|
SIGMA 22 (2026), 012, 34 pages arXiv:2508.18895
https://doi.org/10.3842/SIGMA.2026.012
Contribution to the Special Issue on Recent Advances in Vertex Operator Algebras in honor of James Lepowsky
A Tensor Category Construction of the $W_{p,q}$ Triplet Vertex Operator Algebra and Applications
Robert McRae a and Valerii Sopin b
a) Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, P.R. China
b) Shanghai Institute for Mathematics and Interdisciplinary Sciences, Shanghai 200433, P.R. China
Received August 27, 2025, in final form January 19, 2026; Published online February 09, 2026
Abstract
For coprime $p,q\in\mathbb{Z}_{\geq 2}$, the triplet vertex operator algebra $W_{p,q}$ is a non-simple extension of the universal Virasoro vertex operator algebra of central charge $c_{p,q}=1-\frac{6(p-q)^2}{pq}$, and it is a basic example of a vertex operator algebra appearing in logarithmic conformal field theory. Here, we give a new construction of $W_{p,q}$ different from the original screening operator definition of Feigin-Gainutdinov-Semikhatov-Tipunin. Using our earlier work on the tensor category structure of modules for the Virasoro algebra at central charge $c_{p,q}$, we show that the simple modules appearing in the decomposition of $W_{p,q}$ as a module for the Virasoro algebra have $\mathrm{PSL}_2$-fusion rules and generate a symmetric tensor category equivalent to $\operatorname{Rep}\mathrm{PSL}_2$. Then we use the theory of commutative algebras in braided tensor categories to construct $W_{p,q}$ as an appropriate non-simple modification of the canonical algebra in the Deligne tensor product of $\operatorname{Rep}\mathrm{PSL}_2$ with this Virasoro subcategory. As a consequence, we show that the automorphism group of $W_{p,q}$ is $\mathrm{PSL}_2(\mathbb{C})$. We also define a braided tensor category $\mathcal{O}_{c_{p,q}}^0$ consisting of modules for the Virasoro algebra at central charge $c_{p,q}$ that induce to untwisted modules of $W_{p,q}$. We show that $\mathcal{O}_{c_{p,q}}^0$ tensor embeds into the $\mathrm{PSL}_2(\mathbb{C})$-equivariantization of the category of $W_{p,q}$-modules and is closed under contragredient modules. We conjecture that $\mathcal{O}_{c_{p,q}}^0$ has enough projective objects and is the correct category of Virasoro modules for constructing logarithmic minimal models in conformal field theory.
Key words: triplet vertex operator algebras; $\mathrm{PSL}_2$ automorphism group; braided tensor categories; logarithmic conformal field theory.
pdf (690 kb)
tex (51 kb)
References
- Aboumrad W., Quantum computing with anyons: an $F$-matrix and braid calculator, arXiv:2212.00831.
- Adamović D., Lin X., Milas A., ADE subalgebras of the triplet vertex algebra $\mathcal{W}(p)$: $A$-series, Commun. Contemp. Math. 15 (2013), 1350028, 30 pages, arXiv:1212.5453.
- Adamović D., Milas A., On the triplet vertex algebra $\mathcal{W}(p)$, Adv. Math. 217 (2008), 2664-2699, arXiv:0707.1857.
- Adamović D., Milas A., The $N=1$ triplet vertex operator superalgebras, Comm. Math. Phys. 288 (2009), 225-270, arXiv:0712.0379.
- Adamović D., Milas A., On $\mathcal{W}$-algebras associated to $(2,p)$ minimal models and their representations, Int. Math. Res. Not. 2010 (2010), 3896-3934, arXiv:0908.4053.
- Adamović D., Milas A., On $\mathcal{W}$-algebra extensions of $(2,p)$ minimal models: $p>3$, J. Algebra 344 (2011), 313-332, arXiv:1101.0803.
- Adamović D., Milas A., An explicit realization of logarithmic modules for the vertex operator algebra $\mathcal{W}_{p,p'}$, J. Math. Phys. 53 (2012), 073511, 16 pages, arXiv:1202.6667.
- Adamović D., Milas A., $C_2$-cofinite $\mathcal{W}$-algebras and their logarithmic representations, in Conformal Field Theories and Tensor Categories, Math. Lect. Peking Univ., Vol. 53, Springer, Berlin, 2014, 13-17, arXiv:1212.6771.
