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Abstract. Ben Saïd–Kobayashi–Ørsted introduced a family of sl2-triples of differential-
difference operators Hk,a, E+

k,a and E−
k,a on RN \ {0} indexed by a Dunkl parameter k and

a deformation parameter a ̸= 0. In the present paper, we study the behavior as the param-
eter a approaches 0. In this limit, the Lie algebra gk,a = spanR

{
Hk,a,E+

k,a,E−
k,a

} ∼= sl(2,R)
contracts to a three-dimensional commutative Lie algebra gk,0, and its spectral properties
change. We describe the joint spectral decomposition for gk,0, and discuss formulas for oper-
ator semigroups with infinitesimal generators in gk,0. In particular, we describe the integral
kernel of exp

(
z|x|2∆k

)
as an infinite series, which, in some low-dimensional cases, can be

expressed in a closed form using the theta function.

Key words: (k, a)-generalized Fourier transform; Dunkl operators; group contraction; spec-
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1 Introduction

1.1 Background

A minimal representation is an infinite-dimensional irreducible representation of a simple Lie
group with the smallest Gelfand–Kirillov dimension. However, at the same time, it can be
thought of as a manifestation of large symmetry of the space acted on by the group, and hence,
it is expected to control global analysis on the space effectively. This is the idea of global
analysis of minimal representations initiated by T. Kobayashi [19, 20], which led a transition
from algebraic representation theory to analytic representation theory. See also [15, Section VII]
for an excellent survey.

From the viewpoint of global analysis of minimal representations, the classical Fourier trans-
form on the Euclidean space RN can be interpreted as a unitary inversion operator in the Weil
representation, which is a unitary representation of the metaplectic group Mp(N,R) on the
Hilbert space L2(RN

)
(see [14] for more details) and decomposes into two irreducible compo-

nents, each of which is a minimal representation. Promoting this interpretation, Kobayashi–
Mano [21, 22, 23, 24] introduced the Fourier transform on the light cone as a unitary inversion
operator in an L2-model of a minimal representation of O(p, q) and developed a new theory
of harmonic analysis. The special case (p, q) = (N + 1, 2), where the model Hilbert space is
isomorphic to L2(RN , |x|−1dx

)
, is studied in [21, 23].

After that, Ben Saïd–Kobayashi–Ørsted [3, 4] introduced a family of sl2-triples of differential-
difference operators Hk,a, E+

k,a, E−
k,a on RN \{0} indexed by two parameters k and a, and defined

the (k, a)-generalized Laguerre semigroup

Ik,a(z) = exp
(z

i
(
E−

k,a − E+
k,a

))
, Re z ≥ 0
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and the (k, a)-generalized Fourier transform Fk,a = e iπ
2

2⟨k⟩+a+N−2
a Ik,a

( iπ
2
)
. Here, k is a combi-

natorial parameter derived from the Dunkl operators, and a > 0 is a deformation parameter.
The (k, a)-generalized Fourier transform Fk,a includes some known transforms:

• The (0, 2)-generalized Fourier transform F0,2 is the classical Fourier transform.
• The (0, 1)-generalized Fourier transform F0,1 is the Hankel transform, or the Fourier trans-

form on the light cone for (p, q) = (N + 1, 2).
• The (k, 2)-generalized Fourier transform Fk,2 is the Dunkl transform [13].

The parameter a therefore provides a continuous interpolation between the two minimal repre-
sentations of the simple Lie groups Mp(N,R) and O(N + 1, 2).

1.2 Results of the paper

Let gk,a = spanR
{
Hk,a,E+

k,a,E−
k,a

} ∼= sl(2,R). Ben Saïd–Kobayashi–Ørsted [4, Theorems 3.30
and 3.31] showed that, for a > 0, the action of gk,a on L2(RN , wk,a(x)dx) (see (3.3) for
the definition of wk,a) lifts to a unique unitary representation of the universal covering Lie
group S̃L(2,R) of SL(2,R) and found its irreducible decomposition explicitly; the Hilbert space
L2(RN , wk,a(x)dx

)
decomposes discretely with finite multiplicities into relatively discrete series

representations of S̃L(2,R). Furthermore, we investigated in [17] the case a < 0, which provided
an extension of the parameter a.

In the present paper, we study the behavior as a → 0. Although the operators Hk,a, E+
k,a

or E−
k,a are not well-defined for a = 0, the Lie algebra gk,a

∼= sl(2,R) contracts to a three-
dimensional commutative Lie algebra gk,0 ∼= R3 as a → 0. Such a contraction of Lie algebras
(or corresponding Lie groups) was earlier formalized by Inonu–Wigner [18], where it is referred
to as a contraction of groups. Classical examples include the contraction from the orthogonal
group O(3) (resp. O(2, 1)) to the Euclidean motion group O(2)⋉R2, which reflects the geometric
phenomenon that the sphere of curvature κ > 0 (resp. the hyperbolic plane of curvature κ < 0)
approaches the flat Euclidean plane as κ → 0.

We then consider the action of gk,0 on L2(RN , wk,0(x)dx
)

(note that the weight function wk,a

is well-defined even for a = 0). As an analog of the result in the case a ̸= 0, we describe that
the joint spectral decomposition for the operators in gk,0 on L2(RN , wk,0(x)dx

)
(Theorem 3.4)

and show that it lifts to a unique unitary representation of R3 (Theorem 3.6). This is the main
result of the paper. In contrast to the case a ̸= 0, this spectral decomposition involves only the
continuous spectrum.

Moreover, we discuss formulas for operator semigroups with infinitesimal generators in gk,0
(see Theorems 3.8 and 3.13). In particular, we describe the integral kernel of exp

(
z|x|2∆k

)
as an infinite series, which, in some low-dimensional cases, can be expressed in a closed form
using the theta function (Theorems 4.1, 4.2 and 4.3). Although the (k, a)-generalized Laguerre
semigroup and the (k, a)-generalized Fourier transform are not well-defined for a = 0, the opera-
tor semigroup

(
e−z exp

(
z|x|2∆k

))
Re z≥0 may be viewed as the “renormalized” (k, a)-generalized

Laguerre semigroup for a = 0 (Theorem 3.15). Note that explicit formulas and estimates for the
integral kernels of the (k, a)-generalized Laguerre semigroup and the (k, a)-generalized Fourier
transform have been extensively studied in Ben Saïd–Kobayashi–Ørsted [4, Sections 4.3–4.5 and
5.2–5.4] and subsequent papers [2, 6, 7, 8, 16, 27] up to the present. There are also unpublished
results by Mano and related results by Demni [9].

