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Abstract. For coprime p,q € Zs>3, the triplet vertex operator algebra W), is a non-
simple extension of the universal Virasoro vertex operator algebra of central charge ¢, , =
1-— 6‘(qu) and it is a basic example of a vertex operator algebra appearing in logarithmic
conformal field theory. Here, we give a new construction of W), , different from the original
screening operator definition of Feigin—Gainutdinov—Semikhatov—Tipunin. Using our ear-
lier work on the tensor category structure of modules for the Virasoro algebra at central
charge ¢, 4, we show that the simple modules appearing in the decomposition of W, , as
a module for the Virasoro algebra have PSLs-fusion rules and generate a symmetric ten-
sor category equivalent to Rep PSLy. Then we use the theory of commutative algebras in
braided tensor categories to construct W), , as an appropriate non-simple modification of
the canonical algebra in the Deligne tensor product of Rep PSLy with this Virasoro subcate-
gory. As a consequence, we show that the automorphism group of W, , is PSLy(C). We also
define a braided tensor category (’)0 ., consisting of modules for the Virasoro algebra at
central charge ¢, , that induce to untwisted modules of W, ,. We show that (’)Op . tensor
embeds into the PSLy(C)-equivariantization of the category of W), ;-modules and is closed
under contragredient modules. We conjecture that (90 - has enough projective objects and
is the correct category of Virasoro modules for constructing logarithmic minimal models in
conformal field theory.
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1 Introduction

The triplet W-algebras W), , for coprime p, ¢ € Z>; are fundamental examples of vertex operator
algebras (VOAs) with finite but non-semisimple representation theory. When ¢ = 1, W, is
a simple and Cs-cofinite VOA with 2p simple modules [3], automorphism group PSLy(C) [2], and
a non-semisimple modular tensor category of representations [44, 82]. Moreover, as conjectured
in [33] and proved recently in [18, 19, 44], this modular tensor category is equivalent to the
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category of finite-dimensional representations of a quasi-Hopf modification of the restricted
quantum group of sly at the root of unity e™/P. When p,q > 2, Wp.q is no longer simple
but is still Cy-cofinite [5, 83]. These more complicated VOAs are the subject of this paper. Our
main results are a new construction of W), , for p,q > 2 using tensor category methods and
a proof that, as in the ¢ = 1 case, the automorphism group of W), 4 is PSLy(C).

We first review what has already been established about W, , for p,q > 2. The triplet
algebra W), ;, was constructed in [34] as the intersection of the kernels of2two screening operators
acting on the lattice VOA V. /2pgz- 1t has central charge ¢pq =1 — %, contains the universal
Virasoro VOA V., of central charge ¢, as a subalgebra, and is non-simple with the rational
simple Virasoro VOA L., = of central charge ¢,  as its unique simple quotient. Just as L, , is
the VOA of minimal models in rational conformal field theory in physics, W), 4 is the VOA of W-
extended logarithmic minimal models in logarithmic conformal field theory [71, 72, 73, 74, 42, 43].
Such logarithmic conformal field theories sometimes arise in the analysis of statistical models at
critical points; in particular the (p,q) = (2,3) case is relevant for critical percolation (see, for
example, [25] and references therein).

The VOA structure and representation theory of W), , for ¢ > 2 are not yet as well understood
as in the ¢ = 1 case. However, the decomposition of W), ; as a module for the Virasoro algebra Vir
is already known [5, 8, 34, 83]

Wp»q = ‘/Cp,q S5 Z(2n - 1) : EQTLP*LI; (11)

n=2

where Lo,—1,1 is the simple Vir-module of central charge ¢, , and lowest conformal weight
(np — 1)(ng — 1). This decomposition follows from the fact that screening operators acting
on V jpaz and its modules form almost exact Felder complexes [37] of Feigin—Fuchs modules
for Vir [32], along with the detailed socle series structure of Feigin—Fuchs modules. In particular,
Wp,q, as the intersection of the kernel of two screening operators acting on V. 5557, is generated
by the socles of the Feigin-Fuchs Vir-modules that make up V, 5507, together with the vacuum.
It is not clear whether it is possible to describe this intersection of kernels of screening operators
without using the rather technical structural results on Feigin—Fuchs modules.

Another known result on the structure of W), , is that it is a Cy-cofinite VOA (see [5] for
the ¢ = 2 case and [83] in general), which thanks to [46] implies that its representation category
is a finite abelian braided monoidal category. Simple W), ,-modules have been classified in [6] for
the ¢ = 2 case and [83] in general, while logarithmic indecomposable W), ;-modules have been
constructed in [7, 69]. The monoidal structure on the category of W) ,-modules is not rigid,
essentially because W), , is not simple or self-contragredient when ¢ > 2, but fusion rules have
been obtained by various methods in, for example, [70, 73, 77, 86].

Now we review conjectures on W), 5. In [35], a relation (though not quite an equivalence) was
conjectured between the monoidal categories of modules for W), , and for a certain “Kazhdan—
Lusztig dual” quantum group, generalizing the previously-mentioned equivalence between the
categories of modules for W, and for the restricted quantum group of sly. Proving a pre-
cise version of this conjecture remains one of the most significant open problems pertaining to
the W, , triplet algebra. Another problem is determining the automorphism group of W,
which is PSLg(C) in the ¢ = 1 case [2]. It was suggested in [34] that PSLy(C) should also act
by VOA automorphisms of W, , in the ¢ > 2 case. However, although two derivations of W, ,
labeled E and F' were constructed in [83], it was not checked there whether the exponentials
of E and F actually generate an action of PSLy(C) by automorphisms.