- Allen R., Lentner S., Schweigert C., Wood S., Duality structures for representation categories of vertex operator algebras and the Feigin-Fuchs boson, Selecta Math. (N.S.) 31 (2025), 36, 57 pages, arXiv:2107.05718.
- Benoit L., Saint-Aubin Y., Degenerate conformal field theories and explicit expressions for some null vectors, Phys. Lett. B 215 (1988), 517-522.
- Berger J., Gainutdinov A., Runkel I., Non-semisimple link and manifold invariants for symplectic fermions, arXiv:2307.06069.
- Blanchet C., De Renzi M., Modular categories and TQFTs beyond semisimplicity, in Topology and Geometry - a Collection of Essays Dedicated to Vladimir G. Turaev, IRMA Lect. Math. Theor. Phys., Vol. 33, European Mathematical Society, Zürich, 2021, 175-208, arXiv:2011.12932.
- Boyarchenko M., Drinfeld V., A duality formalism in the spirit of Grothendieck and Verdier, Quantum Topol. 4 (2013), 447-489, arXiv:1108.6020.
- Chaidez J., Cotler J., Cui S.X., $4$-manifold invariants from Hopf algebras, Algebr. Geom. Topol. 22 (2022), 3747-3807, arXiv:1910.14662.
- Creutzig T., Jiang C., Orosz Hunziker F., Ridout D., Yang J., Tensor categories arising from the Virasoro algebra, Adv. Math. 380 (2021), 107601, 35 pages, arXiv:2021.10760.
- Creutzig T., Kanade S., McRae R., Gluing vertex algebras, Adv. Math. 396 (2022), 108174, 72 pages, arXiv:1906.00119.
- Creutzig T., Kanade S., McRae R., Tensor categories for vertex operator superalgebra extensions, Mem. Amer. Math. Soc. 295 (2024), vi+181 pages, arXiv:1705.05017.
- Creutzig T., Lentner S., Rupert M., Characterizing braided tensor categories associated to logarithmic vertex operator algebras, arXiv:2104.13262.
- Creutzig T., Lentner S., Rupert M., An algebraic theory for logarithmic Kazhdan-Lusztig correspondences, arXiv:2306.11492.
- Creutzig T., McRae R., Orosz Hunziker F., Yang J., $N=1$ super Virasoro tensor categories, arXiv:2412.18127.
- Creutzig T., McRae R., Yang J., On ribbon categories for singlet vertex algebras, Comm. Math. Phys. 387 (2021), 865-925, arXiv:2007.12735.
- Creutzig T., McRae R., Yang J., Direct limit completions of vertex tensor categories, Commun. Contemp. Math. 24 (2022), 2150033, 60 pages, arXiv:2006.09711.
- Creutzig T., McRae R., Yang J., Tensor structure on the Kazhdan-Lusztig category for affine $\mathfrak{gl}(1|1)$, Int. Math. Res. Not. 2022 (2022), 12462-12515, arXiv:2009.00818.
- Creutzig T., Nakatsuka S., Sugimoto S., Quasi-lisse extension of affine $\mathfrak{sl}_2$ à la Feigin-Tipunin, Adv. Math. 448 (2024), 109717, 64 pages, arXiv:2306.13568.
- Creutzig T., Ridout D., Logarithmic conformal field theory: beyond an introduction, J. Phys. A 46 (2013), 494006, 72 pages, arXiv:1303.0847.
- De Renzi M., Gainutdinov A.M., Geer N., Patureau-Mirand B., Runkel I., 3-Dimensional TQFTs from non-semisimple modular categories, Selecta Math. (N.S.) 28 (2022), 42, 60 pages, arXiv:1912.02063.
- Deligne P., Catégories tensorielles, Mosc. Math. J. 2 (2002), 227-248.
- Dong C., Mason G., On quantum Galois theory, Duke Math. J. 86 (1997), 305-321, arXiv:hep-th/9412037.
- Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., Vol. 205, American Mathematical Society, Providence, RI, 2015.
- Etingof P., Kannan A.S., Lectures on symmetric tensor categories, in Representations of Algebras and Related Structures, EMS Ser. Congr. Rep., EMS Press, Berlin, 2023, 191-234, arXiv:2103.04878.
- Etingof P., Penneys D., Rigidity of non-negligible objects of moderate growth in braided categories, arXiv:2412.17681.