Thus, this paper analyzes representation-theoretic aspects of contraction of Lie algebras in the
framework of (k, a)-generalized Fourier analysis. We note that, recently, Benoist–Kobayashi [5,
Theorem 1.2] discovered a relationship between limit algebras (see Section 1.4 of their paper)
of h = Lie(H) in g = Lie(G) and L2-analysis of G/H in the context of tempered unitary
representations. It can be viewed as an application of the notion of contraction of Lie algebras
to representation theory.
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1.3 Organization of the paper

In Section 2, we will briefly review Dunkl theory and the differential-difference operators Hk,a,
E+

k,a and E−
k,a introduced by Ben Saïd–Kobayashi–Ørsted. In Section 3, we will discuss the

contraction of the sl2-triple as a → 0. In Section 4, we will give a closed-form expression for the
integral kernel of exp

(
z|x|2∆k

)
in some low-dimensional cases.

1.4 Notation

• N = {0, 1, 2, . . .}.
• We write ⟨–, –⟩ for the Euclidean inner product, and |–| for the Euclidean norm.
• SN−1 =

{
x ∈ RN | |x| = 1

}
.

• Function spaces, such as C∞ spaces and L2 spaces, are understood to consist of complex-
valued functions.

• We write Ex =
∑N

j=1 xj
∂

∂xj
for the Euler operator on RN , and Er = r d

dr for the Euler
operator on R>0.

2 Preliminaries

In this section, we review Dunkl theory and the differential-difference operators Hk,a, E+
k,a

and E−
k,a introduced by Ben Saïd–Kobayashi–Ørsted to the extent necessary for later use. This

section contains no new results.

2.1 The Dunkl Laplacian

Throughout this paper, we fix a reduced root system R on RN . That is, we suppose that R
satisfies the following conditions:

• R is a finite subset of RN \ {0},
• R is stable under the orthogonal reflection rα with respect to the hyperplane (Rα)⊥ for

all α ∈ R, and
• R ∩ Rα = {α, −α} for all α ∈ R.

Note that we do not impose crystallographic conditions on roots and do not require that R
spans RN .

The subgroup of O(N) generated by all the reflections rα is called the reflection group as-
sociated with R. We say that a function k : R → C is a multiplicity function if it is invariant
under the natural action of the reflection group. We usually write kα instead of k(α). We say
that a multiplicity function k is non-negative if kα ≥ 0 for all α ∈ R. The index of a multiplicity
function k is defined as

⟨k⟩ = 1
2
∑
α∈R

kα =
∑

α∈R+

kα,

where R+ is any positive system of R.
For a (not necessarily non-negative) multiplicity function k, the Dunkl Laplacian ∆k (see [10]

and [11, Definition 1.1]) is defined by

∆kF (x) = ∆F (x) +
∑

α∈R+

kα

(
2⟨α, ∇F (x)⟩

⟨α, x⟩
− |α|2 F (x) − F (rα(x))

⟨α, x⟩2

)
,

where ∆ =
∑N

j=1
(

∂
∂xj

)2 is the classical Laplacian and ∇ =
(

∂
∂x1

, . . . , ∂
∂xN

)
is the classical gradient

operator. When k = 0, the Dunkl Laplacian ∆k reduces to the classical Laplacian ∆.
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Let P
(
RN
)

denote the space of polynomials on RN and Pm
(
RN
)

denote its subspace of ho-
mogeneous polynomials of degree m. The space of k-harmonic polynomials of degree m (see [10,
Definition 1.5]) is defined as

Hm
k

(
RN
)

=
{

p ∈ Pm
(
RN
)

| ∆kp = 0
}

,

and the space of k-spherical harmonics of degree m is defined as

Hm
k

(
SN−1) =

{
p|SN−1 | p ∈ Hm

k

(
RN
)}

.

When k = 0, these are reduced to the space Hm
(
RN
)

of classical harmonic polynomials and the
space Hm

(
SN−1) of classical spherical harmonics, respectively.

We write H
(
SN−1) =

{
p|SN−1 | p ∈ P

(
RN
)}

. The following fact is a generalization of
the decomposition of H

(
SN−1) and L2(SN−1) into the spaces Hm

(
SN−1) of classical spherical

harmonics.

Fact 2.1 ([10, pp. 37–39]). For a non-negative multiplicity function k, we have the direct sum
decomposition

H
(
SN−1) =

⊕
m∈N

Hm
k

(
SN−1)

and the orthogonal decomposition

L2(SN−1, wk(ω)dω
)

=
∑⊕

m∈N
Hm

k

(
SN−1),

where the weight function wk with respect to the standard measure dω on SN−1 is defined by

wk(ω) =
∏
α∈R

|⟨α, ω⟩|kα =
∏

α∈R+

|⟨α, ω⟩|2kα .

2.2 Dunkl’s intertwining operator and the Poisson kernel

For a non-negative multiplicity function k, Dunkl introduced a linear automorphism Vk of the
space P

(
RN
)

of polynomials that satisfies a certain intertwining property (Dunkl’s intertwining
operator). See [12, Definition 2.2 and Theorem 2.3] for the definition and a characterization
of Vk. We note that V0 = idP(RN ).

The following integral representation of Dunkl’s intertwining operator Vk was obtained by
Rösler.

Fact 2.2 ([26, Theorem 1.2]). Let k be a non-negative multiplicity function. For each x ∈ RN ,
there exists a unique probability Borel measure µk,x on RN such that

Vkp(x) =
∫
RN

p(ξ) dµk,x(ξ)

for all p ∈ P
(
RN
)
. Moreover, the support of µk,x is contained in the ball

{
ξ ∈ RN | |ξ| ≤ |x|

}
,

and we have µk,x(S) = µk,gx(gS) = µk,rx(rS) for any element g of the reflection group, r > 0,
and Borel set S ⊆ RN .

Let k be a non-negative multiplicity function and m ∈ N. We consider the orthogonal pro-
jection Π(m)

k from L2(SN−1, wk(ω)dω
)

onto Hm
k

(
SN−1) and its normalized integral kernel P

(m)
k ,



Contraction of the sl2-Triple Associated to the (k, a)-Generalized Fourier Transform 5

which is called the Poisson kernel of the space of k-spherical harmonics of degree m. That is,
the function P

(m)
k on SN−1 × SN−1 is characterized by the formula

Π(m)
k p(ω) = 1

volk
(
SN−1

) ∫
SN−1

P
(m)
k

(
ω, ω′)p(ω′)wk

(
ω′) dω′ (2.1)

for all p ∈ L2(SN−1, wk(ω)dω
)
, where

volk
(
SN−1) =

∫
SN−1

dwk(ω). (2.2)

Equivalently, the Poisson kernel P
(m)
k is given by

P
(m)
k (ω, ω′) = volk

(
SN−1) d∑

j=1
pj(ω)pj(ω′),

where (p1, . . . , pd) is an orthonormal basis of Hm
k

(
SN−1), regarded as a subspace of L2(SN−1,

wk(ω)dω
)
.

