into equations for the
Cartan forms associated with generators of the so(2, D —1)/so(1, D —1) (so(1,D)/so(1,D —1))
quotient algebra

dGP (d) = 2G% , (d) A GPY(d) (3.2)
and equations for the Cartan forms associated with the so(1, D — 1) stability algebra generators
dGY (d) = —sGP (d) A GPY (d) + sGPY (d) A GPY (d) + 2G% o (d) A GV (d). (3.3)

The Cartan forms GP%(d) are identified with the vielbein 1-form E%(d) = dX™ E%,(X) of
the (anti-)de Sitter space parametrized by (local) coordinates X™ and G (d) is identified
with its spin connection 1-form Q¥Y(d) = dX™ Q%Y (X) as E¥(d) = GP¥(d), Q¥ (d) =
2G“" (d). The coefficient +2 in the second equality follows from comparison of the Maurer—
Cartan equation (3.2) with the zero-torsion condition for the space-time vielbein

T%(d) = dE® (d) — Q¥ (d) A E¥ (d) = 0.

Identification of the Cartan forms with the vielbein and spin connection transforms the Maurer—
Cartan equation (3.3) into the definition of the curvature 2-form of the (anti-)de Sitter space

RV (d) = dQ¥" (d) — Q¥ o (d) A QY (d) = —2sE¥ (d) A E¥ (d).

3.2 Lagrangian formulation of null string in (anti-)de Sitter space

The action of the null string in (anti-)de Sitter space

S = / d2e2(8), ZL(¢) = —%piijiDa/na/b/Gij/, (3.4)

depends on the world-sheet projections of the Cartan forms associated with the quotient algebra
generators GP? = 9; X" (€)E%,(X (€)). Induced world-sheet metric in terms of Cartan forms is
defined as

9i5(6) = GP " nay GF = 0:X™ g (X)0;X™,

where gy (X) = E%,(X)nay EY,(X) is the metric tensor of (anti-)de Sitter space and 7,y is
the tangent space Minkowski metric proportional to the Killing form of the so(2, D—1) (so(1, D))
algebra restricted to the subspace spanned by generators of the quotient algebra. Due to the
presence of 7,y , the space-time and induced metrics are invariant under local SO(1,D — 1)
symmetry generated by stability group action on the coset representative ¥’ = YH, H €
SO(1, D —1). They are also invariant under global SO(2, D —1) (SO(1, D)) symmetry 4'H ! =
GY,G € SO(2,d—1) (SO(1, D)) of (anti-)de Sitter space, but the Cartan forms get transformed
as follows from their definition (3.1)

C'(d)y=H'C(d)H + H 'dH. (3.5)

In particular, G“lb/(d) transforms as 1-form connection that justifies its identification with the
spin connection of (anti-)de Sitter space-time.
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To make action (3.4) reparametrization invariant, the auxiliary world-sheet vector densi-
ty p'(€) should have weight w = —1/2. (This vector density is proportional to the world-
sheet zweibein components and enters formulations of both tensionless and tensile (super)strings
proposed and examined in [7, 8, 9, 12].) So under world-sheet reparametrizations ¢ = £'(€) it
transforms as

o fli
aei

9

P,  J= ‘det 2|

prE) =T

Algebraic equations resulting from variation of p?(¢) gijpj = 0 imply that p’ is non-zero
eigenvector of the induced metric g;; with zero eigenvalue that amounts to vanishing of its
determinant.

3.3 Dynamical equations of null string in (anti-)de Sitter space
and their Lax representation

Equations for the space-time coordinate fields X" (&) can be presented through the Cartan
forms if one takes not §X™ (¢), but GP¥(5) = §X™ E®, as variation parameters. The latter
can be obtained from the Cartan forms GP%(d) by applying the operator of formal substitu-
tion isGPY (d) = 6X m/Efﬁ:,. One also has to use well-known Cartan formula for the Lie derivative
of a differential form F'(d): LF(d) = disF +isdF. It equals variation of those differential forms,
which dependence on the space-time coordinates and their differentials does not change. This
holds, in particular, for background fields. When applied to the Cartan forms GP%(d), one
should substitute in the second summand the Maurer—-Cartan equations (3.2). This results in
the following equation:

wﬁf‘l(é) = p'Vi (P GP") +20°GE P GPY =0, (3.6)
where V; is a covariant derivative on the world-sheet and vector density p’ is taken to be
divergence-free V;p’ = 0. Since p’ plays the role of zweibein on the null world sheet, this
condition is an analogue of the covariant constancy condition for metric/zweibein on the non-
singular world-sheet [54].