- Feigin B.L., Fuks D.B., Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982), 114-126.
- Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu., Kazhdan-Lusztig correspondence for the representation category of the triplet $W$-algebra in logarithmic CFT, Theoret. and Math. Phys. 148 (2006), 1210-1235, arXiv:math.QA/0512621.
- Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu., Logarithmic extensions of minimal models: characters and modular transformations, Nuclear Phys. B 757 (2006), 303-343, arXiv:hep-th/0606196.
- Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu., Kazhdan-Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models, J. Math. Phys. 48 (2007), 032303, 46 pages, arXiv:math.QA/0606506.
- Feigin B.L., Tipunin I.Yu., Logarithmic CFTs connected with simple Lie algebras, arXiv:1002.5047.
- Felder G., BRST approach to minimal models, Nuclear Phys. B 317 (1989), 215-236.
- Frenkel I., Huang Y.-Z., Lepowsky J., On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), viii+64 pages.
- Frenkel I., Zhu M., Vertex algebras associated to modified regular representations of the Virasoro algebra, Adv. Math. 229 (2012), 3468-3507, arXiv:1012.5443.
- Frenkel I., Zhu Y., Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123-168.
- Fuchs J., Schaumann G., Schweigert C., Wood S., Grothendieck-Verdier module categories, Frobenius algebras and relative Serre functors, Adv. Math. 475 (2025), 110325, 69 pages, arXiv:2405.20811.
- Gaberdiel M.R., Runkel I., Wood S., Fusion rules and boundary conditions in the $c=0$ triplet model, J. Phys. A 42 (2009), 325403, 43 pages, arXiv:0905.0916.
- Gaberdiel M.R., Runkel I., Wood S., A modular invariant bulk theory for the $c=0$ triplet model, J. Phys. A 44 (2011), 015204, 37 pages, arXiv:1008.0082.
- Gannon T., Negron C., Quantum ${\rm SL}(2)$ and logarithmic vertex operator algebras at $(p,1)$-central charge, J. Eur. Math. Soc. (JEMS), to appear, arXiv:2104.12821.
- Huang Y.-Z., Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), suppl. 1, 871-911, arXiv:math.QA/0502533.
- Huang Y.-Z., Cofiniteness conditions, projective covers and the logarithmic tensor product theory, J. Pure Appl. Algebra 213 (2009), 458-475, arXiv:0712.4109.
- Huang Y.-Z., Kirillov Jr. A., Lepowsky J., Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337 (2015), 1143-1159, arXiv:1406.3420.
- Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, in Conformal Field Theories and Tensor Categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, 169-248, arXiv:1012.4193.
- Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, II: Logarithmic formal calculus and properties of logarithmic intertwining operators, arXiv:1012.4196.
- Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, III: Intertwining maps and tensor product bifunctors, arXiv:1012.4197.
- Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, IV: Constructions of tensor product bifunctors and the compatibility conditions, arXiv:1012.4198.
- Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, V: Convergence condition for intertwining maps and the corresponding compatibility condition, arXiv:1012.4199.
- Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VI: Expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms, arXiv:1012.4202.
- Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VII: Convergence and extension properties and applications to expansion for intertwining maps, arXiv:1110.1929.
- Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra, arXiv:1110.1931.
- Kashaev R.M., The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997), 269-275, arXiv:q-alg/9601025.
- Kazhdan D., Lusztig G., Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc. 7 (1994), 383-453.
- Kazhdan D., Wenzl H., Reconstructing monoidal categories, in I.M. Gelfand Seminar, Adv. Soviet Math., Vol. 16, American Mathematical Society, Providence, RI, 1993, 111-136.
- Koshida S., Kytölä K., The quantum group dual of the first-row subcategory for the generic Virasoro VOA, Comm. Math. Phys. 389 (2022), 1135-1213, arXiv:2105.13839.
- McRae R., On the tensor structure of modules for compact orbifold vertex operator algebras, Math. Z. 296 (2020), 409-452, arXiv:1810.00747.
- McRae R., Twisted modules and $G$-equivariantization in logarithmic conformal field theory, Comm. Math. Phys. 383 (2021), 1939-2019, arXiv:1910.13226.
- McRae R., Deligne tensor products of categories of modules for vertex operator algebras, arXiv:2304.14023.