The Poisson kernel P
(m)
k can be expressed in terms of Dunkl’s intertwining operator and

the Gegenbauer polynomials. To state this result, we first prepare some notation. For ν ∈ C
and m ∈ N, we consider the Gegenbauer polynomial Cν

m defined by the generating function

(
1 − 2tξ + ξ2)−ν =

∞∑
m=0

Cν
m(t)ξm, (2.3)

and the renormalized Gegenbauer polynomial C̃ν
m defined by

C̃ν
m(t) = m + ν

ν
Cν

m(t). (2.4)

For ν = 0, we define C̃0
m by the limit formula (see [1, equation (6.4.13)])

C̃0
m(t) = lim

ν→0
C̃ν

m(t) =
{

1, m = 0,

2Tm(t), m ≥ 1,
(2.5)

where Tm denotes the Chebyshev polynomial of the first kind, which is characterized by the
formula Tm(cos θ) = cos mθ.

Fact 2.3 ([12, Theorem 4.1]). Let k be a non-negative multiplicity function and m ∈ N. The
Poisson kernel P

(m)
k is given by

P
(m)
k (ω, ω′) = Vk

(
C̃

2⟨k⟩+N−2
2

m

(
⟨–, ω′⟩

))
(ω).

Remark 2.4. When k = 0, we have V0 = idP(RN ), so that the formula in Theorem 2.3 reduces to

P
(m)
0
(
ω, ω′) = C̃

N−2
2

m

(
⟨ω, ω′⟩

)
.

See [1, Theorem 9.6.3 and Remark 9.6.1].

Remark 2.5. In the case N = 1, we have S0 = {±1} and the formula in Theorem 2.3 reduces to

P
(m)
k (ω, ω′) =


1, m = 0,

sgn(ωω′), m = 1,

0, m ≥ 2,
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which corresponds to the fact that

Hm
k

(
S0) =


C1, m = 0,

C sgn, m = 1,

0, m ≥ 2.

Here, 1 and sgn denote the constant function and the sign function on S0 = {±1}, respectively.

2.3 The differential-difference operators Hk,a, E+
k,a and E−

k,a

Let k be a multiplicity function and a ∈ C \ {0}. We recall the definition of the differential-
difference operators Hk,a, E+

k,a and E−
k,a on RN \ {0} from [4, equation (3.3)]:

Hk,a = 2
a

Ex + 2⟨k⟩ + a + N − 2
a

, E+
k,a = i

a
|x|a, E−

k,a = i
a

|x|2−a∆k.

Additionally, for m ∈ N, we consider the following differential operators on R>0:

H(m)
k,a = 2

a
Er + 2⟨k⟩ + a + N − 2

a
, E+ (m)

k,a = i
a

ra,

E− (m)
k,a = i

a
r−a(Er − m)(Er + m + 2⟨k⟩ + N − 2).

These are the radial parts of Hk,a, E+
k,a and E−

k,a respectively in the following sense.

Proposition 2.6. Let k be a multiplicity function, a ∈ C\{0}, and m ∈ N. For p ∈ Hm
k

(
SN−1)

and f ∈ C∞(R>0), we have

Hk,a(p ⊗ f) = p ⊗ H(m)
k,a f, E+

k,a(p ⊗ f) = p ⊗ E+ (m)
k,a f,

E−
k,a(p ⊗ f) = p ⊗ E− (m)

k,a f,

where p ⊗ f denotes the function rω 7→ p(ω)f(r) on RN \ {0}.

Proof. The first and second equations are clear. We now prove the third equation. We use the
polar coordinates x = rω, where r ∈ R>0 and ω ∈ SN−1. We extend p ∈ Hm

k

(
SN−1) to a k-

harmonic polynomial of degree m on RN , which we again write p. Then, since ∆kp = 0, we have

∆k(p ⊗ f)(x) = ∆k(r−mf(r)p(x)) = [∆k, r−mf(r)]p(x), (2.6)

where [–, –] denotes the commutator of operators. For a radial function g(r), the commuta-
tor [∆k, g(r)] can be computed by the Leibniz rule as

[∆k, g(r)] = ∆(g(r)) + 2⟨∇(g(r)), ∇⟩ +
∑

α∈R+

kα
2⟨α, ∇(g(r))⟩

⟨α, x⟩

= g′′(r) + 1
r

g′(r)(2Ex + 2⟨k⟩ + N − 1)

= r−2(E2
r g(r) + Erg(r)(2Ex + 2⟨k⟩ + N − 2)

)
.

Setting g(r) = r−mf(r) and applying this commutator to p(x), we have

[∆k, r−mf(r)]p(x)
= r−2(E2

r (r−mf(r)) + Er(r−mf(r))(2Ex + 2⟨k⟩ + N − 2)
)
p(x)

= r−m−2((Er − m)2f(r) + (Er − m)f(r)(2Ex + 2⟨k⟩ + N − 2)
)
p(x)



Contraction of the sl2-Triple Associated to the (k, a)-Generalized Fourier Transform 7

= r−m−2((Er − m)2 + (Er − m)(2m + 2⟨k⟩ + N − 2)
)
f(r)p(x)

= r−2(Er − m)(Er + m + 2⟨k⟩ + N − 2)f(r)p(ω)
=
(
p ⊗ r−2(Er − m)(Er + m + 2⟨k⟩ + N − 2)f

)
(x). (2.7)

The third equation follows from (2.6) and (2.7). ■

Proposition 2.7. Let k be a multiplicity function and a ∈ C \ {0}.

(1) The differential-difference operators Hk,a, E+
k,a and E−

k,a form an sl2-triple. That is,[
Hk,a,E+

k,a

]
= 2E+

k,a, [Hk,a,E−
k,a] = −2E−

k,a,
[
E+

k,a,E−
k,a

]
= Hk,a.

(2) For any m ∈ N, the differential operators H(m)
k,a , E+ (m)

k,a and E− (m)
k,a form an sl2-triple.

That is,[
H(m)

k,a ,E+ (m)
k,a

]
= 2E+

k,a,
[
H(m)

k,a ,E− (m)
k,a

]
= −2E−

k,a,
[
E+ (m)

k,a ,E− (m)
k,a

]
= Hk,a.