We write Lagrangian equation (3.6) as the Lax equation

p'ViL — [L,M] =0, (3.7)

where L = piGlD“/MDa/, M = piG?/b/Marb/ are components of the Lax pair. Note that the Lax
equation is invariant under local SO(1, D —1) stability group transformation that acts on the Lax
pair components in the following way L' = H-'LH, M' = H-'MH + H~'p'V,;H in accordance
with the transformation law (3.5) for the Cartan forms. The Lax representation (3.7) has the
same form as in the case of massless (super)particle [73, 74] modulo substitution p'V; — %,
where 7 is the (super)particle’s world-line parameter. This implies that the null string effectively
behaves like one-dimensional dynamical system though the null world sheet is two-dimensional.
As is known, for one-dimensional integrable systems the Lax representation may not contain
spectral parameter. For two-dimensional integrable systems, in particular, tensile (super)strings
spectral parameter is responsible for generation of the infinite number of (non-)local conserved
currents. Therefore its absence in the Lax equation (3.7) may indicate that in the limit of zero
tension (two-dimensional metric degeneration) there remains finite number of conserved local
currents. At the same time definition of the zero-tension limiting transition on the level of the
Lax representation of the string equations and the integrable structure requires further study
both on the classical and quantum level.
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3.4 Lax representation of Hamiltonian equations of null string
in (anti-)de Sitter space

In the original derivation of the null string Lagrangian in the formulation with auxiliary vec-
tor density (3.4), transition to the phase-space formulation of the tensile string is part of the
procedure to take the tension-to-zero limit. It is also known that the Hamiltonian formalism
plays important role in the study of integrable systems. This motivates us to work out the Lax
representation for dynamical equations that follow from the null string Lagrangian expressed in
terms of the phase-space variables.

To this end, introduce density of the canonical momentum conjugate to the space-time coor-
dinates

pm’(Ta U) = _prTgm’n’ (X)aTXn/ - pragm/n’(X)aaXn/' (38)

It is convenient to introduce momentum density with the tangent-space index py/ (7,0) = Eg,’ Dt s
where E(’}/l is the inverse space-time vielbein: E;’}/ Egl, = 62/,. Then Lagrangian of the null string
is written in the form

L(1,0) = pp0-X™ — A = paGPY — 2,

1 a't pU Da’
—%(T, O') = Wpa/n Dy + Epa/Go s pT 7é 0 (39)
As should be for dynamical systems invariant under reparametrization symmetry, density of the
Hamiltonian is given by the sum of the first-class constraints

P2 =pan”py 20,  paGP¥ =0, (3.10)

that are generators of this symmetry, with arbitrary Lagrange multipliers. Their role is played
by components of the world-sheet vector density p* like in the case of tensile string [12]. Variation
of the Lagrangian (3.9) on the phase-space variables gives two equations

N ’ 1 /
p'GPY 4 —p¥ =0, (3.11)
p’T
i ]. a/ 7 al 1 bl

Equation (3.11) determines the momentum density and equation (3.12) is dynamical equa-
tion. When writing these equations, it was taken into account that (pT)*lp“/ transforms under
reparametrizations as a world-sheet scalar density of weight w = —1/2 as follows from the
definition of momentum density (3.8)

1 . /
Epm’ (7-7 U) = _ngm’n’(X)aan .

