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Abstract. Ben Said-Kobayashi-@Orsted introduced a family of slo-triples of differential-
difference operators Hy. q, E , and E;_, on R\ {0} indexed by a Dunkl parameter k and
a deformation parameter a # 0. In the present paper, we study the behavior as the param-
eter a approaches 0. In this limit, the Lie algebra gj , = SpanR{Hk,a, E'k’:a, I sl(2,R)
contracts to a three-dimensional commutative Lie algebra gy, and its spectral properties
change. We describe the joint spectral decomposition for gy, ¢, and discuss formulas for oper-
ator semigroups with infinitesimal generators in g ¢. In particular, we describe the integral
kernel of exp (z|x\2Ak) as an infinite series, which, in some low-dimensional cases, can be
expressed in a closed form using the theta function.
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1 Introduction

1.1 Background

A minimal representation is an infinite-dimensional irreducible representation of a simple Lie
group with the smallest Gelfand—Kirillov dimension. However, at the same time, it can be
thought of as a manifestation of large symmetry of the space acted on by the group, and hence,
it is expected to control global analysis on the space effectively. This is the idea of global
analysis of minimal representations initiated by T. Kobayashi [19, 20], which led a transition
from algebraic representation theory to analytic representation theory. See also [15, Section VII]
for an excellent survey.

From the viewpoint of global analysis of minimal representations, the classical Fourier trans-
form on the Euclidean space RY can be interpreted as a unitary inversion operator in the Weil
representation, which is a unitary representation of the metaplectic group Mp(V,R) on the
Hilbert space L?(R™) (see [14] for more details) and decomposes into two irreducible compo-
nents, each of which is a minimal representation. Promoting this interpretation, Kobayashi—
Mano [21, 22, 23, 24] introduced the Fourier transform on the light cone as a unitary inversion
operator in an L?-model of a minimal representation of O(p,q) and developed a new theory
of harmonic analysis. The special case (p,q) = (N + 1,2), where the model Hilbert space is
isomorphic to L?(RY, |z[~'dz), is studied in [21, 23].

After that, Ben Said—Kobayashi-Orsted [3, 4] introduced a family of sly-triples of differential-
difference operators Hy, ., Ef , E, . on RV \ {0} indexed by two parameters k and a, and defined
the (k,a)-generalized Lagum:re se;nigroup

I.a(2) :exp<§(E;’a—E:’a)), Rez >0
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ir 2(k )+a+N 2
and the (k, a)-generalized Fourier transform %, =e2 2 a( ) Here, k is a combi-

natorial parameter derived from the Dunkl operators, and a > 0 is a deformation parameter.
The (k, a)-generalized Fourier transform %}, , includes some known transforms:

o The (0,2)-generalized Fourier transform %y 5 is the classical Fourier transform.

o The (0, 1)-generalized Fourier transform .%y ; is the Hankel transform, or the Fourier trans-
form on the light cone for (p,q) = (N +1,2).

o The (k,2)-generalized Fourier transform % 9 is the Dunkl transform [13].

The parameter a therefore provides a continuous interpolation between the two minimal repre-
sentations of the simple Lie groups Mp(N,R) and O(N + 1,2).

1.2 Results of the paper

Let gi . = spanR{Hka,Eka,Eka} s[(2,R). Ben Said—Kobayashi-Orsted [4, Theorems 3.30
and 3.31] showed that, for a > 0, the action of Ok on L2(RN wy 4(z)dz) (see (3.3) for
the definition of wy ) lifts to a unique unitary representation of the universal covering Lie
group SL(2,R) of SL(2,R) and found its irreducible decomposition explicitly; the Hilbert space
L? (RN y Whq (ac)dx) _decomposes discretely with finite multiplicities into relatively discrete series
representations of SL(2,R). Furthermore, we investigated in [17] the case a < 0, which provided
an extension of the parameter a.

In the present paper, we study the behavior as a — 0. Although the operators Hy, ,, EZ a
or K,  are not well- defined for a = 0, the Lie algebra g, = sl(2,R) contracts to a three-
dimensional commutative Lie algebra gj o = >~ R3 as a — 0. Such a contraction of Lie algebras
(or corresponding Lie groups) was earlier formalized by Inonu-Wigner [18], where it is referred
to as a contraction of groups. Classical examples include the contraction from the orthogonal
group O(3) (resp. O(2, 1)) to the Euclidean motion group O(2) x R?, which reflects the geometric
phenomenon that the sphere of curvature x > 0 (resp. the hyperbolic plane of curvature k < 0)
approaches the flat Euclidean plane as k — 0.

We then consider the action of g o on L? (RN, wkyo(x)d:):) (note that the weight function wy, 4
is well-defined even for a = 0). As an analog of the result in the case a # 0, we describe that
the joint spectral decomposition for the operators in gy on L?(RY, wy,o(x)dz) (Theorem 3.4)
and show that it lifts to a unique unitary representation of R® (Theorem 3.6). This is the main
result of the paper. In contrast to the case a # 0, this spectral decomposition involves only the
continuous spectrum.