Proof. (1) It is [4, Theorem 3.2]. (2) It follows from (1) and Theorem 2.6. ■

3 Contraction of the sl2-triple as a → 0

3.1 The commutative Lie algebras gk,0 and grad
k,0

For a multiplicity function k and a ∈ C \ {0}, we write

gk,a = spanR
{
Hk,a,E+

k,a,E−
k,a

}
= spanR

{
aHk,a, aE+

k,a, aE−
k,a

}
= spanR

{
2Ex + 2⟨k⟩ + a + N − 2, i|x|a, i|x|2−a∆k

}
.

Putting a = 0 in the above equation, we define

gk,0 = spanR
{

2Ex + 2⟨k⟩ + N − 2, i, i|x|2∆k

}
. (3.1)

Similarly, we write

g
(m)
k,a = spanR

{
H(m)

k,a ,E+ (m)
k,a ,E− (m)

k,a

}
= spanR

{
aH(m)

k,a , aE+ (m)
k,a , aE− (m)

k,a

}
= spanR

{
2Er + 2⟨k⟩ + a + N − 2, ira, ir−a(Er − m)(Er + m + 2⟨k⟩ + N − 2)

}
.

and define

grad
k,0 = spanR{2Er + 2⟨k⟩ + N − 2, i, i(Er − m)(Er + m + 2⟨k⟩ + N − 2)}

= spanR
{

2Er + 2⟨k⟩ + N − 2, i, i
(
E2

r + (2⟨k⟩ + N − 2)Er − m(m + 2⟨k⟩ + N − 2)
)}

= spanR
{

2Er + 2⟨k⟩ + N − 2, i, i
(
E2

r + (2⟨k⟩ + N − 2)Er

)}
. (3.2)

Note that the right-hand side of the above definition does not depend on m, which justifies the
notation grad

k,0 .

Proposition 3.1. Let k be a multiplicity function. For p ∈ Hm
k

(
SN−1) and f ∈ C∞(R>0), we

have

(2Ex + 2⟨k⟩ + N − 2)(p ⊗ f) = p ⊗ (2Er + 2⟨k⟩ + N − 2)f,

i(p ⊗ f) = p ⊗ if, i|x|2∆k(p ⊗ f) = p ⊗ i(Er − m)(Er + m + 2⟨k⟩ + N − 2)f,

where p ⊗ f denotes the function rω 7→ p(ω)f(r) on RN \ {0}.
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Proof. The proof goes along the same lines as that of Theorem 2.6. ■

Proposition 3.2. Let k be a multiplicity function.

(1) The space gk,0 of differential-difference operators on RN \ {0} is a three-dimensional com-
mutative Lie algebra.

(2) The space grad
k,0 of differential operators on R>0 is a three-dimensional commutative Lie

algebra.

Proof. (1) By Theorem 2.7, we have[
aHk,a, aE+

k,a

]
= 2a · aE+

k,a, [aHk,a, aE−
k,a] = −2a · aE−

k,a,
[
aE+

k,a, aE−
k,a

]
= a · aHk,a.

By taking the limit as a → 0, we have

[2Ex + 2⟨k⟩ + N − 2, i] = 0,
[
2Ex + 2⟨k⟩ + N − 2, i|x|2∆k

]
= 0,

[
i, i|x|2∆k

]
= 0.

(It can also be shown by a direct computation.)
(2) It follows from (1) and Theorem 3.1. ■

3.2 Joint spectral decomposition for gk,0 and grad
k,0

In the following, we consider a non-negative multiplicity function k. In the next two theorems,
we use the unitary operator

UN,k : L2(R>0, r2⟨k⟩+N−3dr
)

→ L2(R, ds),

UN,kf(s) = e
2⟨k⟩+N−2

2 sf(es), U−1
N,kg(r) = r− 2⟨k⟩+N−2

2 g(log r)

and the (classical) Fourier transform

F : L2(R, ds) → L2(R, dσ),

Fg(σ) = 1√
2π

∫
R

g(s)e−iσs ds, F −1h(s) = 1√
2π

∫
R

g(s)eiσs ds.

We recall some terminology related to operators on a Hilbert space. A densely defined
operator T on a Hilbert space is called self-adjoint (resp. skew-adjoint) if its adjoint T ∗ is equal
to T (resp. iT ), that is, these have the same domain and coincide on it. A closable operator T on
a Hilbert space is called essentially self-adjoint (resp. essentially skew-adjoint) if its closure T
is self-adjoint (resp. skew-adjoint).

Theorem 3.3. Let k be a non-negative multiplicity function. Every differential operator in grad
k,0

(see (3.2) for the definition) defined on the domain C∞
c (R>0) is an essentially skew-adjoint

operator on L2(R>0, r2⟨k⟩+N−3dr
)
. Moreover, via the unitary operator

F ◦ UN,k : L2(R>0, r2⟨k⟩+N−3dr
)

→ L2(R, dσ),

the closures of

(2Er + 2⟨k⟩ + N − 2)|C∞
c (R>0), i idC∞

c (R>0),

i(Er − m)(Er + m + 2⟨k⟩ + N − 2)|C∞
c (R>0)

correspond to the multiplication operators

2iσ, i, −i
(

σ2 +
(

m + 2⟨k⟩ + N − 2
2

)2
)

,

respectively.
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Proof. Via the unitary operator UN,k : L2(R>0, r2⟨k⟩+N−3dr
)

→ L2(R, ds), the operator(
Er + 2⟨k⟩ + N − 2

2

)∣∣∣∣
C∞

c (R)

corresponds to d
ds |C∞

c (R). As is well-known, for any complex polynomial P (σ) such that P (iσ)
is real-valued, P

( d
ds

)
|C∞

c (R) is an essentially self-adjoint operator on L2(R, ds) and its closure
corresponds to the multiplication operator by the function P (iσ) via the Fourier transform
F : L2(R, ds) → L2(R, dσ). Since 2Er + 2⟨k⟩ + N − 2, i and i(Er − m)(Er + m + 2⟨k⟩ + N − 2)
can be expressed as i times such polynomials of Er + 2⟨k⟩+N−2

2 , now the assertion follows. ■

We recall that the L2-theory of the sl2-triple
(
Hk,a,E+

k,a,E−
k,a

)
was considered on the Hilbert

space L2(RN , wk,a(x)dx
)
, where the weight function wk,a : RN → R≥0 (see [4, equation (1.2)],

ϑk,a in their notation) is defined by

wk,a(x) = |x|a−2
∏
α∈R

|⟨α, x⟩|kα = |x|a−2
∏

α∈R+

|⟨α, x⟩|2kα . (3.3)

By the polar decomposition wk,a(x)dx = wk(ω)dω ⊗ r2⟨k⟩+a+N−3dr (here, wk is as defined in
Theorem 2.1) and Theorem 2.1, we have the orthogonal decomposition

L2(RN , wk,a(x)dx
)

= L2(SN−1, wk(ω)dω
)

⊗̂ L2(R>0, r2⟨k⟩+a+N−3dr
)

=
∑⊕

m∈N
Hm

k

(
SN−1)⊗ L2(R>0, r2⟨k⟩+a+N−3dr

)
. (3.4)

Note that wk,a is well-defined and the above orthogonal decomposition holds even for a = 0.
We now state the main result of this paper.