In the present paper, we give a new construction of W), , that is independent of the original
construction in [34]. In particular, we use tensor category methods, rather than analysis of
screening operators on V, 5507, to show directly that the Vir-module direct sum on the right-
hand side of (1.1) admits the structure of a VOA. Moreover, we show that the VOA structure
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on the Vir-module direct sum in (1.1) is sufficiently unique, so that we can conclude that
the VOA we have constructed is isomorphic to the triplet algebra W, , constructed in [34].
As the main application of our construction, we prove the previously-mentioned conjecture
that the automorphism group of W), , is PSLa(C), with fixed-point subalgebra V;, . This will
follow from the fact (which will be obvious from our construction) that the multiplicity spaces
of the indecomposable Vir-module direct summands in (1.1) carry irreducible representations
of PSL(2, C) which are suitably compatible with the vertex operator that we construct on the
direct sum in (1.1). Our result that V,,  is the fixed-point subalgebra of the PSL(2, C)-action
on Wp, has implications for the relationship between the representation theories of W), and
the Virasoro algebra (similar to [61]) that we will explore in Section 5. We discuss our results
and methods in more detail next.

Our starting point is our previous paper [63] where we detailed some of the tensor structure
of the category O, , of Cj-cofinite modules for the universal Virasoro VOA Ve, of central
charge c, 4. This is the same as the category of finite-length modules for the Virasoro alge-
bra Vir of central charge c,, whose composition factors are irreducible quotients of reducible
Verma modules, and it is a non-rigid braided tensor category [15]. By (1.1), W), is an infinite
direct sum of modules in O, _, which by [22, 47] implies that W), ; has the structure of a commu-
tative algebra in the ind-completion (or direct limit completion) Ind(O,, ,) of the braided tensor
category O, .. Our goal is to use the tensor structure of O, , to construct an at first possibly
different commutative algebra structure (with PSL2(C) automorphism group) on the Vir-module
direct sum in (1.1), without assuming that (1.1) already admits such a commutative algebra or
VOA structure. Then by [47], any commutative algebra structure that we obtain on the right-
hand side of (1.1) is equivalent to some VOA structure, which we must then show is isomorphic
to the already-known VOA W, , using a suitable uniqueness result.

To achieve this, we first show in Section 2 that the Vir-module direct summands in (1.1),
except with the non-simple VOA V. replaced by its contragredient module VC’M, are closed
under the fusion tensor product of O, .. Moreover, we show that these summands have the same
fusion rules as the simple modules in the category Rep PSLs of finite-dimensional continuous
PSL2(C)-modules. This fusion rule calculation is subtle since O, , is non-semisimple and in par-
ticular contains logarithmic modules (on which the Virasoro operator Ly acts non—semlslmply)
To show in Theorem 2.1 below that the fusion tensor product Lomp—1,1 X Lopp-11 in O, ,
essentially semisimple (and in particular not logarithmic), we use fusion rules from [63] that
show Lomp—1,1 X Lop,—11 is a quotient of the “Kac module” Kopp—1,2np—1, Which is a certain
finite-length submodule of a Feigin—Fuchs Vir-module [68]. This shows the fusion tensor prod-
uct is non-logarithmic, but to calculate it precisely, we need further analysis using the detailed
structure of Kopmp—1,2np—1 to show that Loy,—1,1 X Loyp—1.1 is precisely the top socle series layer
of Komp—1,2np—1 (except in the m = n case, where a direct summand of VC’M rather than its
simple quotient appears). It is interesting that even though our tensor category construction
of W), 4 is independent of screening operators, it is not independent of the socle series structure
of Feigin—Fuchs modules, since these inform the structure of Koy,p—1,2np—1 that we use in our
computation of Loyp—1,1 X Lopp—1.1.

Motivated by these Virasoro fusion rules, we then in Section 3 define Cpgy,, to be the full
subcategory of O, , consisting of finite direct sums of the modules V/p . and Lopp—1,1 forn € Z>s.
We show that the fuslon tensor product on O, , gives CpgL, the structure of a rlgld symmetric
tensor category with new unit object VC’M rather than V¢, ., which is not an object of Cpgsy,.
Moreover, we show that Cpgsy,, is symmetric tensor equivalent to Rep PSLo. The most interesting
part of the proof is showing that Cpsy, is rigid, since its objects are not rigid as objects of O, ,
(because the unit objects in O, , and CpsL, are different). We prove that Cpsp, is rigid by
showing that a certain F-matrix entry (or 6j-symbol) associated to a suitable associativity
isomorphism is non-zero, and we show this using constraints on the F-matrix coming from the
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hexagon axiom for braided tensor categories. This is partially related to (but in this specific case
much simpler than) Huang’s proof of rigidity for the module category of a rational Co-cofinite
VOA [45], where relevant F-matrix entries were shown to be non-zero using information coming
from modular character transformations.

Alternatively, one could use the Rep PSLa fusion rules of Cpgy, together with the recent
paper [31] to show that Cpgr, is rigid. However, we believe that constraining F-matrices using
the hexagon axiom may be useful for proving rigidity in further examples of vertex algebraic
tensor categories where the fusion rules are not fully known. We also remark that calculating
F-matrices (or 6j-symbols) is an interesting problem in its own right since F-matrices appear
directly in rational conformal field theory [67] and state-sum invariants of 3-manifolds such as
Reshetikhin—Turaev [75] and Turaev—Viro [84] invariants, and they are also related to Kashaev’s
volume conjecture for hyperbolic knots [56]. They are also relevant in the classification of
semisimple tensor categories with given fusion rules [78], since the information in the 6j-symbols
is precisely what is forgotten in passing from a semisimple tensor category to its Grothendieck
ring.

In Section 4, we complete our tensor-categorical construction of W), ,. First, since Cpgr,, and
Rep PSLy are symmetric tensor equivalent, the canonical algebra of Rep PSLs induces a sim-
ple commutative algebra WzlJ,q in the Deligne product category Ind(Rep PSLs ® Cpgr,) with
decomposition

Wy, = cpq@@Vzn 2 @ Lonp—1,1, (1.2)
n=2

where Va,_2 is the (2n — 1)-dimensional simple continuous PSLg(C)-module. For information
about canonical algebras, see, for example, [29], or [16] for a more detailed exposition, where
canonical algebras are constructed by “gluing” braid-reversed equivalent braided tensor cate-
gories. We then show that applying the forgetful fiber functor Rep PSLy — Vec to (1.2) yields
a simple commutative algebra in Ind(Cpgr,,) with automorphism group PSLs(C) and with the
same Vir-module decomposition as (1.1), except that V., _ is replaced by V’ . Next, we explain
how to use the unique (up to scaling) non-zero Vir-homomorphism V’ — V , to turn the sim-
ple commutative algebra structure on W]L/’,q into a commutative algebra structure on the direct
sum on the right-hand side of (1.1) with a unique simple ideal and simple quotient.