As is known, covariant derivative of a tensor density ¢ of weight w includes contribution of

contracted Christoffel symbols V¢ = 0;0.. + wI‘gjqﬁjjj + - -+, where dots stand for terms that
are the same for tensor density and respective true tensor. In the case of the null string, the
condition V;p" = 0 determines projection of I'}; on p': p'TI'}; = —20;p". This relation allows us

to write equation (3.12) in another form
i
’ ; / 1 /
0; <pra ) +20' Gy —p” = 0.
p P

Equation (3.12) can be cast into the form of the Lax equation (3.7), in which in the expression
for the Lax component L equation (3.11) has been substituted

N / 1 /
L= sziDa MDa’ = —pjpa MDa’- (3.13)
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3.5 Lax representation of Lagrangian and Hamiltonian equations
of tensile string in (anti-)de Sitter space

While studying tension-to-zero limit of the integrable structure of string in (anti-)de Sitter space,
it is of interest to compare the obtained Lax representation for the null string equations with
that in the case of non-zero tension. First we recapitulate the zero-curvature representation of
the Lagrangian equations of tensile string. Then consider the Hamiltonian equations because
their realization as the zero-curvature condition is suitable for comparison with the Lax equation
for the null string.

Tensile string counterpart of the null string action (3.4) is well known

T s ’ /
= [@e2©. 2 =5V ICP G, (3.14)

It includes non-singular auxiliary world-sheet metric 7;; with determinant v and inverse met-
ric 4. It is also known representation of the string Lagrangian in terms of differential forms

2(6) = 5GP [y A <GP (d), (315)

where the Hodge dual of a world-sheet 1-form a(d) = d¢'q; is defined as

- 1 -
sa(d) = —/—ydeFep vy = ———deFyp el g, 3.16
(@) = —v=detz, b, (3.16)
EZJ — _5]1’ Ezjgjk = 5227 57—0 = +1 (317)

From action (3.14) with the Lagrangian expressed in terms of differential forms (3.15), there
follow dynamical equations of the tensile string

dx GPY(d) — 2G , (d) A +GPY (d) = 0,

which form is similar to the Maurer—Cartan equation (3.2). This similarly underlies the Lax
representation of these equations as the zero curvature condition

dL(d) — L(d) NL(d) =0 (3.18)
of the Lax 1-form
L(d) = 2LPY (d)Mpy + LY My € (a)dsp,

where LP (d) = 6,GPY (d) + £y« GP¥ (d), L*Y (d) = G¥Y (d). The dependence of functions ¢;
and ¢ on the spectral parameter is determined by algebraic equation 6% — 6% = 1 that is
the consequence of the zero curvature condition. Equation (3.18) is invariant under gauge
transformation of the Lax 1-form L'(d) = H 'L(d)H + H'dH, H € SO(1,D — 1) that allows
us to interpret it as trivial SO(1, D — 1) connection. Let us also note that in the case, when
the world-sheet reparametrizations and dilations are used to bring auxiliary metric equal to the
two-dimensional Minkowski metric v;; = n;; = diag(—1,+1), LP%(d) is related to GP (d) by
the two-dimensional Lorentz transformation

chp shp

Da' _ A jcDd _
LPY = AJGPY, A (Shs& chor

) € SO(1,1),
where ¢ is the spectral parameter and ¢; = ch ¢, o = shp.

The zero-curvature representation of the Hamiltonian equations of tensile string seems have
not been considered so far. Below, we give such representation and relate it to the Lax repre-
sentation for the Hamiltonian equations of null string.
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In the canonical approach, momentum density conjugate to the space-time coordinates is
determined by the relation

1
T
Like in the tensionless case, there can be introduced tangent-space momentum density py/ (7, 0) =

Eg,lpn/. In terms of it, one can express two first-class constraints that generate reparametriza-
tions of the tensile string world sheet

(7,0) =77 G (X)0r X + 47 Grrnr (X )0 X ™. (3.19)

pa/T]a b Py —+ TQGOL.)a na/b/G‘?b ~ O, pa/GEa =~ 0.

In the tension-to-zero limit, they turn into the constraints of the null string (3.10). La-
grangian (3.15) in terms of canonical variables has the form

! A / / /
&L = puGPY + 5(192 + T?GD" 0y GEY) + ppa GE, (3.20)

where A\™! = T'\/=47™™ and p = 477 (y"")~! play the role of Lagrange multipliers at the first-
class constraints. These relations can be considered as two equations for the ratios of the
components of inverse metric 4. They can be solved to obtain appropriate for taking 7 — 0
limit parametrization of the Weyl-invariant density of inverse metric

1 /1 L 1/1 pu o
[~ — - _ i
T'v—=y b\ (M M2 TQ)\Z) —>T—>0 2 <H H2> pps

where the world-sheet vector density introduced in (2.2) has the following expression via the
Lagrange multipliers p’ = AV 2(1,p). Using it, one can express the Lagrange multipliers in
terms of the vector density components

