|
SIGMA 22 (2026), 006, 42 pages arXiv:2412.18656
https://doi.org/10.3842/SIGMA.2026.006
On the Asymptotics of Orthogonal Polynomials on Multiple Intervals with Non-Analytic Weights
Thomas Trogdon
Department of Applied Mathematics, University of Washington, Seattle, WA, USA
Received April 05, 2025, in final form January 06, 2026; Published online January 28, 2026
Abstract
We consider the asymptotics of orthogonal polynomials for measures that are differentiable, but not necessarily analytic, multiplicative perturbations of Jacobi-like measures supported on disjoint intervals. We analyze the Fokas-Its-Kitaev Riemann-Hilbert problem using the Deift-Zhou method of nonlinear steepest descent and its $\overline{\partial}$ extension due to Miller and McLaughlin. Our results extend that of Yattselev in the case of Chebyshev-like measures with error bounds that give similar rates while allowing less regular perturbations. For the general Jacobi-like case, we present, what appears to be the first result for asymptotics when the perturbation of the measure is only assumed to be differentiable with bounded second derivative.
Key words: orthogonal polynomials; Riemann-Hilbert problems; steepest descent; dbar problems.
pdf (715 kb)
tex (86 kb)
References
- Akhiezer N.I., Orthogonal polynomials on several intervals, Dokl. Akad. Nauk SSSR 134 (1960), 9-12.
- Akhiezer N.I., Tomčuk Yu.Ya., On the theory of orthogonal polynomials over several intervals, Soviet Math. Dokl. 2 (1961), 687-690.
- Astala K., Iwaniec T., Martin G., Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Math. Ser., Vol. 48, Princeton University Press, Princeton, NJ, 2009.
- Atkinson K., Han W., Theoretical numerical analysis. A functional analysis framework, 3rd ed., Texts Appl. Math., Vol. 39, Springer, Dordrecht, 2009.
- Baik J., Kriecherbauer T., McLaughlin K.T.-R., Miller P.D., Discrete orthogonal polynomials. Asymptotics and applications, Ann. of Math. Stud., Vol. 164, Princeton University Press, Princeton, NJ, 2007.
- Ballew C., Trogdon T., A Riemann-Hilbert approach to computing the inverse spectral map for measures supported on disjoint intervals, Stud. Appl. Math. 152 (2024), 31-72, arXiv:2302.12930.
- Ballew C., Trogdon T., The Akhiezer iteration, in Recent Developments in Orthogonal Polynomials, Contemp. Math., Vol. 822, American Mathematical Society, Providence, RI, 2025, 1-34, arXiv:2312.02384.
- Baratchart L., Yattselev M., Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights, Int. Math. Res. Not. 2010 (2010), 4211-4275, arXiv:0911.3850.
- Belokolos E.D., Bobenko A.I., Enol'skii V.Z., Its A.R., Matveev V.B., Algebro-geometric approach to nonlinear integrable equations,Springer, Berlin, 1994.
- Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A., Spectral methods. Fundamentals in single domains, Sci. Comput., Springer, Berlin, 2006.
- Chen Y., Its A.R., A Riemann-Hilbert approach to the Akhiezer polynomials, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), 973-1003, arXiv:2007.2058.
- Deift P., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lect. Notes Math., Vol. 3, American Mathematical Society, Providence, RI, 1999.
- Deift P., Its A., Kapaev A., Zhou X., On the algebro-geometric integration of the Schlesinger equations, Comm. Math. Phys. 203 (1999), 613-633.
- Deift P., Its A., Zhou X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. of Math. 146 (1997), 149-235.
- Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), 1491-1552.
- Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335-1425.
- Ding X., Trogdon T., The conjugate gradient algorithm on a general class of spiked covariance matrices, Quart. Appl. Math. 80 (2022), 99-155, arXiv:2106.13902.