We then have to show that the commutative algebra structure we have obtained on the
right-hand side of (1.1) yields the same VOA W, , of [34] under the correspondence between
commutative algebras and VOAs from [47]. Thus we show that W}g,q is the unique simple
commutative algebra structure on the direct sum in (1.2) and use this to prove that the algebra
structure on (1.1) is also unique if it has a suitable simple ideal. Since the triplet algebra W), 4
has such a simple ideal, it follows that the algebra we have constructed is indeed the triplet
algebra, and moreover, we can show that the automorphism group of W), ; is PSLy(C) by transfer
from ng’q. These results are formally stated in Theorem 4.6 and Corollary 4.7.

Finally, in Section 5, we use the VOA extension theory of [17, 22, 47] to discuss tensor-
categorical relations between the Virasoro category O, and the triplet category Rep(Wp ).
Using the induction tensor functor F' from O, , to the category of “non-local”, or “twisted”,
W, q-modules, we define the category (’)0 to be the full subcategory of O, , consisting of
modules which induce to ordinary modules for the triplet algebra, that is, objects of Rep(W), 4).
We then show that when restricted to this subcategory, F' defines a fully faithful tensor functor
from (’)0 to the PSLy(C)-equivariantization of Rep(W), ). However, unlike in the ¢ = 1 case
considered in [66, Section 7], induction does not give an equivalence between (’)0 ., and the
equivariantization Rep(W,, ;)F SL2(C) phecause Wp,q is not simple.

The main result of Section 5 is that (’)0 , contains all simple objects of O, , and is a ribbon
Grothendieck—Verdier category in the sense of [13], where the Grothendieck—Verdier duality
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(a weaker duality structure than rigidity) is given by contragredient modules (see [9]). The main
difficulty is to show that (’)0 is actually closed under taking contragredients. We conjecture
that (’)0 , unlike the larger category O, ,» has enough projective objects. If so, then it is natural
to conJecture that (90 ., 1s the correct category of Vir-modules to use to build a full logarithmic
minimal model conformal field theory.

2 Some Virasoro fusion rules

To give a novel construction of the W), , triplet VOA, without using screening operators [34,
35], we first need to calculate the fusion rules for the Virasoro modules which appear in the
decomposition of W, , as a Virasoro module. Thus let Vir be the Virasoro Lie algebra with basis
{Ly | n € Z} U {c}, where c is central and

m3—m

12
for m,n € Z. In this paper, we will only consider Vir-modules on which ¢ acts by the central
charge ¢, s =1 — 60=9° for some coprime p,q € Z>s.

Let V., , be the universal Virasoro VOA of central charge c, 4 [40]. By [15], the category O,
of C1-cofinite V¢, .-modules admits the vertex algebraic braided tensor category structure of [48,
49, 50, 51, 52, o3 54, 55]. More specifically, O, , is the category of finite-length Vir-modules
of central charge c,, whose composition factors are of the form L, s for some r,s € Z>1. Here,
L, s is the simple highest-weight Vir-module of central charge ¢, , whose lowest Lo-eigenvalue is

[Lmy Ln} = (m - n)Lm-‘rn + 5m+n,0c

-1 q rs—1 -1 p
hys = - + 2
’ 4 P 2 4 q
Note the symmetries h,s = hyyps+q and h.s = h_,._,, which imply that each simple object
of O, , is isomorphic to a unique L, s such that r € Z>1, 1 < s < ¢, and gr > ps.

In [63], we determined some of the braided tensor category structure of O, , focusing mainly
on the Virasoro Kac modules K, s defined in [68]. For each r,s € Z>1, K, s is the submodule
of a Feigin—Fuchs module [32] (of lowest Lg-eigenvalue h, ;) generated by all vectors with Lg-
eigenvalue strictly less than h, s +rs. Thus unlike the simple modules £, s, we do not necessarily
have K. s = K o if hy s = hy g instead, K, s is a proper submodule of K,y 514, for example.
As special cases, there are non-split short exact sequences

0— £(m+2)p—r,1 — Koptrg — Linptrn — 0,

0— ‘Cl,(n+2)q—s — lcl,nq—i—s — El,nq—&-s — 0 (2.1)

for m,n € Z>9, 1 <r <p-1,and 1 < s < ¢g—1. As a Vir-module, the universal Virasoro
VOA V., , is isomorphic to Ky 1. In particular, by (2.1), the unique simple Vir-module quotient
of Vi, is L£1,1, and the unique simple Vir-submodule is L9, 11 = £1,24-1-

In [63], we used Belavin-Polyakov-Zamolodchikov differential equations to show that Iy o is
rigid and self-dual in the tensor category O, ,, which implies in particular that the tensoring

functors K; 2 X e and e X /g 5 are exact (see, for example, [29, Proposition 4.2.1]), and that
Homyir(chQ X Wl, WQ) = Homyir(Wl, ICLQ X Wg) (2.2)

for any modules Wi, W in O, , (see, for example, [29, Proposition 2.10.8]). Due to the
symmetry ¢, = ¢qp, the same results hold for g ;.

In [63], we also completely determined the fusion products Ky o XK, s in O
In particular, there is a short exact sequence

forallr,s € Z>1.

Cp,q

0— KT75_1 — /C1,2 X ’Cns — K7"75+1 — 0, (2.3)
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which splits if and only if ¢ { s. In our proof of this result, the surjection i XK, s = K; o411
comes from the intertwining operator of type (KET;E:S) obtained by restricting a Heisenberg
Fock module intertwining operator involving the corresponding Feigin—Fuchs modules to their
Kac submodules. The existence of a non-zero map K, -1 — Ki2 X K, then follows from
the Wi = K, s_1, Wa = K, 5 case of (2.2). It is not easy to show that the resulting sequence of
maps (2.3) is exact, but once this is done, it is then clear that K; o KK, = K521 & Ky s11
when ¢ { s, because in this case the conformal weights of K, ;1 and K, s11 are non-congruent
mod Z and thus a non-trivial extension is impossible. When ¢ | s, on the other hand, it turns
out that ;2 K IC, 5 is a logarithmic extension of K, s41 by Ky s—1. See [63] for more details.

