|
SIGMA 22 (2026), 011, 18 pages arXiv:2505.22607
https://doi.org/10.3842/SIGMA.2026.011
Contraction of the $\mathfrak{sl}_2$-Triple Associated to the $(k,a)$-Generalized Fourier Transform
Tatsuro Hikawa
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
Received May 29, 2025, in final form January 15, 2026; Published online February 08, 2026
Abstract
Ben Saïd-Kobayashi-Ørsted introduced a family of $ \mathfrak{sl}_2 $-triples of differential-difference operators $ \mathbb{H}_{k,a} $, $ \mathbb{E}^+_{k,a} $ and $ \mathbb{E}^-_{k,a} $ on $ \mathbb{R}^N \setminus \{0\} $ indexed by a Dunkl parameter $ k $ and a deformation parameter $ a \neq 0 $. In the present paper, we study the behavior as the parameter $ a $ approaches $ 0 $. In this limit, the Lie algebra $ \mathfrak{g}_{k,a} = \operatorname{span}_\mathbb{R} \bigl\{\mathbb{H}_{k,a}, \mathbb{E}^+_{k,a}, \mathbb{E}^-_{k,a}\bigr\} \cong \mathfrak{sl}(2, \mathbb{R}) $ contracts to a three-dimensional commutative Lie algebra $ \mathfrak{g}_{k,0}$, and its spectral properties change. We describe the joint spectral decomposition for $ \mathfrak{g}_{k,0}$, and discuss formulas for operator semigroups with infinitesimal generators in $ \mathfrak{g}_{k,0}$. In particular, we describe the integral kernel of $ \exp\bigl(z |x|^2 \Delta_k\bigr) $ as an infinite series, which, in some low-dimensional cases, can be expressed in a closed form using the theta function.
Key words: $(k,a)$-generalized Fourier transform; Dunkl operators; group contraction; spectral decomposition; integral kernel.
pdf (577 kb)
tex (25 kb)
References
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia Math. Appl., Vol. 71, Cambridge University Press, Cambridge, 1999.
- Aoyama T., Deformation of the heat kernel and the Brownian motion from the perspective of the Ben Saïd-Kobayashi-Orsted $(k,a)$-generalized Laguerre semigroup theory, in Geometric and Harmonic Analysis on Homogeneous Spaces and Applications, Springer Proc. Math. Stat., Springer, Cham, to appear, arXiv:2407.03664.
- Ben Saïd S., Kobayashi T., Ørsted B., Generalized Fourier transforms $\mathscr{F}_{k,a}$, C. R. Math. Acad. Sci. Paris 347 (2009), 1119-1124.
- Ben Saïd S., Kobayashi T., Ørsted B., Laguerre semigroup and Dunkl operators, Compos. Math. 148 (2012), 1265-1336, arXiv:0907.3749.
- Benoist Y., Kobayashi T., Tempered homogeneous spaces IV, J. Inst. Math. Jussieu 22 (2023), 2879-2906, arXiv:2009.10391.
- Constales D., De Bie H., Lian P., Explicit formulas for the Dunkl dihedral kernel and the $(\kappa,a)$-generalized Fourier kernel, J. Math. Anal. Appl. 460 (2018), 900-926, arXiv:1610.00098.
- De Bie H., The kernel of the radially deformed Fourier transform, Integral Transforms Spec. Funct. 24 (2013), 1000-1008, arXiv:1303.2979.
- De Bie H., Lian P., Maes F., Bounds for the kernel of the $(\kappa,a)$-generalized Fourier transform, J. Funct. Anal. 288 (2025), 110755, 29 pages, arXiv:2310.14229.
- Demni N., Generalized Bessel function associated with dihedral groups, J. Lie Theory 22 (2012), 81-91.
- Dunkl C.F., Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1988), 33-60.
- Dunkl C.F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), 167-183.
- Dunkl C.F., Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213-1227.
- Dunkl C.F., Hankel transforms associated to finite reflection groups, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Contemp. Math., Vol. 138, American Mathematical Society, Providence, RI, 1992, 123-138.
- Folland G.B., Harmonic analysis in phase space, Ann. of Math. Stud., Vol. 122, Princeton University Press, Princeton, NJ, 1989.
- Goldman W.M., Kannaka K., Kubo T., Okuda T., Oshima Y., Pevzner M., Sasaki A., Sekiguchi H., The mathematical work of Toshiyuki Kobayashi, in Symmetry in Geometry and Analysis. Vol. 1. Festschrift in honor of Toshiyuki Kobayashi, Progr. Math., Vol. 357, Birkhäuser, Singapore, 2025, 1-102.
- Gorbachev D., Ivanov V., Tikhonov S., On the kernel of the $(\kappa, a)$-generalized Fourier transform, Forum Math. Sigma 11 (2023), e72, 25 pages, arXiv:2210.15730.
- Hikawa T., $(k,a)$-generalized Fourier transform with negative $a$, in Geometric and Harmonic Analysis on Homogeneous Spaces and Applications, Springer Proc. Math. Stat., Springer, Cham, to appear, arXiv:2407.01345.
- Inonu E., Wigner E.P., On the contraction of groups and their representations, Proc. Nat. Acad. Sci. USA 39 (1953), 510-524.
- Kobayashi T., Algebraic analysis of minimal representations, Publ. Res. Inst. Math. Sci. 47 (2011), 585-611, arXiv:1001.0224.
- Kobayashi T., Varna lecture on $L^2$-analysis of minimal representations, in Lie Theory and its Applications in Physics, Springer Proc. Math. Stat., Vol. 36, Springer, Tokyo, 2013, 77-93, arXiv:1212.6871.
- Kobayashi T., Mano G., Integral formulas for the minimal representation of ${\rm O}(p,2)$, Acta Appl. Math. 86 (2005), 103-113.
- Kobayashi T., Mano G., Integral formula of the unitary inversion operator for the minimal representation of ${\rm O}(p,q)$, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 27-31.
- Kobayashi T., Mano G., The inversion formula and holomorphic extension of the minimal representation of the conformal group, in Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., Vol. 12, World Scientific Publishing, Hackensack, NJ, 2007, 151-208, arXiv:math.RT/0607007.
- Kobayashi T., Mano G., The Schrödinger model for the minimal representation of the indefinite orthogonal group ${\rm O}(p,q)$, Mem. Amer. Math. Soc. 213 (2011), vi+132 pages, arXiv:0712.1769.
- Reed M., Simon B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975.
- Rösler M., Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), 445-463, arXiv:q-alg/9710029.
- Taira K., Tamori H., Strichartz estimates for the $(k,a)$-generalized Laguerre operators, SIGMA 21 (2025), 014, 37 pages, arXiv:2308.16815.
|
|