Theorem 3.4. Let k be a non-negative multiplicity function. Every differential-difference op-
erator in gk,0 (see (3.1) for the definition) defined on the domain

D = H
(
SN−1)⊗ C∞

c (R>0) = spanC
{

p ⊗ f | p ∈ H
(
SN−1), f ∈ C∞

c (R>0)
}

,

is an essentially skew-adjoint operator on L2(RN , wk,0(x)dx
)
. Moreover, via the unitary operator

idL2(SN−1,wk(ω)dω) ⊗̂ (F ◦ UN,k) : L2(RN , wk,0(x)dx
)

→ L2(SN−1, wk(ω)dω
)

⊗̂ L2(R, dσ),

the closures of

(2Ex + 2⟨k⟩ + N − 2)|D, i idD,
(
i|x|2∆k

)
|D

correspond to the multiplication operators

idL2(SN−1,wk(ω)dω) ⊗̂2iσ, i,
∑⊕

m∈N
idHm

k (SN−1) ⊗

(
−i
(

σ2 +
(

m + 2⟨k⟩ + N − 2
2

)2
))

,

respectively.

Proof. It follows from Theorems 3.1 and 3.3, and the orthogonal decomposition (3.4). ■

Remark 3.5. Since the unitary operator F ◦ UN,k : L2(R>0, r2⟨k⟩+N−3dr) → L2(R, dσ) “maps”
1√
2π

r− 2⟨k⟩+N−2
2 +iσ to the Dirac distribution δσ, we have the direct integral decomposition

L2(R>0, r2⟨k⟩+N−3dr
)

=
∫ ⊕

R
C

1√
2π

r− 2⟨k⟩+N−2
2 +iσ dσ
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and may write Theorem 3.3 as

2Er + 2⟨k⟩ + N − 2 =
∫ ⊕

R
2iσ dσ, i id =

∫ ⊕

R
i dσ,

i(Er − m)(Er + m + 2⟨k⟩ + N − 2) =
∫ ⊕

R

(
−i
(

σ2 +
(

m + 2⟨k⟩ + N − 2
2

)2
))

dσ.

Similarly, we have the direct integral decomposition

L2(RN , wk,0(x)dx
)

=
∑⊕

m∈N

∫ ⊕

R
Hm

k

(
SN−1)⊗ C

1√
2π

r− 2⟨k⟩+N−2
2 +iσ dσ

and may write Theorem 3.4 as

2Ex + 2⟨k⟩ + N − 2 =
∑⊕

m∈N

∫ ⊕

R
2iσ dσ, i id =

∑⊕

m∈N

∫ ⊕

R
i dσ,

i|x|2∆k =
∑⊕

m∈N

∫ ⊕

R

(
−i
(

σ2 +
(

m + 2⟨k⟩ + N − 2
2

)2
))

dσ.

Corollary 3.6. Let k be a non-negative multiplicity function. The (possibly unbounded) normal
operator

exp
(z1

i (2Ex + 2⟨k⟩ + N − 2) + z2 + z3|x|2∆k

)
on L2(RN , wk,0(x)dx

)
is well-defined for z1, z2, z3 ∈ C. In particular, the action of the dif-

ferential-difference operators in gk,0 lifts to a unique unitary representation of R3 on L2(RN ,
wk,0(x)dx

)
, which is given by

(t1, t2, t3) 7→ exp
(
t1(2Ex + 2⟨k⟩ + N − 2) + it2 + it3|x|2∆k

)
.

Proof. Since gk,0 admits joint spectral decomposition (see Theorem 3.4), the (possibly un-
bounded) normal operator

ϕ

(
1
i (2Ex + 2⟨k⟩ + N − 2), 1, |x|2∆k

)
on L2(RN , wk,0(x)dx

)
is defined for any Borel measurable function ϕ : C3 → C by means of the

functional calculus. The former assertion is shown by setting ϕ(w1, w2, w3) = exp(z1w1 +z2w2 +
z3w3). The latter assertion is a consequence of Stone’s theorem. ■

For the operators in Theorem 3.6, the part involving z2 contributes only as a scalar multiple of
the identity. The subsequent two subsections are devoted to the analysis of the parts involving z1
and z3.

3.3 The unitary group with infinitesimal generator 2Ex + 2⟨k⟩ + N − 2

In this subsection, we consider the unitary group with infinitesimal generator 2Ex +2⟨k⟩+N −2,
regarded as a skew-adjoint operator on L2(RN , wk,0(x)dx

)
based on Theorem 3.4.

Proposition 3.7. Let k be a non-negative multiplicity function. For z ∈ C, the (possibly
unbounded) normal operator

exp
(z

i (2Ex + 2⟨k⟩ + N − 2)
)

on L2(RN , wk,0(x)dx
)

is bounded if and only if Re z = 0, and in this case, this operator is
unitary.
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Proof. By Theorem 3.4, the operator in the assertion corresponds to the multiplication op-
erator idL2(SN−1,wk(ω)dω) ⊗̂ e2zσ on L2(SN−1, wk(ω)dω

)
⊗̂ L2(R, dσ) via the unitary operator

idL2(SN−1,wk(ω)dω) ⊗̂ (F ◦ UN,k). Now the assertion follows since the function σ 7→ e2zσ on R
is bounded if and only if Re z = 0, and in this case,

∣∣e2zσ
∣∣ = 1. ■

Theorem 3.8. Let k be a non-negative multiplicity function. For z = it with t ∈ R, the unitary
operator on L2(RN , wk,0(x)dx

)
in Theorem 3.7 is given by

exp(t(2Ex + 2⟨k⟩ + N − 2))F (x) = e(2⟨k⟩+N−2)tF
(
e2tx

)
.

Proof. We continue our discussion following the proof of Theorem 3.7. The multiplication op-
erator e2itσ on L2(R, dσ) corresponds to the translation operator g 7→ g((–) + 2t) on L2(R, ds)
via F −1, which in turn corresponds to the scaling operator f 7→ e(2⟨k⟩+N−2)tf

(
e2t(–)

)
on

L2(R>0, r2⟨k⟩+N−3dr
)

via U−1
N,k. Hence, the assertion holds. ■

3.4 The operator semigroup with infinitesimal generator |x|2∆k

In this subsection, we consider the operator semigroup with infinitesimal generator |x|2∆k,
regarded as a self-adjoint operator on L2(RN , wk,0(x)dx

)
based on Theorem 3.4.