We also showed in [63, Theorem 6.7] that
K1 KK s = K (2.4)

for all 7,5 € Z>1. The map K, 1 WK, — K, again comes from restricting a Heisenberg Fock
module intertwining operator involving Feigin—Fuchs modules to their Kac submodules, though
the proof that it is an isomorphism is non-trivial and uses the exact sequence (2.3). The exact
sequence (2.3) can also be used to compute K9 K L, s for all r,s € Z>1, since every simple
module £, s has a resolution by Kac modules (this follows from (2.1) in the s = 1 and r = 1
cases); see [63, Theorem 6.8] for details.

As we will discuss in more detail later, the simple Vir-submodules of the triplet vertex al-
gebra W), will come from among the modules L,,—11 = Linq—1 for n € Z>o (actually, for
the Vir-submodules of W), ,, we will only need n even). At irrational central charges, the fu-
sion rules for such simple modules were determined in [39] using Zhu algebra methods, while
at central charge ¢ 4, their fusion rules were determined in [66] using the action of SU(2) by
automorphisms on the doublet algebra, an abelian intertwining algebra extension of the triplet
algebra Wy 4. But at central charge ¢, with p > 2, Zhu algebra computations seem to be diffi-
cult, and it is not a priori clear that SU(2) acts on the triplet or doublet algebra. So instead,
we prove the fusion rules using properties of Virasoro Kac modules derived in [63]:

Theorem 2.1. In the tensor category O, for coprime p,q € Z>2,

Cp.q
m+n—2
»Cmp—l,l X Enp—l,l = @ Eip—l,l

i=lm—n|+2
i+m+n=0 mod 2

for m,n € Z>o such that m # n, while

n—1

~ !
Lrp-118 Loy 112K ©ED Lajp-1a
j=2

forn € Z>q, where IC’L1 is the contragredient dual of K1 1.

Proof. Since the tensor product on O, , is commutative, and since the tensor product formulas
in the theorem statement are symmetric in m and n, we assume throughout the proof that m > n.
We will use the short exact sequences

0— Emerl,l — Icmpfl,l — Empfl,l — Oa
0— El,nq+1 — K:l,anl — El,anl — 07

which are special cases of (2.1). Equation (2.1) also gives surjections Kppt1,1 = Lmpt1,1 and
K1ng+1 = L1,ng+1- So noting that Ly nq—1 = Lyp—1,1, we have right exact sequences

]Cmp—i-l,l — ICmp—Ll — »Cmp—l,l — Oa
lCl,nq—f—l — ICl,nq—l — ﬁnp—l,l — 0.
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As the tensor product on O, , is right exact, we can tensor these two right exact sequences into
a single right exact sequence using (2.4):

K:mp—l—l,nq—l S ]Cmp—l,nq—l—l — Icmp—l,nq—l — £mp—1,1 X Enp—l,l —0 (25>

(see, for example, [62, Lemma 2.5]).

In particular, Lpp—1,1 X Lyp—1,1 is some quotient of Kp,p—1,ng—1. Using the diagrams in [63,
Section 2.3], as well as the conformal weight symmetries hpirq1s = hrs and h_p_s = hy
for r,s € Z, Kynp—1,ng—1 has the following composition series structure:

L1 (m—n)g+1
/ \

Ep—l,(m—n—&-l)q—‘,—l E(m—n—i—?)p—l,l
= |

E(m—n+2)p+1,1 'Cl,(m—n+2)q+1
| — T

ﬁpfl,(mfn+3)q+1 ﬁ(mfn+4)p71,1

lCmpfl ng—1: T >< l (2 6)
’ E(m—n+4)p+171 El,(m—n+4)q+1 )

' =

Ep—l,(m+n—3)q+1 ‘c(m+n—2)p—1,1
o= |

‘C(m+n72)p+1,1 ‘Cl,(m+n72)q+1

\ /

Ep—l,(m-l—n—l)q-‘rl-

All simple Vir-modules appearing in this diagram are distinct. The simple modules which only
receive arrows are the composition factors of the socle of K,p—1,ng—1, the simple modules which
both receive and originate arrows are the composition factors of the middle layer of the socle
series, and the simple modules which only originate arrows are the composition factors of the
top layer of the socle series. Each arrow in the diagram signifies an indecomposable subquotient
of Kymp—1,ng—1 of length 2.

From (2.6), the simple quotients of K,,p—1,ng—1 are precisely the simple quotients claimed
for Lyp—1,1Lyp—1,1 in the theorem statement. Also, for m = n, K,p—1ng—1 has a quotient El’l
of length 2 with a non-split short exact sequence

0—> [,171 — /C171 — ,Cgp_171 — 0.

Taking the contragredient of this short exact sequence and observing that hq 1 < hap—1,1, we see
that IE’“ is generated by a highest-weight vector of conformal weight h;; = 0 and thus is
a length 2 quotient of the Virasoro Verma module of lowest conformal weight 0. By the same
argument applied to (2.1), this length 2 quotient must also be isomorphic to I’y 1, and it follows
that 161,1 =~ '171. Thus the formulas claimed for £,,,—1,1 X £,,4—1,1 in the theorem statement
yield the quotient of K,up—1ng—1/M, where M is the submodule containing Soc(Kpp—1,ng—1)
such that M/Soc(Kpmp—1,ng—1) is the direct sum of all simple modules appearing in the middle
layer of the socle series of K,p—1n9—1 except for L1 in the m = n case.
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We now show that the kernel K of the surjection Kynp—1,ng—1 = Lmp—1,1 ¥ Lyp—1,1 from the
right exact sequence (2.5) is contained in M, so that we get a surjection