Moreover, we discuss formulas for operator semigroups with infinitesimal generators in gy o
(see Theorems 3.8 and 3.13). In particular, we describe the integral kernel of exp(z|z|*Ay)
as an infinite series, which, in some low-dimensional cases, can be expressed in a closed form
using the theta function (Theorems 4.1, 4.2 and 4.3). Although the (k, a)-generalized Laguerre
semigroup and the (k, a)-generalized Fourier transform are not well-defined for a = 0, the opera-
tor semigroup (e”* exp (z\x]ZAk))ReZZO may be viewed as the “renormalized” (k, a)-generalized
Laguerre semigroup for a = 0 (Theorem 3.15). Note that explicit formulas and estimates for the
integral kernels of the (k, a)-generalized Laguerre semigroup and the (k,a)-generalized Fourier
transform have been extensively studied in Ben Said-Kobayashi-@rsted [4, Sections 4.3—4.5 and
5.2-5.4] and subsequent papers [2, 6, 7, 8, 16, 27] up to the present. There are also unpublished
results by Mano and related results by Demni [9].

Thus, this paper analyzes representation-theoretic aspects of contraction of Lie algebras in the
framework of (k, a)-generalized Fourier analysis. We note that, recently, Benoist—-Kobayashi [5,
Theorem 1.2] discovered a relationship between limit algebras (see Section 1.4 of their paper)
of h = Lie(H) in g = Lie(G) and L%-analysis of G/H in the context of tempered unitary
representations. It can be viewed as an application of the notion of contraction of Lie algebras
to representation theory.
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1.3 Organization of the paper

In Section 2, we will briefly review Dunkl theory and the differential-difference operators Hy, 4,

ka and E; ka introduced by Ben Said-Kobayashi—Qrsted. In Section 3, we will discuss the
contraction of the sly- triple as a — 0. In Section 4, we will give a closed-form expression for the
integral kernel of exp(z|z[2Aj) in some low-dimensional cases.

1.4 Notation

« N={0,1,2,...}.

o We write (—,—) for the Euclidean inner product, and |-| for the Euclidean norm.

SN ={z eRY | |z| = 1}.

« Function spaces, such as C* spaces and L? spaces, are understood to consist of complex-
valued functions.

e We write B, = Zjv 1T 8 - for the Euler operator on RY, and E, = T d for the Euler
operator on Ry.

2 Preliminaries

In this section, we review Dunkl theory and the differential-difference operators Hy, ,, EZ “
and [E,  introduced by Ben Said-Kobayashi-(rsted to the extent necessary for later use. This
section contains no new results.

2.1 The Dunkl Laplacian

Throughout this paper, we fix a reduced root system # on RY. That is, we suppose that Z
satisfies the following conditions:

o Z is a finite subset of RV \ {0},

o Z is stable under the orthogonal reflection r, with respect to the hyperplane (Ra)* for
all € Z, and

o ZNRa={a,—a} forall a € Z.

Note that we do not impose crystallographic conditions on roots and do not require that %
spans RV,

The subgroup of O(N) generated by all the reflections r, is called the reflection group as-
sociated with Z. We say that a function k: Z — C is a multiplicity function if it is invariant
under the natural action of the reflection group. We usually write k, instead of k(«a). We say
that a multiplicity function k is non-negative if ko, > 0 for all a € Z. The index of a multiplicity
function k is defined as

k>:;zjka= Sk,
aEY aEA+

where # 7 is any positive system of Z.
For a (not necessarily non-negative) multiplicity function k, the Dunkl Laplacian Ay (see [10]
and [11, Definition 1.1]) is defined by

ApF(z) = + 3 ka ( VF(@) |a|2F($)—F(Ta(w))>7

aERT >

where A = Z ( ) is the classical Laplacian and V = ( 8?:1 e am ) is the classical gradient
operator. When k= 0 the Dunkl Laplacian Ay reduces to the classmal Laplacian A.
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Let P(]RN ) denote the space of polynomials on RY and P™ (]RN ) denote its subspace of ho-
mogeneous polynomials of degree m. The space of k-harmonic polynomials of degree m (see [10,
Definition 1.5]) is defined as

HH(RY) = {pe P™(RY) | App =0},
and the space of k-spherical harmonics of degree m is defined as
H (SN = {plsv1 | p € HP(RY) .

When k = 0, these are reduced to the space H™ (]RN ) of classical harmonic polynomials and the
space H™ (SN *1) of classical spherical harmonics, respectively.

We write H(SV"1) = {plsgnv—1 | p € P(RY)}. The following fact is a generalization of
the decomposition of H(SN *1) and L? (SN *1) into the spaces H™ (SN *1) of classical spherical
harmonics.

Fact 2.1 ([10, pp. 37-39]). For a non-negative multiplicity function k, we have the direct sum
decomposition

H(SN_l) _ @ HZL(SN—l)

meN

and the orthogonal decomposition

L? (SN_I, wy(w)dw) = ZEB Hy' (SN_I),

meN

where the weight function wy, with respect to the standard measure dw on SN~1 is defined by

wr(w) = [T Hevw)lf> = T Kaww)*=.

aER aERt

2.2 Dunkl’s intertwining operator and the Poisson kernel

For a non-negative multiplicity function k, Dunkl introduced a linear automorphism V} of the
space P(RN ) of polynomials that satisfies a certain intertwining property (Dunkl’s intertwining
operator). See [12, Definition 2.2 and Theorem 2.3] for the definition and a characterization
of V.. We note that V; = idp(RN).

The following integral representation of Dunkl’s intertwining operator Vi was obtained by
Rosler.