1 P
A\ = 7 w=". (3.21)
(p7)? P
From the tensile string action with the Lagrangian (3.20), there follow two non-trivial equa-
tions

P = —%(Gf’“/ + uGDYY), (3.22)

0-p” +2G% yp” + 05 (up“/ + T%\Gf“l) +2G% (,upb/ + TZ/\Gfb/) = 0. (3.23)
Equation (3.22) is another form of the definition of string momentum (3.19). It is used to express
components of the Lax connection L(d) = drL; 4+ doL, in terms of canonical variables

—LP9 = 0y (\p” + pGPY) + 0y (%p" + TAG}Q“’) . LPY — g gPd fg%pa/,

L = qge, Lev = gov, (3.24)

The above components of the Lax connection enter the zero-curvature condition (3.18) that in
component form reduces to single equation

8:Ly — OyLr + [Ly, Ly] = 0. (3.25)

It holds on dynamical equations (3.23) and the Maurer—Cartan equations (3.2) and (3.3) ex-
pressed in terms of the phase-space variables of the string

0-GPY 1 0, (Ap” + nGPY) +2GY G2V 126G, (A" + uGPY) =0,
0:G5" — 0,G¢" +2G7 LG5 — 2G5 WG + 20 (p" GPY — P GPY) = 0.
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In the tension-to-zero limit, it is readily shown using (3.21) that equation (3.22) translates into
equation (3.11) defining null string momentum density and equation (3.23) goes to dynamical
equation of the null string (3.12). Relation between the zero-curvature condition for the Lax
connection (3.25) and the Lax equation for null string (3.7) is not straightforward. Equation (3.7)
holds solely on the null string equations and does not require utilization of the Maurer—Cartan
equations. In the zero-curvature condition (3.25), the part independent of the spectral parameter
and that linear in ¢; are satisfied on the Maurer—Cartan equations, whereas the part linear in £o
is satisfied on dynamical equations of the string. Since in the T — 0 limit these equations
reduce to dynamical equations of the null string, it is this part of the zero-curvature condition
that reduces to the Lax equation (3.7). Assuming that the spectral parameter’s dependence
on tension is such that (7)) —— 0, so that £; — 1, o — 0 but ¢2/T remains fixed the limiting
values of the pieces of the Lax connection (3.24) proportional to ¢y are

Da’ a’ Da’ a’
L% ey — pup”, Lg%, — p".
T—0 T—0

Using (3.21) and combining them in the zero-curvature condition with the terms that contain
the SO(1, D — 1) generators, it can be shown that the part proportional to /5 indeed reduces to
the Lax equation (3.7) with the Lax pair component L expressed via the momentum of the null
string (3.13).