Emp—l,l X Enp—l,l - Icmp—l,nq—l/M- (27>
Indeed, by considering the composition
Krmp+1,ng-1 @ Kimp—1,ng+1 > K - K/(K N M) = Kynp—1,nq-1/M,

we see that any simple quotient of K/(K N M) is a homomorphic image of either Kypt1ng—1
or Krp—1,ng+1 and is also a composition factor of KCpnp—1,ng—1/M. However, the diagrams in [63,
Section 2.3] show that the simple quotients of Ky,pt1,nq—1 are

‘C(m—n+2)p+1,1a 'C(m—n+4)p+1,17 s 7£(m+n—2)p+1,la

and the simple quotients of KCyp,p—1,ng+1 are

El,(m—n)q+1a £1,(m—n+2)q+17 s 7£1,(m+n—2)q+1 if m>n,
Li2g+1, L14g+15 - L1 2n—2)gr1 i m=n. (2.8)

Thus from (2.6), combining the simple quotients of Kpp+1ng—1 and Kpp—1,ng+1 yields all com-
position factors of the middle socle layer of Kp,p—1.n¢—1, except for £ 1 in the m = n case. This
means the simple quotients of Kp,pt1ng—1 and Kyup—1,ng+1 are disjoint from the composition
factors of Kpnp—1,ng—1/M, showing that K /(K N M) has no simple quotients. Thus KNM = K,
that is, K’ C M. This establishes the surjection (2.7).

We still need to show that (2.7) is an isomorphism, that is, M = K. It is enough to show
that K contains all composition factors in the middle socle layer of K;p,;—1,ng—1, except for £ 1
in the m = n case. Again, from (2.6), the composition factors of the middle socle layer are

Liig+1, m-n<it<m-+n-—2, i+m+n=0 mod 2,
Lijp+1,1; m-—-n+2<j<m-+n-—2, j+m+n=0 mod 2.

For any of these simple modules W = Ly ;411 or Lj,411, let W C Kmp—1,ng—1 be the submodule
containing Soc(ICpp—1ng—1) such that W /Soc(Kyp—1ng—1) is the direct sum of all composition
factors of the middle socle layer except for W. Thus if W occurs as a composition factor
of Lyp—1,1 X Lyp_11, then K C W, and hence there is a surjection

Empfl,l X [*npfl,l - ,Cmpfl,anl/W-

We denote the indecomposable summand of Kyup—1.ng—1 / W that contains W as a submodule
by Q; if W = L4 jq+1 and by P; if W = L;p41.1. Thus to complete the proof of the theorem, it is
enough to show that there is no surjection L,,,—1,1XL,,—11 — Q; or Pj for m—n <17 < m+4n—2,
i+m+n=0 mod2orm—-n+2<j<m+n—2,5+m+n=0 mod 2, except in the case
that m =n and ¢ = 0.

We first consider Q,,—n. By (2.6), there is a non-split exact sequence

0— ['L(m—n)q—i-l — Qm—n — £1,(m—n+2)q—1 — 0.

Since Ny (m-n)g+1 < M1,(m—n+2)q—1, the same argument as used previously in the m = n case,
using (2.1), implies that Q,—y, = Thus using symmetries of vertex algebraic inter-

/!
1,(m—n)g+1-
twining operators from [38],

Hom(ﬁmpfl,l X Enpfl,la men) = Hom(ﬁmpfl,l X ICl,(m—n)q+la El,anl)-
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So by (2.4) and (2.1), a surjection Lyp—11 X Lypp—1,1 = Qm—n would induce a surjection
K:mp—l,(m—n)q—‘rl :> Kmpfl,l X K:l,(m—n)q—i-l - [’mpfl,l X Kl,(m—n)q—i—l - El,anl-
Such a surjection follows from (2.1) if m = n, but if m > n, then replacing n — m — n in (2.8)
shows that the simple quotients of K1 (;m—n)q4+1 are given by
L1ng+15 L1, (n+2)g+15 - - - s £1,(2m—n—2)g+1-

This set of modules does not include £ 41, 50 Qmn—pn cannot be a simple quotient of £,,,—1 1 X
Lyp—1,1 except in the case m = n.

We next consider @Q; fclr m—-n+2<i<m+n—2,i+m+n=0 mod 2. From (2.6), there
is a length 2 submodule Q; C @); with a short exact sequence

0— Ll,iq+1 — @z — /Cl,iq—l — 0.
Comparing with (2.1), @z = K1,ig—1 since both must be the same length 2 quotient of the Verma
module of lowest conformal weight hq ;,—1. Then (2.6) again yields an exact sequence

0 — Krig-1 — Qi —> Ly (i42)g—1 — 0,

when m —n+2<i<m+n—2, and Qmin—2 = Ky (myn-2)—1- Now to show that @); is not
a quotient of L,,,—1,1 W Lyp—11, it is enough to show that there is no surjection
Kio™XWLpp-11 X Lyp_11 — K12XQ;,

since X is right exact. Using [63, Theorems 6.5 and 6.8] (see also (2.3)), there is an exact
sequence

0— K1ig—2® K1ig — K12 Q; — Ly (j32)9—2 — 0
form—-n+2<i<m+n—2, while

]CLQ X Qm+n—2 = Kl,(m+nf2)q72 S3) ]Cl,(eran)q-

In either case, Ky i is a direct summand of ;2 X Q; since hy g # h1ig—2, h17(i+2)q_2 mod Z.
Thus a surjection L1 mp—1 X L1 pp—1 — Q; would induce a surjection

]Cmp—l,nq—2 — Kmp—l,l X ’Cl,nq—2 - ['mp—l,l X Ll,nq—2
— Ki12X Lyp-1,1 XL ng—1 > K12XW Qi — K144

From the diagrams in [63, Section 2.3], it is clear that i ;4 = L1, but that Kpyp—1ng—2 has
no simple quotient of the form L ;, if ¢  (ng — 2). For the remaining g = 2 case, KCpp—1ng—2 =
Kop—1,(n—1)q has simple quotients Ly (;,—nt1)gs £1,(m-n+3)gs - - - » £1,(m+n—3)q» and these do not
include £ ;4 since i+m+n = 0 mod 2. This proves that @; is not a quotient of L,,,;,—1,1XLp—1,1,
and therefore L1 ;441 is not a composition factor of L,,p—11 X Lpp—11.