Fact 2.2 ([26, Theorem 1.2]). Let k be a non-negative multiplicity function. For each x € RV,
there exists a unique probability Borel measure jij, . on RN such that

Vipta) = [ pl6)dp©)

for all p € P(RY). Moreover, the support of py is contained in the ball {& € RN | [¢] < |z|},
and we have py 5 (S) = p,gz(9S) = tkre(rS) for any element g of the reflection group, r > 0,
and Borel set S C RV,

Let k be a non-negative multiplicity function and m € N. We consider the orthogonal pro-
jection H,gm) from L?(SV~!, wy(w)dw) onto H*(SV~1) and its normalized integral kernel Pém) ,
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which is called the Poisson kernel of the space of k-spherical harmonics of degree m. That is,
the function P}gm) on SV x SN¥=1 is characterized by the formula

(m) oy = L (m)
I, “p(w) = W /SN1 P (w,w)p(w)wy (w') dw’ (2.1)

for all p € L? (SN*I, wk(w)dw), where
voly, (SV1) :/ dwg (w). (2.2)

SN-1
Equivalently, the Poisson kernel P,gm) is given by
d
P (w,0) = vol (SY71) 3 pj(w)py (),
j=1

where (p1,...,pq) is an orthonormal basis of H] (SN _1), regarded as a subspace of L? (SN -
wi(w)dw).

The Poisson kernel P,gm) can be expressed in terms of Dunkl’s intertwining operator and
the Gegenbauer polynomials. To state this result, we first prepare some notation. For v € C
and m € N, we consider the Gegenbauer polynomial C}, defined by the generating function

(1-2t6+ &) =D Crem, (2.3)
m=0
and the renormalized Gegenbauer polynomial 5’51 defined by

m—+v

Cut) =" e ). (2.4)

For v = 0, we define C~’,On by the limit formula (see [1, equation (6.4.13)])
~ ~ 1 =0
CO(t) = lim C% () = { = (2.5)
v—0 2Tm(t), m>1,

where T,, denotes the Chebyshev polynomial of the first kind, which is characterized by the
formula T, (cos ) = cosméb.

Fact 2.3 ([12, Theorem 4.1]). Let k be a non-negative multiplicity function and m € N. The
Poisson kernel Pkm s given by

__2(k)+N-—2

P (w,0) = Vi(Cn > ((-w)))(W).
Remark 2.4. When k = 0, we have V) = idp(gn), so that the formula in Theorem 2.3 reduces to

N-2

Pém) (w,w) = @nT((w,w/».
See [1, Theorem 9.6.3 and Remark 9.6.1].

Remark 2.5. In the case N = 1, we have S = {41} and the formula in Theorem 2.3 reduces to
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which corresponds to the fact that

C1, m =0,
H?(SO) = Csgn, m=1,
0, m > 2.

Here, 1 and sgn denote the constant function and the sign function on S° = {41}, respectively.

2.3 The differential-difference operators Hj g, E,':’a and E; ,

Let k be a multiplicity function and a € C\ {0}. We recall the definition of the differential-
difference operators Hy,, E; and E,  on R \ {0} from [4, equation (3.3)]:

2 2(k) +a+ N —2 i _ i _
Hk,a =-FE,+ < > s EZQ = 7|x‘a7 Eka = 7|$‘2 AVE
a a ’ a ’ a

Additionally, for m € N, we consider the following differential operators on R~:

2 2(k) +a+ N -2 i
):gEr‘i’ < ) o s E;ém)zgra

9

H{"

,a

E, ™ = ér‘“(Er —m)(E, +m+2(k) + N — 2).

These are the radial parts of Hy 4, Eza and [, , respectively in the following sense.

Proposition 2.6. Let k be a multiplicity function, a € C\ {0}, and m € N. Forp € H*(SV1)
and f € C*(Rsg), we have

Hiap® ) =p@HYf, Ef,(pef)=paE "},

B (p®f) =p@E ™f,
where p® f denotes the function rw — p(w)f(r) on RN \ {0}.

Proof. The first and second equations are clear. We now prove the third equation. We use the
polar coordinates = rw, where r € Ryg and w € SV~ We extend p € Hy? (SN*I) to a k-
harmonic polynomial of degree m on RY, which we again write p. Then, since App = 0, we have

Ap(p @ () = Ag(r™" f(r)p(2)) = [Ag, v f(1)]p(2), (2.6)

where [-,—] denotes the commutator of operators. For a radial function g(r), the commuta-
tor [Ag, g(r)] can be computed by the Leibniz rule as

(B g(0)] = Alg(r) +2(V(g(), V) + 3 ’“W
aERT ’
= /() + g/ ()2E, + 2(K) + N — 1)
=+ 2(E2g(r) + Erg(r)(2E, + 2(k) + N — 2)).
Setting ¢g(r) = =™ f(r) and applying this commutator to p(x), we have
[Ag, =™ f(r)]p(x)
=r2(E2(r~ " f(r)) + E(r " f(r) (2B, + 2(k) + N — 2))p(x)
= r’m72((ET — m)2f(r) + (B, —m)f(r)2E; +2(k) + N — 2))p($)
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— 12 (B, —m)? + (By —m)(2m + 2(k) + N — 2)) f(r)p(x)
=1 2(E, —m)(E, +m+2(k) + N — 2) f(r)p(w)
= (p®r 2By — m)(Er + m+2(k) + N — 2)f) (). (2.7)

The third equation follows from (2.6) and (2.7). [
Proposition 2.7. Let k be a multiplicity function and a € C\ {0}.