- Ding X., Trogdon T., A Riemann-Hilbert approach to the perturbation theory for orthogonal polynomials: applications to numerical linear algebra and random matrix theory, Int. Math. Res. Not. 2024 (2024), 3975-4061, arXiv:2112.12354.
- Ding X., Yang F., Spiked separable covariance matrices and principal components, Ann. Statist. 49 (2021), 1113-1138, arXiv:1905.13060.
- Ditzian Z., Totik V., Moduli of smoothness, Springer Ser. Comput. Math., Vol. 9, Springer, New York, 1987.
- Dubrovin B.A., Theta-functions and nonlinear equations (with an appendix by I.M. Krichever), Russian Math. Surveys 36 (1981), 11-80.
- Fokas A.S., Its A.R., Kitaev A.V., The isomonodromy approach to matrix models in $2$D quantum gravity, Comm. Math. Phys. 147 (1992), 395-430.
- Folland G.B., Real analysis. Modern techniques and their applications, 2nd ed., Pure Appl. Math., John Wiley & Sons, New York, 1999.
- Geronimo J.S., Van Assche W., Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Amer. Math. Soc. 308 (1988), 559-581.
- Gragg W.B., Harrod W.J., The numerically stable reconstruction of Jacobi matrices from spectral data, Numer. Math. 44 (1984), 317-335.
- Kriecherbauer T., McLaughlin K.T.-R., Strong asymptotics of polynomials orthogonal with respect to Freud weights, Int. Math. Res. Not 1999 (1999), 299-333.
- Kuijlaars A.B.J., Riemann-Hilbert analysis for orthogonal polynomials, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 167-210.
- Kuijlaars A.B.J., McLaughlin K.T.-R., Van Assche W., Vanlessen M., The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$, Adv. Math. 188 (2004), 337-398.
- Levin E., Lubinsky D., Orthogonal polynomials for exponential weights $x^{2\rho}e^{-2Q(x)}$ on $[0,d)$. II, J. Approx. Theory 139 (2006), 107-143.
- McLaughlin K.T.-R., Miller P.D., The $\overline{\partial}$ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights, Int. Math. Res. Pap. 2006 (2006), 48673, 77 pages, arXiv:math.CA/0406484.
- McLaughlin K.T.-R., Miller P.D., The $\overline{\partial}$ steepest descent method for orthogonal polynomials on the real line with varying weights, Int. Math. Res. Not. 2008 (2008), 075, 66 pages, arXiv:0805.1980.
- Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W., NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.
- Saff E.B., Totik V., Logarithmic potentials with external fields, Grundlehren Math. Wiss., Vol. 316, Springer, Berlin, 1997.
- SzegHoo G., Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, American Mathematical Society, New York, 1939.
- Townsend A., Trogdon T., Olver S., Fast computation of Gauss quadrature nodes and weights on the whole real line, IMA J. Numer. Anal. 36 (2016), 337-358, arXiv:1410.5286.
- Trogdon T., Olver S., A Riemann-Hilbert approach to Jacobi operators and Gaussian quadrature, IMA J. Numer. Anal. 36 (2016), 174-196, arXiv:1311.5838.
- Trogdon T., Olver S., Riemann-Hilbert problems, their numerical solution, and the computation of nonlinear special functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
- Van Assche W., Asymptotics for orthogonal polynomials, Lecture Notes in Math., Vol. 1265, Springer, Berlin, 1987.
- Walsh J.L., Interpolation and approximation by rational functions in the complex domain, 3rd ed., Amer. Math. Soc. Colloq. Publ., American Mathematical Society, Providence, RI, 1960.
- Yattselev M.L., Nuttall's theorem with analytic weights on algebraic S-contours, J. Approx. Theory 190 (2015), 73-90, arXiv:1406.0832.
- Yattselev M.L., On smooth perturbations of Chebyshëv polynomials and $\overline{\partial}$-Riemann-Hilbert method, Canad. Math. Bull. 66 (2023), 142-155, arXiv:2202.10374.
|
|