- McRae R., Sopin V., Fusion and (non)-rigidity of Virasoro Kac modules in logarithmic minimal models at $(p,q)$-central charge, Phys. Scr. 99 (2024), 035233, 42 pages, arXiv:22302.08907.
- McRae R., Yang J., An $\mathfrak{sl}_2$-type tensor category for the Virasoro algebra at central charge 25 and applications, Math. Z. 303 (2023), 32, 40 pages, arXiv:2202.07351.
- McRae R., Yang J., The nonsemisimple Kazhdan-Lusztig category for affine $\mathfrak{sl}_2$ at admissible levels, Proc. Lond. Math. Soc. 130 (2025), e70043, 83 pages, arXiv:2312.01088.
- McRae R., Yang J., Structure of Virasoro tensor categories at central charge $13-6p-6p^{-1}$ for integers $p>1$, Trans. Amer. Math. Soc. 378 (2025), 7451-7509, arXiv:2011.02170.
- Moore G., Seiberg N., Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), 177-254.
- Morin-Duchesne A., Rasmussen J., Ridout D., Boundary algebras and Kac modules for logarithmic minimal models, Nuclear Phys. B 899 (2015), 677-769, arXiv:1503.07584.
- Nakano H., Projective covers of the simple modules for the triplet $W$-algebra $\mathcal{W}_{p_{+}, p_{-}}$, arXiv:2305.12448.
- Nakano H., Fusion rules for the triplet $W$-algebra $\mathcal{W}_{p_{+}, p_{-}}$, arXiv:2308.15954.
- Pearce P.A., Rasmussen J., Coset graphs in bulk and boundary logarithmic minimal models, Nuclear Phys. B 846 (2011), 616-649, arXiv:1010.5328.
- Rasmussen J., $\mathcal{W}$-extended logarithmic minimal models, Nuclear Phys. B 807 (2009), 495-533, arXiv:0805.2991.
- Rasmussen J., Fusion of irreducible modules in $\mathcal{WLM}(p,p')$, J. Phys. A 43 (2010), 045210, 27 pages, arXiv:0906.5414.
- Rasmussen J., Pearce P.A., $\mathcal{W}$-extended fusion algebra of critical percolation, J. Phys. A 41 (2008), 295208, 30 pages, arXiv:0804.4335.
- Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
- Reutter D., Semisimple four-dimensional topological field theories cannot detect exotic smooth structure, J. Topol. 16 (2023), 542-566, arXiv:2001.02288.
- Ridout D., Wood S., Modular transformations and Verlinde formulae for logarithmic $(p_+,p_-)$-models, Nuclear Phys. B 880 (2014), 175-202, arXiv:1310.6479.
- Rowell E., Stong R., Wang Z., On classification of modular tensor categories, Comm. Math. Phys. 292 (2009), 343-389, arXiv:0712.1377.
- Runkel I., Fjelstad J., Fuchs J., Schweigert C., Topological and conformal field theory as Frobenius algebras, in Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math., Vol. 431, American Mathematical Society, Providence, RI, 2007, 225-247, arXiv:math.CT/0512076.
- Runkel I., Gaberdiel M.R., Wood S., Logarithmic bulk and boundary conformal field theory and the full centre construction, in Conformal Field Theories and Tensor Categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, 93-168, arXiv:1201.6273.
- Sugimoto S., On the Feigin-Tipunin conjecture, Selecta Math. (N.S.) 27 (2021), 86, 43 pages, arXiv:2004.05769.
- Tsuchiya A., Wood S., The tensor structure on the representation category of the $\mathcal{W}_p$ triplet algebra, J. Phys. A 46 (2013), 445203, 40 pages, arXiv:1201.0419.
- Tsuchiya A., Wood S., On the extended $W$-algebra of type $\mathfrak{sl}_2$ at positive rational level, Int. Math. Res. Not. 2015 (2015), 5357-5435, arXiv:1302.6435.
- Turaev V.G., Viro O.Y., State sum invariants of $3$-manifolds and quantum $6j$-symbols, Topology 31 (1992), 865-902.
- Wang W., Rationality of Virasoro vertex operator algebras, Int. Math. Res. Not. 1993 (1993), 197-211.
- Wood S., Fusion rules of the ${\mathcal{W}}_{p,q}$ triplet models, J. Phys. A 43 (2010), 045212, 18 pages, arXiv:0907.4421.
|
|