Finally, the case of Pj for m —n+2 <j <m+n—-2,j+m+n =0 mod 2 is similar
by ¢pq = ¢qp symmetry. In this case, (2.6) and (2.1) yield a short exact sequence

00— chp—171 — P] — £(j+2)p71,1 — 0

when m —n+2<j<m+n—2, and Pynin-2 = K(nyn—2)p—1,1- Then similar to the Q; case,
a surjection L,,p—1,1 X Lyp—1,1 — P; would induce a surjection

Kmp—?,nq—l l> ]Cmp—Q,l X ,Cl,nq—l - ﬁmp—Q,l X El,nq—l
l) ICQJ X [’mpfl,l X ACnp,l’l - ,C271 X Pj - IijJ.
But ICjp1 = Lj, 1, and the diagrams in [63, Section 2.3] show that L, 1 is not a simple quotient
of Kinp—2.ng—1 (whether p = 2 or p > 2). Thus there is no surjection L,,—11XLy,—11 — Pj, and

therefore £, 41,1 is not a composition factor of L, 11 MW Lyp—11 for m —n+2 < j <m+n—2,
7+ m+n=0 mod 2. This completes the proof of the theorem. |
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3 An sly-type tensor category

The sls-like fusion rules of Theorem 2.1 suggest that we consider the additive full subcate-
gory Cq1, € O, , such that

{K11} U{Lrp-11 | n € Z>s} (3.1)

is a complete list of representatives of the isomorphism classes of indecomposable objects in Cqy, .
That is, every object of Cg, is isomorphic to a finite direct sum of objects from (3.1). In partic-
ular, Ky1 and Lg,_1,1 are not objects of Cq,. In this section, we will show that C, is a tensor
subcategory of O, , with different unit object ICI1,17 and that C, is rigid and tensor equivalent
to some 3-cocycle twist of the category Repsly of finite-dimensional sly-modules.

In view of Theorem 2.1, to show that Cq, is closed under the tensor product X on O, , it
only remains to show that if W is an object of Cy,, then K, X W is also an object of Cer,.
In fact, since we want K7 ; to be the unit object of Csr,, we want K} ; KW = W. To prove this,
we need the following lemma (compare with [65, Lemma 2.19]).

Lemma 3.1. If W is an object of Cq,, then L11 KXW = 0.

Proof. The simple VOA quotient L, , of V.,  is isomorphic to £; 1 as a Vir-module. Also, L, ,
is a rational VOA, and every simple L, -module is isomorphic to L, s for some 1 <7 <p—1
and 1 < s < ¢ —1[85]. If W is any object of O, , then £1; X W is an L., -module by [63,
Lemma 5.11]. On the other hand, the quotient map K;; — £ induces a surjection

W = K1  RW — L1 BW.

Thus £11 X W is an L., -module which is a quotient of . Then if W is an object of Cq,
the only such quotient of W is 0, since any simple quotient of W is isomorphic to £,,—1,1 for
some n > 2 (note from (2.1) that £2,11 is the unique simple quotient of Kj ;). [

We now define left and right unit isomorphism candidates in Cq,. First, it follows from (2.1),
the exactness of the contragredient functor, and the fact that simple Vir-modules are self-
contragredient, that we have exact sequences

00— £2p—1,1 — ICl,l 1) £1,1 — 0,

0— [,171 1> ]C/I,l — £2p—1,1 — 0. (32)

We fix p =nom: IC’LI — K1,1, and then for any object W in Cy,, we define homomorphisms

Uy K RW 2 e w2 w,

My WREK, S wRK s W, (3.3)

where [y and 7y are the left and right unit isomorphisms in O, , respectively.
Proposition 3.2. For any object W in Cy,, ly, and ryy, are isomorphisms.

Proof. By elementary properties of braided tensor categories, rw = lw o Rw,,, where R
is the natural braiding isomorphism in O, . Thus naturality implies r{;, = Iy, o Ry K and
hence [j;, is an isomorphism if and only if 7y, is.

To show I}, is an isomorphism, it is enough to show that ¢ X Idy is an isomorphism, and
for this it is enough to show that

X Isz ]Cll,l XW — ,Cgp_l,l X W,
n X Idwi £2p—1,1 XW — ]C171 X W
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are both isomorphisms. By (3.2) and right exactness of X, we have right exact sequences

LRW — K, ®W 2, ) RW — 0,

,Cgp_l,l X W M) Kl,l XW — ,C171 XKW — 0.

It then follows from Lemma 3.1 that m X Idyy is an isomorphism and 5 X Idy is surjective.

To show that n X Idy, is also injective and thus an isomorphism, it suffices to show that
Lop—11 XKW = W, since then the finite-dimensional weight spaces of Lo, 11 X W and K X
W = W will have the same dimension. To prove Lo,_11 X W = W, we may assume W is
indecomposable, and the case W = L,;,_11 for n > 3 is covered by Theorem 2.1. For the
case W = IC’M, (3.2) and right exactness of X yield a right exact sequence

/
£2p—1,1 X [,171 — [,Qp_Ll X ,Cl,l — £2p—1,1 X £2p—1,1 — 0.

Since Lop—1,1XL11 = 0 by the same argument as in the proof of Lemma 3.1, and since L£o,—1,1 X
Lap-1,1 = K ; by Theorem 2.1, we get L2,11 XK ;| = K 1, as required. [ ]

Theorem 2.1 and Proposition 3.2 now show in particular that Cy, is closed under the tensor
product on O, ,. To write the tensor products of indecomposable objects in Cy, in a uniform
way, we introduce the notation

E(nJrQ)p,Ll ifn Z 1.

for n € Z>p. Then Theorem 2.1 and Proposition 3.2 imply

LR L, = & Ly, (3.5)
k=|m—n)|
k+m+n=0 mod 2
for all m,n € Z>(. These are precisely the fusion rules of finite-dimensional simple sly-modules,
if we identify £,, with the (n + 1)-dimensional simple slp-module of highest weight n.
Proposition 3.2 also shows that there are natural isomorphisms I': K} ; (e — Ide,, . r': e
&IC’L1 — Id05[2. Further, the associativity isomorphisms A and braiding isomorphisms R
on O, , restrict to natural isomorphisms on Cy, that satisfy the pentagon and hexagon axioms
of a braided monoidal category.