(1) The differential-difference operators Hy, 4, E;:a and B, form an sly-triple. That is,

[Hkﬂ,]Eza] = 2Elta, [Hkﬂ,]E,;a] = —2E, ,, [E:’a,E;’a] =Hp q4.
(2) For any m € N, the differential operators H,(:Z), Eztgm) and E;ém) form an sly-triple.
That s,
(m) @+ (m)y _ (m) m—(m)y _ - +(m) m—(m)] _
[Hk,a ’Ek,a ] - 2El-:,a’ [Hk,a ’Ek,c(t ] - _QEk,a’ [Ek,a ’Ek,a ] - Hk,a-
Proof. (1) It is [4, Theorem 3.2]. (2) It follows from (1) and Theorem 2.6. [

3 Contraction of the sls-triple as a — 0

rad

3.1 The commutative Lie algebras g0 and g;%

For a multiplicity function k& and a € C\ {0}, we write
Oka = spanR{Hk,a,E;a,E,;a} = spanR{a]HIkﬂ, aIEZ’a, aE,;a}
= spanp{2E, + 2(k) + a + N — 2,i|z|% i|z|*"*Ay }.
Putting a = 0 in the above equation, we define
gr,0 = spang{2E, + 2(k) + N — 2,1,i|z[*Ay }. (3.1)
Similarly, we write

gl(:zb) = spanR{HgZ), E;ém),E;ém)} = SpanR{aH,(:Z), aIE—]: (m), a]EI;C(Lm)}

= spang {2E, + 2(k) + a+ N — 2,ir®,ir *(E, — m)(E, + m+ 2(k) + N — 2)}.
and define
0120 = spang {2E, + 2(k) + N — 2,1,i(E, — m)(E, + m +2(k) + N — 2)}
= spang {2E, + 2(k) + N — 2,1,i(E2 + (2(k) + N — 2)E, — m(m + 2(k) + N —2))}
= spang {2E, + 2(k) + N — 2,1,i(E? + (2(k) + N — 2)E,) }. (3.2)

Note that the right-hand side of the above definition does not depend on m, which justifies the

notation g‘;{ag.

Proposition 3.1. Let k be a multiplicity function. For p € H" (SN”) and f € C*(Rxy), we
have

2E, +2(k)+ N =2)(p®@ f) =p® (2B, + 2(k) + N — 2)f,
ipe f)=pif, izPAp®f)=p@i(E —m)(E, +m+2(k)+ N —2),

where p® f denotes the function rw + p(w)f(r) on RN \ {0}.
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Proof. The proof goes along the same lines as that of Theorem 2.6. |

Proposition 3.2. Let k be a multiplicity function.

(1) The space g of differential-difference operators on RN \ {0} is a three-dimensional com-

mutative Lie algebra.

(2) The space gffg of differential operators on Rsg is a three-dimensional commutative Lie

algebra.

Proof. (1) By Theorem 2.7, we have

[aHk,aMEZ@] =2a - a]E,J;a, [aH} 4, aIE,;a] = —2a-aE [a]E;QQ, aE,;a] =a-aHyg,.
By taking the limit as a — 0, we have

[2E, +2(k) + N —2,i] =0, [2E, +2(k) + N — 2,i|z|*Ag] =0, [i,ilz[*Ax] = 0.

(It can also be shown by a direct computation.)
(2) It follows from (1) and Theorem 3.1. |

rad

3.2 Joint spectral decomposition for g, and 950

In the following, we consider a non-negative multiplicity function k. In the next two theorems,
we use the unitary operator

Unpg: L? (R>0, r2<k>+N*3dT) — L*(R,ds),
2(k)+N-2 s 1 _2(k) 2
Unpf(s)=e 2 °f(e?),  Uypg(r)=r—""=2"g(logr)
and the (classical) Fourier transform

F: L*(R,ds) — L*(R,do),

ﬂg(g) = \/12—71_ /Rg(s)e—ias ds, L97_1]1(5) = \/12771_ /Rg(s)eias ds.

We recall some terminology related to operators on a Hilbert space. A densely defined
operator T on a Hilbert space is called self-adjoint (resp. skew-adjoint) if its adjoint T* is equal
to T (resp. iT'), that is, these have the same domain and coincide on it. A closable operator T on
a Hilbert space is called essentially self-adjoint (resp. essentially skew-adjoint) if its closure T
is self-adjoint (resp. skew-adjoint).

Theorem 3.3. Let k be a non-negative multiplicity function. Every differential operator in gfjg

(see (3.2) for the definition) defined on the domain C°(Rsq) is an essentially skew-adjoint
operator on L? (R>0,r2<k>+N_3dr). Moreover, via the unitary operator

FoUng: L*(Rso,r?MHN=3dr) = L2(R, do),
the closures of

(2Er + 2<:I€> + N - 2)’Cgo(R>0), iidccoo(R>0),
i(Er —m)(Er +m+2(k) + N — 2)‘C§°(R>o)

correspond to the multiplication operators

2k) + N — 2\ 2
%, i, —i<02—|—<m+<>+2> )

respectively.
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Proof. Via the unitary operator Uy : L? (R>0, T2<k>+N_3dT) — L%(R, ds), the operator

<Er+ 2(k) +2N—2)