Proposition 3.9. Let k be a non-negative multiplicity function. For z ∈ C, the (possibly un-
bounded) normal operator exp

(
z|x|2∆k

)
on L2(RN , wk,0(x)dx

)
is bounded if and only if Re z ≥ 0,

and unitary if and only if Re z = 0.

Proof. By Theorem 3.4, the operator in the assertion corresponds to the multiplication operator∑⊕

m∈N
idHm

k (SN−1) ⊗ e−z(σ2+(m+ 2⟨k⟩+N−2
2 )2)

on L2(SN−1, wk(ω)dω
)
⊗̂L2(R, dσ) via the unitary operator idL2(SN−1,wk(ω)dω) ⊗̂(F ◦UN,k). Now

the assertion follows since the function

σ 7→ e−z(σ2+(m+ 2⟨k⟩+N−2
2 )2)

on R is bounded if and only if Re z ≥ 0, and has modulus one if and only if Re z = 0. ■

We consider the integral kernel formula for the operator semigroup
(
exp
(
z|x|2∆k

))
Re z≥0.

For this purpose, we first focus on the radial part (Er −m)(Er +m+2⟨k⟩+N −2) of |x|2∆k (see
Theorem 3.1).

Fact 3.10 ([25, Section IX.7, Example 3]). The operator semigroup
(
exp
(
z
( d

ds

)2))
Re z≥0 on

L2(R, ds) admits the integral kernel formula

exp
(

z

(
d
ds

)2
)

g(s) = 1√
4πz

∫
R

exp
(

−(s − s′)2

4z

)
g(s′) ds′ (3.5)

in the following sense. Here, we take the branch of
√

z such that
√

z > 0 when z > 0.

(1) For z ∈ C with Re z > 0 and g ∈ L2(R, ds′), the integrand in the right-hand side of (3.5)
is integrable for all s ∈ R, and this integral as a function of s gives exp

(
z
( d

ds

)2)
g.

(2) For z ∈ C with Re z = 0 and z ̸= 0 and g ∈
(
L1 ∩ L2)(R, ds′), the integrand in the

right-hand side of (3.5) is integrable for all s ∈ R, and this integral as a function of s
gives exp

(
z
( d

ds

)2)
g.
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Theorem 3.11. Let k be a non-negative multiplicity function and m ∈ N. The operator semi-
group (exp(z(Er −m)(Er +m+2⟨k⟩+N −2)))Re z≥0 on L2(R>0, r2⟨k⟩+N−3dr

)
admits the integral

kernel formula

exp(z(Er − m)(Er + m + 2⟨k⟩ + N − 2))f(r) =
∫
R>0

K
(m)
k

(
r, r′; z

)
f
(
r′)r′2⟨k⟩+N−3 dr′, (3.6)

where

K
(m)
k (r, r′; z)

= 1√
4πz

exp
(

−z

(
m + 2⟨k⟩ + N − 2

2

)2
)

exp
(

−(log r − log r′)2

4z

)(
rr′)− 2⟨k⟩+N−2

2

for r, r′ ∈ R>0, in the following sense. Here, we take the branch of
√

z such that
√

z > 0
when z > 0.

(1) For z ∈ C with Re z > 0 and f ∈ L2(R>0, r′2⟨k⟩+N−3dr′), the integrand in the right-
hand side of (3.6) is integrable for all r ∈ R>0, and this integral as a function of r
gives exp(z(Er − m)(Er + m + 2⟨k⟩ + N − 2))f .

(2) For z ∈ C with Re z = 0 and z ̸= 0 and f ∈
(
L1 ∩ L2)(R>0, r′2⟨k⟩+N−3dr′), the integrand

in the right-hand side of (3.6) is integrable for all r ∈ R>0, and this integral as a function
of r gives exp(z(Er − m)(Er + m + 2⟨k⟩ + N − 2))f .

Proof. As follows from the proof of Theorem 3.3, (Er −m)(Er +m+2⟨k⟩+N −2) corresponds
to
( d

ds

)2 −
(
m + 2⟨k⟩+N−2

2
)2 via the unitary operator UN,k : L2(R>0, r2⟨k⟩+N−3dr) → L2(R, ds).

Now the assertion follows from Theorem 3.10. ■

We then combine this result with the spherical part. Recall that P
(m)
k denotes the Poisson

kernel of the space of k-spherical harmonics of degree m (see (2.1) for the definition), and
that Cν

m

(
resp. C̃ν

m

)
denotes the Gegenbauer polynomial (resp. the renormalized Gegenbauer

polynomial) (see (2.3) and (2.4) for the definitions).

Lemma 3.12. Fix a non-negative multiplicity function k. Then, the uniform norm of the
Poisson kernel P

(m)
k satisfies

sup
ω,ω′∈SN−1

∣∣P (m)
k (ω, ω′)

∣∣ = O
(
m2⟨k⟩+N−2), m → ∞.

Proof. In the case N = 1, we have P
(m)
k = 0 for m ≥ 2 (see Theorem 2.5), so that the assertion

holds trivially. We now consider the case N ≥ 2. By Theorems 2.3 and 2.2, we have

P
(m)
k (ω, ω′) = Vk

(
C̃

2⟨k⟩+N−2
2

m (⟨–, ω′⟩)
)
(ω) =

∫
RN

C̃
2⟨k⟩+N−2

2
m (⟨ξ, ω′⟩) dµk,ω(ξ),

where µk,x is a probability Borel measure on RN whose support is contained in the unit ball{
ξ ∈ RN | |ξ| ≤ 1

}
. Hence, we have

∣∣P (m)
k (ω, ω′)

∣∣ ≤
∫
RN

∣∣C̃ 2⟨k⟩+N−2
2

m (⟨ξ, ω′⟩)
∣∣dµk,ω(ξ) = sup

t∈[−1,1]

∣∣C̃ 2⟨k⟩+N−2
2

m (t)
∣∣.

Note that 2⟨k⟩+N−2
2 ≥ 0 since N ≥ 2. For ν ∈ R>0, it is known (see [1, p. 302]) that

sup
t∈[−1,1]

|Cν
m(t)| = Cν

m(1) = Γ(m + 2ν)
m!Γ(2ν) ,
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which implies

sup
t∈[−1,1]

∣∣C̃ν
m(t)

∣∣ = m + ν

ν

Γ(m + 2ν)
m!Γ(2ν) = O

(
m2ν

)
.