Theorem 3.3. (Cor, X, K7 1, A, l',7',R) is a semisimple braided tensor category.

Proof. To show that Cy, is semisimple, it is enough to show that IC’Ll is simple as an object
of Cq, (though it is not simple in O, ,). Indeed, from (3.2), the only non-trivial subobject
of K71 is £1,1, which is not an object of Cyr,. Thus Cqy, is a semisimple abelian category.

To show that Cy, is a braided tensor category, it remains to prove the triangle axiom for I, r/,
and A. Indeed, since the associativity isomorphisms are natural and the triangle axiom holds
in O

p.g> WE have

(riw, B Idws,) o Aw, iy | ws = (rwy B 1dws,) o ((Idw, M) BIdws,) o Aw, i | ws

= (TW1 X Isz) o AWl,ICl,LWQ © (IdWI X (90 X Isz))
= (Idw, M lw,) o (Idw, X (¢ X 1dw,)) = Idy, X l{/Vg

for any objects Wi, Wy in Csy,, as required. |
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We next show that the tensor category Cq, is rigid. Actually, this follows rather easily using
Theorem 1.1 of the recent paper [31], which appeared after we had already begun this work. Here
we present a more explicit and self-contained proof, starting by showing that £; is rigid and self-
dual. The key point is to determine the associativity isomorphism Az, £, 2,: L1 X (L1 K L) —
(L1 X Ly) K Ly explicitly enough. Since Cq, is semisimple, this associativity isomorphism is
determined by the F-matrix, or 6j-symbols, and it turns out that proving rigidity amounts to
showing that a certain F-matrix entry is non-zero. We will prove this by using the hexagon
axiom of a braided tensor category to constrain the F-matrix. To prepare, we fix some notation.

Recalling the notation (3.4) and the fusion rules (3.5), let

o Lo R Ly — L, ik Ly — Lo KL,

mn mn *

for m,n € Z>o, Im—n| <k <m+mn, k+m+n=0 mod 2 denote a system of surjections and
injections such that

m-+n
k k' -k k
Tmn © Ymn = 5/€,k'1dﬁk’ E : Ymn © Tmn = Idg,, =, (36)
k=|m—n|

k+m+n=0 mod 2

For simplicity, we may assume that if m < n, then 7%, o R, . =7k . We may also assume
that mg, = I, and 7} =7, for all n € Z>g. For the case m = n, we have

k k k
Thn © Rﬁmﬁn - Rn " Tnn

for some RF € C*. In fact, using the methods of [44, Sections 7 and 8] and [64, Section 6] (see
in particular the calculations preceding [64, Theorem 6.3]), we get

RI:L — eﬂi(h(k+2)p71,1—Qh(n+2)p71,1)'

We will need the case of n =1, in particular,
RO —empa/2 2 _grina/2 (3.7)

Next we consider the triple tensor product £, X (£ X L;). For k = 0,2, we define morphisms

Id,. Rk 1
M LR (LKL ——5 £y KLy —5 £,

mh Rld g,

~ 1
Hk: (Elgﬁl)&ﬁl —>[,1@,Ck—ki>£1

It is easy to see that {IIo, Ty}, respectively {Ilo, Iy} is a basis of Hom(£1 K (£1 ® £1), £1),
respectively Hom((£; X £1) X £, £1). Thus we can define the F-matrix, or 6j-symbols, by

o A£17E1,£1 = Z FiulL,.
1=0,2

Note that the 2 x 2 matrix F' = [ggg ?g;] is invertible.
Theorem 3.4. The tensor category Cy, is rigid.

Proof. Since Cq, is braided and semisimple, it is enough to show that each simple object W has
a left dual W*. We will first show that £1 = L3511 is rigid and self-dual using the evaluation
and coevaluation candidates

i LLRL — Lo=K1,, i Lo— LKL
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Similar to [23, Lemma 4.2.1] and [31, Lemma 2.1], it is enough to show that the composition

Id., R, m, Kld s,

ﬁl;£1&£0—>£1x<£1&£1)1>(£1®L‘1)|Xﬁ14>[,0|E£1:>/.:1

is a non-zero scalar multiple of Id,,. From the definitions and (3.6), this composition equals

ﬁo © “451,51,51 © (Id£1 X Z(1)1) © (Ti:l)_l = Z Fop, - 11y, 0 (Id£1 X 7’(1)1) © Z}O
k=0,2
= )" Fop w0 (IdRfy) o (Idg, ®ify) oily = Foo - Idg,
k=0,2

Thus if Fog # 0, then £y is rigid with evaluation F%)o -7, and coevaluation 7Y;.

To show that Fpy # 0, we will use the hexagon axiom, which asserts in particular that the
two compositions

L1R(L1RL) R 2R (L EL) D (L RL)RL 22 (0K KL,

L1R(LIRL) D (LRL)RL D LK (LKD) D (L1 R L) KL

are equal; here we have dropped labels on morphisms for brevity. Composing these two composi-
tions with ITj for m = 0, 2 yields constraints on the F-matrix (see, for example, [1, equation 2.3]),
namely

REFWRT = Y FimByFol
m=0,2

for k,1 € {0,2}, where R}, is defined by 7{,,0R,, £, = R}, 7,1 By our conventions, R},; = 1
for m = 0,2, and thus using (3.7), the above equation is equivalent to

2
Foo  —Foe Foo  Foz
—1)P4 = . 3.8
(=1) [—on FQQ] |:F20 F22] (38)

The equation for the upper left entry yields (—1)P?Fyy = F020 + Fpa Fyp, and thus the determinant
of F'is a multiple of Fyg:

det(F) = FooFaz — FoaFag = FooFaa — (—1)PFoo + Fiy = Foo(Faz — (—1)P + Fyo).