& (R)

corresponds to g \Coo ®)- As is well-known, for any complex polynomial P(c) such that P(io)
is real-valued, P ( lcoo(r) 1s an essentially self-adjoint operator on L?(R,ds) and its closure
corresponds to the multiplication operator by the function P(ic) via the Fourier transform
Z: L*(R,ds) — L?(R,do). Since 2E, +2(k) + N — 2, i and i(E, — m)(E, +m + 2(k) + N — 2)

can be expressed as i times such polynomials of E, + W#, now the assertion follows. W

We recall that the L?-theory of the sly-triple (Hk as Ek o Er a) was considered on the Hilbert
space L2 (RN Wi o (T )dx), where the weight function wy, 4 CRY R>o (see [4, equation (1.2)],
U in their notation) is defined by

wra(z) = 2|72 ] Hew 2 = 2272 T e, z)[*. (3.3)
QER aERT

By the polar decomposition wy ,(z)dz = wy(w)dw @ r2#F+a+N=3qr (here, wy is as defined in
Theorem 2.1) and Theorem 2.1, we have the orthogonal decomposition

L? (RNjwkva(:c)da:) = (SN_ljwk( )dw) ® L? (]R>0, 2{k)+at+N— 3d?“)

= S (V) @ L2 (R, r2M TN By (3.4)
meN

Note that wy, , is well-defined and the above orthogonal decomposition holds even for a = 0.
We now state the main result of this paper.

Theorem 3.4. Let k be a non-negative multiplicity function. FEvery differential-difference op-
erator in gro (see (3.1) for the definition) defined on the domain

D =H(SV") @ CX(Ruo) = spanc{p® f | p e H(SV '), f € CZ(Rx0)},
is an essentially skew-adjoint operator on L? (RN, W0 (x)dx) Moreover, via the unitary operator
id 2 V-1 iy (w)dw) @ (F 0 Ung): L2(RN wgo(a)da) — L (SN wy(w)dw) & LA(R, do),
the closures of
(2E; + 2(k) + N — 2)|p, iidp, (ilz|*Ax) |p

correspond to the multiplication operators

. - . ®. . 2(k) + N — 2\\?
172N -1 1y (w)dw) @ 210, i, Z 1dH7kn(SN_1) ® (—1 (02 + <m + <>2> )) )

meN
respectively.
Proof. It follows from Theorems 3.1 and 3.3, and the orthogonal decomposition (3.4). n
Remark 3.5, Since the unitary operator . o Uy L?(Rsq, 2R +N=3dr) - L%(R,do) “maps”
\/%T_QUCHN 9 t6 the Dirac distribution d,, we have the direct integral decomposition

_2(k)

L? (R>o, 7“2<k>+N_3d7") = 5 Ho do
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and may write Theorem 3.3 as

@ @
2ET+2<k>+N—2:/ 2io do, iid:/ ido,
R R

(B, —m)(E, +m+2(k) + N — 2) —/®(—i<02+ <m+2<k>+2N_2>2>> do.
R

Similarly, we have the direct integral decomposition

(k)tN-2 .
L? (RN, wy, o) dx g / Hi SN 1 — 2 4o do
( meN ) Y 27T

and may write Theorem 3.4 as

2E, +2(k) + N — 2_2 / %ic do, 11d_Z/

meN meN
i|22Ay = 2\] / (—1(0 +<m+ <k>+N_2> >>da.

Corollary 3.6. Let k be a non-negative multiplicity function. The (possibly unbounded) normal
operator

exp(Z,Tl(2Ex F2UR) £ N —2) 4 2+ z3|x\2Ak)

on L? (]RN,wk’o(x)dx) is well-defined for z1,z9,2z3 € C. In particular, the action of the dif-
ferential-difference operators in ggo lifts to a unique unitary representation of R® on L? (RN,
wyo(x)dx), which is given by

(t1,t2,t3) = exp(t1(2E, + 2(k) + N — 2) + it + its|2|*A).

Proof. Since g; o admits joint spectral decomposition (see Theorem 3.4), the (possibly un-
bounded) normal operator

o(F2En + 20+ N - 2,116 )

on L? (]RN, wkvo(az)dm) is defined for any Borel measurable function ¢: C*> — C by means of the
functional calculus. The former assertion is shown by setting ¢ (w1, wa, w3) = exp(z1w; + zowe +
zzws). The latter assertion is a consequence of Stone’s theorem. |

For the operators in Theorem 3.6, the part involving z3 contributes only as a scalar multiple of
the identity. The subsequent two subsections are devoted to the analysis of the parts involving z;
and z3.

3.3 The unitary group with infinitesimal generator 2E, + 2(k) + N — 2

In this subsection, we consider the unitary group with infinitesimal generator 2E, +2(k) + N — 2,
regarded as a skew-adjoint operator on L? (RN s W0 (m)dz:) based on Theorem 3.4.