This also holds for ν = 0 since C̃0
m is defined by the limit formula (2.5). The assertion follows

by applying this estimate to the case ν = 2⟨k⟩+N−2
2 . ■

Recall from (2.2) that volk
(
SN−1) denotes the volume of the sphere SN−1 with respect to the

measure wk(ω)dω.

Theorem 3.13. Let k be a non-negative multiplicity function. The operator semigroup(
exp
(
z|x|2∆k

))
Re z≥0

on L2(RN , wk,0(x)dx
)

admits the integral kernel formula

exp
(
z|x|2∆k

)
F (x) =

∫
RN

Kk

(
x, x′; z

)
F
(
x′)wk,0

(
x′) dx′, (3.7)

where

Kk(rω, r′ω′; z) = 1√
4πz

exp
(

−(log r − log r′)2

4z

)(
rr′)− 2⟨k⟩+N−2

2

× 1
volk

(
SN−1

) ∞∑
m=0

exp
(

−z

(
m + 2⟨k⟩ + N − 2

2

)2
)

P
(m)
k (ω, ω′)

for r, r′ ∈ R>0 and ω, ω′ ∈ SN−1, in the following sense. Here, we take the branch of
√

z such
that

√
z > 0 when z > 0.

For z ∈ C with Re z > 0 and F ∈ L2(RN , wk,0
(
x′)dx′), the integrand in the right-hand side

of (3.7) is integrable for all x ∈ RN \{0}, and this integral as a function of x gives exp
(
z|x|2∆k

)
F .

Remark 3.14. When k = 0, we have

vol0
(
SN−1) = vol

(
SN−1) = 2π

N
2

Γ
(

N
2
) , with P

(m)
0 (ω, ω′) = C̃

N−2
2

m (⟨ω, ω′⟩)

(see Theorem 2.4), so that the integral kernel formula in Theorem 3.13 reduces to

K0(rω, r′ω′; z) = 1√
4πz

exp
(

−
(
log r − log r′)2

4z

)(
rr′)− N−2

2

×
Γ
(

N
2
)

2π
N
2

∞∑
m=0

exp
(

−z

(
m + N − 2

2

)2
)

C̃
N−2

2
m (⟨ω, ω′⟩).

Proof of Theorem 3.13. Fix r ∈ R>0 and ω ∈ SN−1. Then, the function

r′ 7→ exp
(

−(log r − log r′)2

4z

)(
rr′)− 2⟨k⟩+N−2

2

is square-integrable with respect to the measure r′2⟨k⟩+N−3dr′ and the infinite series
∞∑

m=0
exp
(

−z

(
m + 2⟨k⟩ + N − 2

2

)2
)

P
(m)
k (ω, ω′)
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absolutely converges with respect to the uniform norm for ω′ ∈ SN−1 by Theorem 3.12, so that
the equation

Kk(rω, r′ω′; z) = 1√
4πz

exp
(

−(log r − log r′)2

4z

)(
rr′)− 2⟨k⟩+N−2

2

× 1
volk

(
SN−1

) ∞∑
m=0

exp
(

−z

(
m + 2⟨k⟩ + N − 2

2

)2
)

P
(m)
k (ω, ω′)

= 1
volk

(
SN−1

) ∞∑
m=0

P
(m)
k (ω, ω′)K(m)

k (r, r′; z)

(here, K
(m)
k (r, r′; z) is as defined in Theorem 3.11) holds with respect to the topology of L2(R>0×

SN−1, r′2⟨k⟩+N−3wk(ω′)dr′dω′) ∼= L2(RN , wk,0
(
x′)dx′).

By the result of the previous paragraph, for F ∈ L2(RN , wk,0
(
x′)dx′) and x = rω ∈ RN \{0},

the function x′ 7→ Kk

(
x, x′; z

)
F
(
x′) is integrable with respect to the measure wk,0

(
x′)dx′ and∫

RN

Kk

(
x, x′; z

)
F
(
x′)wk,0

(
x′) dx′ = 1

volk
(
SN−1

) ∞∑
m=0

∫
SN−1

∫
R>0

P
(m)
k

(
ω, ω′)

× K
(m)
k (r, r′; z)F

(
r′ω′)r′2⟨k⟩+N−3wk

(
ω′) dr′dω′.

If F = p⊗f with p ∈ Hl
k

(
SN−1) and f ∈ L2(R>0, r′2⟨k⟩+N−3dr′), by (2.1) and Theorem 3.11 (1),

we have∫
RN

Kk

(
x, x′; z

)
(p ⊗ f)

(
x′)wk,0

(
x′) dx′

= 1
volk

(
SN−1

) ∞∑
m=0

∫
SN−1

∫
R>0

P
(m)
k (ω, ω′)K(m)

k (r, r′; z)p(ω′)f(r′)

× r′2⟨k⟩+N−3wk(ω′) dr′dω′

=
∞∑

m=0

(
1

volk
(
SN−1

) ∫
SN−1

P
(m)
k (ω, ω′)p(ω′)wk(ω′) dω′

)

×
(∫

R>0

K
(m)
k (r, r′; z)f(r′)r′2⟨k⟩+N−3 dr′

)
= p(ω)

(∫
R>0

K
(l)
k (r, r′; z)f(r′)r′2⟨k⟩+N−3 dr′

)
= p(ω) exp(z(Er − l)(Er + l + 2⟨k⟩ + N − 2))f(r)
= exp

(
z|x|2∆k

)
(p ⊗ f)(x).

Hence, (3.7) holds in this case.
Let F ∈ L2(RN , wk,0

(
x′)dx′) and take a sequence (Fj)j∈N in

H
(
SN−1)⊗ L2(R>0, r′2⟨k⟩+N−3dr′)

such that Fj → F in L2(RN , wk,0
(
x′)dx′). Then, since exp

(
z|x|2∆k

)
is a bounded operator

on L2(RN , wk,0(x)dx
)

(see Theorem 3.9), we have

exp
(
z|x|2∆k

)
Fj → exp

(
z|x|2∆k

)
F in L2(RN , wk,0(x)dx

)
.