3.6 Twistor formulations of (null) strings in anti-de Sitter space

In conclusion, let us consider matrix realization of the coset element ¢ that defines Cartan forms.
This will make it possible to present discussed formulation for the null string in anti-de Sitter
space, which isometry group is realized as conformal symmetry of the boundary Minkowski
space, in terms of twistors [60, 61, 62]. (Formulation of the null strings in 4-dimensional
Minkowski space in terms of SU(2,2) twistors was presented in [42, 43].) Consider irreducible
dpr-dimensional representation R of the so(2,D — 1) = adsp algebra. In case of D = 5, four-
dimensional fundamental representation corresponds to the known twistors of the anti-de Sitter
space [1, 4, 5, 14, 15, 25, 26, 27, 44, 51, 75, 76]. For other values of D, fundamental repre-
sentations correspond to their generalizations [4, 5, 25, 44, 52, 53]. Other finite-dimensional
representations of the so(2, D — 1) algebra can be built via the tensor product of fundamental
representation with itself and/or with the antifundamental one (if it is not isomorphic to the
fundamental representation). Therefore, these representations can be viewed as corresponding
to twistors of higher valences similarly to the case of SU(2,2) twistors [62]. (Such interpretation
applies not only to the anti-de Sitter space but also to realization of the (D — 1)-dimensional
Minkowski space as the coset manifold of the (spinor covering of) conformal group on its sub-
group generated by SO(1, D — 2) rotations, dilatations and conformal boosts.) Then the coset
element ¢ in (3.1) is given by dg x dg matrix 4% ), o, (8) = 1,. .., dg, which upper index labels
the twistor components and the index in brackets labels twistors themselves. Taking into account
that det¥ £ 0, these dp twistors form complete basis in respective twistor space. The upper
index is acted upon by the left global transformations from the (covering) of the SO(2,D — 1)
isometry group of the D-dimensional anti-de Sitter space. The lower index labels twistor ba-
sis components that transform under right local rotations from the (covering) of the stability
group SO(1,D — 1). It is assumed that the dimensions of respective representations of left and
right groups equal dgr. Explicit dependence of ¥ ) on coordinates of the anti-de Sitter space
determines incidence relations between components of the (higher-valence) twistors and these
coordinates. The inverse of ¥ ) that enters definition of Cartan forms (3.1) is expressed via
its transposed and/or complex conjugate. For instance, for 5-dimensional anti-de Sitter space
with the isometry group SO(2,4), its double cover is isomorphic to the SU(2, 2) group of unitary
symmetry, for which 4! = ¢ = J%1J with .J similar to the diag(41, 41, —1, —1) matrix. This
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implies the constraint J4J% = I that should be taken into account, when the matrix ¢ is
considered as variational variable in the action.

In terms of the above considered twistor matrices, Lagrangian of the null string (3.4) is
written as

| 7
L = =500 Tr((G0.9)1o/n(G0;9)gn)
where g = 50(2, D — 1) and h = so(1, D — 1), or in more explicit form
1, 7 2
L = =500 Te(Byyn(90:9) Pyyn(90;9) )

Here P, is the projector onto the quotient algebra g/h = s0(2, D —1)/s0(1, D — 1), expression
for which depends on the representation R: P/, R(Mpy) = R(Mpy), PypBR(Mpyn) = 0.
Taking into account that Tr(R(Mp, )R(Mpy)) = élﬁm'nu one has

GP™(d) = In Te (R(Mp™) Pyn (9d))

where coefficient I is the second Dynkin index of the representation. So, the null string La-
grangian can be written in another form

I / _ ; _
Y = —?Rplp] TI‘(R(MDm )Pg/h (%81%))777,1/”/ TI‘(R(MDn )Pg/h (gc’)]g))

It should be supplemented by the above discussed quadratic constraint for the matrix ¢ with
matrix Lagrange multiplier. This interpretation of the group-theoretic formulation of null strings
in anti-de Sitter space-time in terms of twistors is readily extended to the case of non-zero tension
TI% i - . o .
2= TR 0 T (R0 ) By (908) s Te (R(Mp™ ) By (F0,9)).
It also applies to other models of point and extended objects with or without tension and also
admits supersymmetric generalization.

4 Conclusion

Study of integrable structures allows us to unveil hidden symmetries that underlie dualities
between gauge fields and strings in anti-de Sitter superspaces. In superspaces containing anti-de
Sitter spaces of dimension D < 5 it is obscured by broken supersymmetries. Study of simplifying
limits such as those of zero and infinite tension of superstrings can provide important information
on the integrable structures involved in respective dualities.

Here we obtained the Lax representation of equations of the null string in D-dimensional
(anti-)de Sitter space and compared it with the zero-curvature representation of tensile string
equations. For instance, for D = 4 it has the same group-theoretic structure as the contribution
proportional to generators of isometry algebra of the anti-de Sitter space to bosonic limit of
the Lax representation of equations of massless superparticle on the OSp(4/6)/(SO(1,3) x U(3))
supercoset manifold and in the AdS,; x CP? superspace. The obtained Lax representation can
be readily generalized to null superstrings on supercoset manifolds. Generalization to AdS
superspaces containing supergroup manifolds, like the AdS; x CP? one, is non-trivial, but can
give certain information on the integrable structure of tensile superstrings in these superspaces.
This follows from the earlier found correspondence between the structure of the Lax pair of
massless superparticle and the Lax connection of two-dimensional sigma-model on supergroup
manifolds.

Another result of this work is the twistor interpretation of the formulation of (null) strings
in anti-de Sitter space in terms of group-theoretic variables.
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