Proposition 3.7. Let k be a non-negative multiplicity function. For z € C, the (possibly
unbounded) normal operator

exp( (2B, +2(k) + N — 2))

on L? (RN,who(x)dx) is bounded if and only if Rez = 0, and in this case, this operator is
unitary.
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Proof. By Theorem 3.4, the operator in the assertion corresponds to the multiplication op-
erator idz2gn-—1 o)) ®e2z" on L*(SV~1 wy(w)dw) ® L?(R,do) via the unitary operator
ldLQ(SN Lw(w)dw) @ (F o Ung). Now the assertion follows since the function o — e?*? on R
is bounded if and only if Re z = 0, and in this case, ’e2z"‘ =1. |

Theorem 3.8. Let k be a non-negative multiplicity function. For z =it with t € R, the unitary
operator on L? (]RN, who(az)daz) in Theorem 3.7 is given by

exp(t(2E, + 2(k) + N — 2))F(z) = eGRHN=2p(2y),

Proof. We continue our discussion following the proof of Theorem 3.7. The multiplication op-
erator € on L?(R,do) corresponds to the translation operator g — g((-) + 2t) on L*(R,ds)
via #~!, which in turn corresponds to the scaling operator f + eZR+N=21¢(e2(-)) on
L? (R>0 P2k +N— 3dr) via UNk Hence, the assertion holds. |

3.4 The operator semigroup with infinitesimal generator |z|?A

In this subsection, we consider the operator semigroup with infinitesimal generator |z|?Ay,
regarded as a self-adjoint operator on L2 (RN s W0 (x)dz) based on Theorem 3.4.

Proposition 3.9. Let k be a non-negative multiplicity function. For z € C, the (possibly un-
bounded) normal operator exp (z|x|2Ak) on L? (]RN, wkvo(x)dm) is bounded if and only if Re z > 0,
and unitary if and only if Rez = 0.

Proof. By Theorem 3.4, the operator in the assertion corresponds to the multiplication operator

®
Z idH;Cn(SNA) X e —2(o%+(m+
meN

2(k >+N 2)2)

on L*(SN~1 wy(w)dw) ® L*(R, do) via the unitary operator 172N —1 4y (w)dw) ®(FoUn ). Now
the assertion follows since the function

o e—z(02+(m+72<k>J;N72 )2)

on R is bounded if and only if Re z > 0, and has modulus one if and only if Rez = 0. |

We consider the integral kernel formula for the operator semigroup (exp( \x!2Ak)) Re2>0°
For this purpose, we first focus on the radial part (E, —m)(E, +m+2(k) +N —2) of |z|?A}, (see
Theorem 3.1).

Fact 3.10 ([25, Section IX.7, Example 3]). The operator semigroup (exp(z(%)Q)) on

L?(R,ds) admits the integral kernel formula

exp <z <i>2> o(s) = m exp< 3;;)2) o(s') ds’ (3.5)

in the following sense. Here, we take the branch of \/z such that /z > 0 when z > 0.

Re z>0

(1) For z € C with Rez > 0 and g € L*(R,ds’), the integrand in the right-hand side of (3.5)
is integrable for all s € R, and this integral as a function of s gives exp (z(%)Q)g.

(2) For z € C with Rez = 0 and z # 0 and g € (L' N L*)(R,ds’), the integrand in the
right-hand side of (3.5) is integrable for all s € R, and this integral as a function of s
gives exp(z(%)z)g.
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Theorem 3.11. Let k be a non-negative multiplicity function and m € N. The operator semi-
group (exp(z(E, —m)(E,+m+2(k)+N —2)))re >0 on L*(Rxo, r2<k>+N—3dr) admits the integral
kernel formula

exp(z(E, —m)(E, +m+2(k) + N —2))f(r) = Klim) (r, r's z)f(r’)r'2<k)+N_3 dr’, (3.6)
R>o

where

K,im) (r,r'; 2)

_ 1 2(k) + N —2\? (logr — logr')? py— 2eEN=2
‘\/m“p< Z(’”*z) >exp( )

for v, € Rsg, in the following sense. Here, we take the branch of \/z such that \/z > 0
when z > 0.

(1) For z € C with Rez > 0 and f € L? (R>o,r’2<k>+N_3dr’), the integrand in the right-
hand side of (3.6) is integrable for all r € Rsq, and this integral as a function of r
gives exp(z(E, —m)(E, + m+2(k) + N —2))f.

(2) For z € C with Rez =0 and z # 0 and f € (L' N L?) (R>0,r’2<k>+N*3dr’), the integrand
in the right-hand side of (3.6) is integrable for all r € Rsg, and this integral as a function
of r gives exp(z(E, —m)(E, + m+2(k) + N — 2))f.

Proof. As follows from the proof of Theorem 3.3, (E, —m)(E, +m+2(k) + N —2) corresponds
to (%)2 - (m + W#)Q via the unitary operator Uy : L*(Rxo, r2FH+N=3qr) — L(R,ds).
Now the assertion follows from Theorem 3.10. |

We then combine this result with the spherical part. Recall that P,gm) denotes the Poisson
kernel of the space of k-spherical harmonics of degree m (see (2.1) for the definition), and
that C}, (resp. 5,‘;) denotes the Gegenbauer polynomial (resp. the renormalized Gegenbauer
polynomial) (see (2.3) and (2.4) for the definitions).

Lemma 3.12. Fiz a non-negative multiplicity function k. Then, the uniform norm of the
Poisson kernel P,gm) satisfies

Proof. In the case N = 1, we have P,gm) = 0 for m > 2 (see Theorem 2.5), so that the assertion
holds trivially. We now consider the case NV > 2. By Theorems 2.3 and 2.2, we have

(m) , __2(k)+N-2 , __2(k)+N-2 ,
P @) =ViCu T ()@ = [ G T (60 ()

where iy, is a probability Borel measure on RY whose support is contained in the unit ball
{¢ e RV | [¢] < 1}. Hence, we have

~2(k)+N-2 __2(k)+N-2
\Pém><w,w’>\S/RN\Cm T (W) due(€) = sup [Cn 2 (1),

te[—1,1]

Note that W# > 0 since N > 2. For v € Ry, it is known (see [1, p. 302]) that

I'(m +2v)
sup |Ch,(t)] =Ch (1) = — ==,
G0 = Gy = IR
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which implies

~ m+vI(m+2v)
sup (Ch(t)] =
te[—11)71] ‘ ( )‘ v mll'(2v)

= O(mg”).