On the other hand, for each x ∈ RN \ {0}, the function x′ 7→ Kk

(
x, x′; z

)
is square-integrable

with respect to the measure wk,0
(
x′)dx′, so we have∫

RN

Kk

(
x, x′; z

)
Fj

(
x′)wk,0

(
x′) dx′ →

∫
RN

Kk

(
x, x′; z

)
F
(
x′)wk,0

(
x′) dx′.
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By the result of the previous paragraph, (3.7) holds for each Fj . By taking the limit as j → ∞,
we conclude that (3.7) also holds for F . ■

Remark 3.15. We recall the definition of the (k, a)-generalized Laguerre semigroup

(Ik,a(z))Re z≥0

from [4, equation (1.3)]:

Ik,a(z) = exp
(z

i
(
E−

k,a − E+
k,a

))
= exp

(z

a

(
|x|2−a∆k − |x|a

))
,

and the definition of the (k, a)-generalized Fourier transform Fk,a from [4, equation (5.2)]:

Fk,a = e
iπ
2

2⟨k⟩+a+N−2
a Ik,a

(
iπ
2

)
= e

iπ
2

2⟨k⟩+a+N−2
a exp

(π

2
(
E−

k,a − E+
k,a

))
= e

iπ
2

2⟨k⟩+a+N−2
a exp

(
iπ
2a

(
|x|2−a∆k − |x|a

))
.

These are not well-defined for a = 0. However, considering the “renormalized” (k, a)-
generalized Laguerre semigroup Ik,a(az) = exp

(
z
(
|x|2−a∆k − |x|a

))
and putting a = 0, we get

the operator exp
(
z
(
|x|2∆k −1

))
= e−z exp

(
z|x|2∆k

)
. By Theorem 3.13, for z ∈ C with Re z > 0,

the integral kernel of this operator is the function (x, x′) 7→ e−zKk

(
x, x′; z

)
.

4 Closed-form expressions for the integral kernels
in low-dimensional cases

In this section, we give a closed-form expression for the integral kernel (x, x′) 7→ Kk

(
x, x′; z

)
of the operator exp

(
z|x|2∆k

)
(Re z > 0), obtained in Theorem 3.13, in the low-dimensional

cases N = 1, 2 and 4. In the cases N = 2 and 4, we assume that k = 0, and show that the
integral kernel can be expressed in terms of the theta function.

Proposition 4.1. We consider the case N = 1. The reduced root system R is taken to
be {α, −α} with α ∈ R>0, and the non-negative multiplicity function k is identified with kα =
k−α ∈ R≥0. In this case, for z ∈ C with Re z > 0, we have

Kk

(
x, x′; z

)
= 1

2α2k
√

4πz
exp
(

−(log|x| − log|x′|)2

4z

)
|xx′|−k+ 1

2

×
(
e−(k− 1

2 )2z + e−(k+ 1
2 )2z sgn(xx′)

)
for x, x′ ∈ R \ {0}. In particular, when k = 0, we have

K0
(
x, x′; z

)
= e− z

4

2
√

4πz
exp
(

−(log|x| − log|x′|)2

4z

)
|xx′|

1
2 (1 + sgn(xx′))

for x, x′ ∈ R \ {0}.

Proof. It follows from volk
(
S0) = 2α2k and Theorem 2.5. ■

In the following, we consider only the case k = 0. We recall the definition of the theta
function:

ϑ(v, τ) =
∞∑

m=−∞
exp
(
iπτm2 + 2iπmv

)
= 1 + 2

∞∑
m=1

exp
(
iπτm2) cos 2πmv.
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Proposition 4.2. In the case N = 2, for z ∈ C with Re z > 0, we have

K0
(
rω, r′ω′; z

)
= 1

2π
√

4πz
exp
(

−(log r − log r′)2

4z

)
ϑ

(
1

2π
arccos⟨ω, ω′⟩, i

π
z

)
for r, r′ ∈ R>0 and ω, ω′ ∈ S1. Equivalently, we have

K0
(
reiϕ, r′eiϕ′ ; z

)
= 1

2π
√

4πz
exp
(

−
(
log r − log r′)2

4z

)
ϑ

(
1

2π

(
ϕ − ϕ′), i

π
z

)
for r, r′ ∈ R>0 and ϕ, ϕ′ ∈ R.

Proof. Since

C̃0
m(t) =

{
1, m = 0,

2Tm(t), m ≥ 1,

where Tm denotes the Chebyshev polynomial of the first kind, which is characterized by the
formula and Tm(cos θ) = cos mθ, we have

∞∑
m=0

exp
(
−zm2)C̃0

m(cos θ) = 1 + 2
∞∑

m=1
exp
(
−zm2)Tm(cos θ)

= 1 + 2
∞∑

m=1
exp
(
−zm2) cos mθ = ϑ

(
1

2π
θ,

i
π

z

)
.

Hence, we have

K0
(
rω, r′ω′; z

)
= 1√

4πz
exp
(

−
(
log r − log r′)2

4z

)
× 1

2π

∞∑
m=0

exp
(
−zm2)C̃0

m

(
⟨ω, ω′⟩

)
= 1

2π
√

4πz
exp
(

−
(
log r − log r′)2

4z

)
ϑ

(
1

2π
arccos⟨ω, ω′⟩, i

π
z

)
. ■

Proposition 4.3. In the case N = 4, for z ∈ C with Re z > 0, we have

K0
(
rω, r′ω′; z

)
= − 1

8π3
√

4πz
exp
(

−(log r − log r′)2

4z

)(
rr′)−1

×
(
1 − ⟨ω, ω′⟩2)− 1

2
∂ϑ

∂v

(
1

2π
arccos⟨ω, ω′⟩, i

π
z

)
for r, r′ ∈ R>0 and ω, ω′ ∈ S3. Here, we take the branch of arccos⟨ω, ω′⟩ such that arccos⟨ω, ω′⟩ ∈
[0, π].

Proof. Since C̃1
m(t) = (m+1)C1

m(t) = (m+1)Um(t), where Um denotes the Chebyshev polyno-
mial of the second kind, which is characterized by the formula Um(cos θ) = (sin(m+1)θ)/(sin θ),
we have

∞∑
m=0

exp
(
−z(m + 1)2)C̃1

m(cos θ) =
∞∑

m=0
exp
(
−z(m + 1)2) · (m + 1)sin(m + 1)θ

sin θ

= 1
sin θ

∞∑
m=1

exp
(
−zm2) · m sin mθ

= − 1
4π sin θ

∂ϑ

∂v

(
1

2π
θ,

i
π

z

)
.
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Hence, we have

K0(rω, r′ω′; z)

= 1√
4πz

exp
(

−
(
log r − log r′)2

4z

)(
rr′)−1 × 1

2π2

∞∑
m=0

exp(−z(m + 1)2)C̃1
m

(
⟨ω, ω′⟩

)
= − 1

8π3
√

4πz
exp
(

−
(
log r − log r′)2

4z

)(
rr′)−1

×
(
1 − ⟨ω, ω′⟩2)− 1

2
∂ϑ

∂v

(
1

2π
arccos⟨ω, ω′⟩, i

π
z

)
. ■
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