This also holds for v = 0 since 5’21 is defined by the limit formula (2.5). The assertion follows

by applying this estimate to the case v = W# |

Recall from (2.2) that voly (SN _1) denotes the volume of the sphere SV ~! with respect to the
measure wy(w)dw.

Theorem 3.13. Let k be a non-negative multiplicity function. The operator semigroup

(exp (z|x|2Ak))Re 2>0

on L?(RN  wy o (z)dz) admits the integral kernel formula

exp(z\w|2Ak)F(x) = / Ki(z, 2 2) F (2" ) wy o (2) da’, (3.7)

RN

where

1 (logr — 10g7"')2> _2(k)+N-2
Ki(rw, r'w'; z) = ex (— rr 2
ik ( )= —=exp = (rr')

1 > 20k) + N —2\*\ _m)
><Volk;(S]Vl)7nz:eXp<_z<m+2> >Pk (w,w,)

=0

for r,7" € Reg and w,w’ € SV~1 in the following sense. Here, we take the branch of \/z such
that /z > 0 when z > 0.

For z € C with Rez > 0 and F € L? (}RN,wk,o (w')dx’), the integrand in the right-hand side
of (3.7) is integrable for all x € RN\{0}, and this integral as a function of x gives exp (z|x|2Ak)F

Remark 3.14. When k£ = 0, we have

N
212

r3)

voly (SNfl) = vol(SNfl) = with Po(m)(w,w’) =Cn? ((w,w')

(see Theorem 2.4), so that the integral kernel formula in Theorem 3.13 reduces to

logr — logr’)? -2
Ko(rw,r'w';2) = ! exp(—(ogr Ogr))(rr’) =

\/R 4z
F(%) 3 —z|m L_Q 2 C? w,w
; %exp( ( +— ))Cm ((w,w')).

X

N
T2
Proof of Theorem 3.13. Fix r € Ryg and w € S¥~!. Then, the function

1 -1 12 _ 2(k)+N-2
(logr —logr’) )(7”7“/) =

/
= exp|( —
( 4z

is square-integrable with respect to the measure r/2(F)*N=3d;/ and the infinite series

oo 2
S e <_<m 2N =2) )Pém(w,w,)

m=0
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absolutely converges with respect to the uniform norm for w’ € S¥~! by Theorem 3.12, so that
the equation

1 1 — 1 )2 _ 2(k)+N-2
Ki(rw,r'W'; 2) = exp <—( ogr —logr’) > (rr') 2

Varz 4z
1 > 2(k) + N —2 2 (m) ,
_ 1 - (m) N 1 (m) ’.
= mlk(SNl)mZ:OP’“ (w, ) K (7,15 2)

(here, K ]gm) (r,7'; ) is as defined in Theorem 3.11) holds with respect to the topology of L? (R x
SN-1 pr2k)+N=3y,, (w’)dr’dw’) ~ 2 (RN, W0 (x’)da:’) )

By the result of the previous paragraph, for F' € L? (RN s Wh 0 (w’ )dx’ ) and z = rw € RV\ {0},
the function 2’ — K, (ac, a2’ Z)F(x’) is integrable with respect to the measure wy (m’)dx’ and

/. / / ’r 1 = (m) /
/RN Kk(x,x ,z)F(az )wk70($ ) dz’ = 7volk(SN_1) mz::o/le /R>O Py (w,w)
X K,gm) (r,r'; z)F(r'w’)r’2<k>+N_3wk (w’) dr'dw’.

If F =p®fwithp e ’Hﬁc(SN_l) and f € L? (R>0,r’2<"“>+N_3dr’), by (2.1) and Theorem 3.11 (1),
we have

/]RN Ky, (x, x'; Z) (p® f) (xl)wk;,o (x/) A’

1 S / / (m) / (m) / / /
= Yol (SN—1) P (w, K (ryr's 2)p(wh) f(r
T 2 s fo, P @I ) )

% r’2<k>+N_3wk(w’) dr'dw’

> 1
=) (VOlk(SNl) / . PI™ (w, 0 )p(w Y wg (W) dw’)
X / K,im) (r,r'; z)f(r’)r'2<k>+N_3 dr')
R>o

—n)( [ KOG sar)

R>o
— () exp(:(Er — D(Er +1+2(k) + N 2) ()
— exp(=|aA) (p @ )(a).

Hence, (3.7) holds in this case.
Let F € L?(RY, wy(2')da’) and take a sequence (F});en in

H(SN_l) ®L2(R>O’T/2<k‘)+N—3drl)

such that F; — F in L? (]RN,wk,o (x’)d:n’). Then, since exp(z|a:|2Ak) is a bounded operator
on L* (RN, wy o(z)dz) (see Theorem 3.9), we have

exp(z|z|?Ay) Fj — exp(z|z|*Ag) F in  L*(RY, wg(z)dw).

On the other hand, for each z € RV \ {0}, the function 2/ — K} (a;, x'; z) is square-integrable
with respect to the measure wy (m’)dx’, so we have

/ K (x, x'; z)Fj (x')wkp (.CE/) dz’ — K (ac, x'; z)F(:L")w;%o (x') dz’.
RN RN
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By the result of the previous paragraph, (3.7) holds for each Fj. By taking the limit as j — oo,
we conclude that (3.7) also holds for F'. [

Remark 3.15. We recall the definition of the (k, a)-generalized Laguerre semigroup

(jk,a(z))Re 2>0

from [4, equation (1.3)]:
Fral?) = exp( (B, —Ef,) ) = exp( = (j22"Ar — [a])),

and the definition of the (k, a)-generalized Fourier transform %y, , from [4, equation (5.2)]:

i 2(k)+a+N—2 i im 2(k)+a+N—2 s
_ Jmemmero s _ Jmamero s - +
91%‘1 =e?2 “ fkva <2> =e?2 “ exp<§ (Ek,a B Ek,a))

—e7 o exp(?ﬂ:z:]zaAk - |x]a)>
a

These are not well-defined for a = 0. However, considering the “renormalized” (k,a)-
generalized Laguerre semigroup % 4(az) = exp(z(|z|*"*Aj, — |#|*)) and putting a = 0, we get
the operator exp(z(|z[?Ar—1)) = e~ % exp(z|z[*Ag). By Theorem 3.13, for z € C with Rez > 0,
the integral kernel of this operator is the function (x,2’) — e * K} (x, x'; z).

4 Closed-form expressions for the integral kernels
in low-dimensional cases

In this section, we give a closed-form expression for the integral kernel (z,2') — Kj (:c,x’ ; z)
of the operator exp(z|z|?Ay) (Rez > 0), obtained in Theorem 3.13, in the low-dimensional
cases N = 1,2 and 4. In the cases N = 2 and 4, we assume that £ = 0, and show that the
integral kernel can be expressed in terms of the theta function.

Proposition 4.1. We consider the case N = 1. The reduced root system % is taken to
be {a, —a} with o € Rsg, and the non-negative multiplicity function k is identified with ko =
k_o € R>g. In this case, for z € C with Rez > 0, we have

Ky (:r, x'; z) =

o 11\2
: o : exp(_ﬂog'x' 4log|x ) >|m,|k+;
a“v\/anz z

X (e_(k_%)z" + e (h+3)%z sgn(za'))

for z,x’ € R\ {0}. In particular, when k =0, we have

e i (log|z| — log\x’!)2> 1
Ko(z,2';2) = exp| — 22’2 (1 + sgn(xz’
o(oa'2) = 5 e (- BB OB (14 s

for z, " € R\ {0}.
Proof. It follows from voly (SO) = 2a?% and Theorem 2.5. |

In the following, we consider only the case & = 0. We recall the definition of the theta
function:

[ee) [e.e]
Yo, 1) = Z exp(irtm? + 2imrmov) = 1 + 2 Z exp (irTm?) cos 2mrmu.

m=—o0 m=1



16 T. Hikawa

Proposition 4.2. In the case N =2, for z € C with Rez > 0, we have

! e < (logr — logr")* ) 79< ! arccos(w, w’) ! z)
= exp| — — W), —
2m\/ 4z P 4z 2m 7'('

for r,r" € Ryg and w,w’ € S*. Equivalently, we have

6 1 ig 1 (10gr—logr’)2 1 N
Ko(re ,r'e ;z):mexp — P 0 %(gb—gb),;z

forr,r" € Ryg and ¢, ¢’ € R.

Ky (rw,r'w'; z) =

Proof. Since

~ 1 =
c?n(t):{ .

2T (t), m>1,

where T;, denotes the Chebyshev polynomial of the first kind, which is characterized by the
formula and T, (cos ) = cosm#, we have

Z exp(—zmQ)é%(cos 0)=1+2 Z exp(—2zm?) T, (cos )

m=0 m=1
=142 —zm? 6=0(-—0,~-2).
+ 2 exp( zZm )cosm (27r ,Wz>

Hence, we have

, 1 (logr—logr’)2 1 — 2N 0 ,
Ko(rw,rw ;z) = exp| — X by Z exp(—zm )Cm(<w,w >)
0

VAarz 4z —
1 logr —logr')*\ (1 i
= ———exp _(Ogr o8') 19( arccos(w,w’>,1z>. [
2m/Anz 4z 2m T

Proposition 4.3. In the case N =4, for z € C with Rez > 0, we have

_ /N2
Ko(rw,r'w';z) = _M> (7“7")_1

1
— ——F——e€x
8m3vdrz p< 4z
_109 (1 i
x (1- <w,w’>2) 28( arccos(w,w'’), 1z>

Oov \ 27 T

forr, 7" € Rsg and w,w’ € S3. Here, we take the branch of arccos(w,w’) such that arccos{w,w’) €

[0, 7].

Proof. Since CL (t) = (m+1)CL (t) = (m+1)Up(t), where Uy, denotes the Chebyshev polyno-
mial of the second kind, which is characterized by the formula U,,(cos ) = (sin(m+1)0)/(sin ),
we have

3 expls(n + 7)) = 3" espls(n + 1) () P
= LS (e msinms

___ 1 991, i
 4rsinf v \ 27 )
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Hence, we have

Ko(rw,7'w'; 2)

72 ~
N [COREF SETE TR A ()

1 (logr — 10gr’)2 ( ,),1
=————exp| — rr
8m3v/dmz P 4z

x (1- (w,w’)z)_%@ <1 arccos(w, w'), lz>. |

ov \ 27 s
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