Since the matrix F' is invertible and thus det(F') # 0, it follows that Fyp # 0 as well. This proves
that £1 is rigid and self-dual.

Rigidity of the remaining simple objects £,, for n > 2 now follows by induction on n. Indeed,
assuming by induction that £, is rigid, then £,,11 is a direct summand of L1 XL, = L, 1D Ly11,
which is rigid and self-dual because it is a tensor product of rigid and self-dual objects of Cq,
(see, for example, [57, Lemma A.3]). Thus L, is also rigid and self-dual (see, for example,
[63, Lemma 5.9]. |

Remark 3.5. We emphasize that the modules £,,, n > 0, are not rigid when considered as
objects of O, . This is because the unit object of O,  is different from that of Cqy,.

Remark 3.6. It is not difficult to find all solutions of (3.8). Considering the possibilities Fyo = 0
and Fpa # 0 separately, the invertible solutions for F' are given by

[(—(l])m (—(1))14’ [_5£E)pq _%(il)pq , teCx.
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These solutions imply that the intrinsic dimension of £y, which is defined to be the endo-
morphism of Ly obtained by composing the evaluation and coevaluation morphisms of L1, is
either +1 or £2. The next theorem will rule out the first possibility, and thus the actual F-
matrix is given by the second matrix above for some t € C* (and ¢ will depend on the choice of
normalizations for 7§, k = 0,2).

Remark 3.7. As far as we are aware, our proof of Theorem 3.4 is the first rigidity proof for
VOAs that uses explicit calculation of F-matrices via general categorical principles. In previous
rigidity proofs for VOAs, such as [21, 45, 63, 66, 82], F-matrix entries have been calculated or
constrained by analytic methods, such as by solving regular singular point differential equations.

In principal, it might be possible to prove £i = L3,_1,1 is rigid in C4, by such analytic
methods, using BPZ partial differential equations derived from explicit expressions for singular
vectors given by the Benoit—Saint-Aubin formula [10]. But although these differential equations
are explicit [59, Section 5.3], they have rather high order and do not seem particularly easy to
solve explicitly. Thus in Theorem 3.4 we have used the hexagon axiom to constrain F' instead.

Alternatively, as we remarked above, we could use [31, Theorem 1.1] to prove L, is rigid
in Cyi,. This would require showing that dim End(£¥™) < m! for some m € Zs1, and this is
rather easy from the fusion rules (3.5). In examples of vertex algebraic tensor categories where
the fusion rules are not fully known, the methods from our proof of Theorem 3.4 may be more
useful.

By (3.5) and Theorems 3.3 and 3.4, Cy, is a rigid semisimple tensor category with the same
fusion rules as the category Repsls of finite-dimensional sls-modules. Such categories were
classified up to tensor equivalence in [58], so we could use this classification to identify Cg,.
However, here we will mainly focus on the full tensor subcategory Cpgsr, € Cs, whose objects
are isomorphic to finite direct sums of the modules Lq,, n € Z>o. This subcategory has the
same fusion rules as the category Rep PSLo of finite-dimensional modules for the algebraic

group PSLy(C).
Theorem 3.8. The category CpsL, is braided tensor equivalent to Rep PSLs.

Proof. In view of (3.5) and Theorems 3.3 and 3.4, it follows from [58, Theorem A that Cyy,
is tensor equivalent to some 3-cocycle twist of the category Rep U¢(sly) of finite-dimensional
modules for the quantum group of slo at ( = £1 or ¢ not a root of unity. Here ( denotes
a square root of the parameter denoted ¢ in [58]. The only difference between Rep U¢(sl2) and
its non-trivial 3-cocycle twist is that the 3-cocycle twist has a new associativity isomorphism A
characterized by

AV Vg Voy = (1) Ay, v Vi (3.9)

where V}, is the (n 4 1)-dimensional simple object of Rep U¢(sl2). It is not difficult to use [58,
Theorem Ay] to see that the non-trivial 3-cocycle twist of Rep U¢(slz) is tensor equivalent
to Rep U_¢(sl2), so Cq, is tensor equivalent to Rep Ue(sly) for either ¢ = £1 or ¢ not a root of
unity. We need to rule out the latter possibility.

From [44, Proposition 6.3], the tensor category Rep Uc(sly) admits two or four braidings
characterized by the value of Ry, ;. Thus Cy, also admits two or four braidings, and Rz, 2, in
particular is given by

+1 3/2 0 0 -1/2 .2 2
Ry =£(—¢ Zoifyomty+ (Y -ify o)
for one of the four possible choices of signs, using the notation of (3.6). In particular,

2 £3 .0 .0 1.2 2
Ry, =C " iomy +¢7 -ifomy. (3.10)
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On the other hand, the balancing equation

e27‘riL0 2miLg IX eQWiLo)

2
= Rﬁlaﬁl © (e
for vertex algebraic tensor categories (see, for example, [45, Theorem 4.1]) implies that
R%17£1 — o—dmihgp_11 (Z(l)l o 71'?1 + e2mihap—1.1 'ﬁl o 71—%1) — (_1)pq1d£1@£1- (3.11)

Comparing (3.10) and (3.11), we get ¢ = (—1)P9. Thus Cgy, is tensor equivalent to Rep U1 (sla),
and the tensor equivalence is also braided if we equip Rep U1 (slz) with the appropriate one of
its two braidings.

Since RepU_1(sl2) is tensor equivalent to the non-trivial 3-cocycle twist of Rep Uy (slz) =
Repsly, and since (3.9) implies that the 3-cocycle twist does not affect the associativity iso-
morphisms of the tensor subcategory RepPSLy C Repsly, it follows that the subcategory
Cpsr, C Cs, is tensor equivalent to Rep PSLy. Moreover, this is an equivalence of braided
tensor categories if we equip Rep PSLy with the restriction of some suitable braiding on Rep sly
or its 3-cocycle twist. Let R be the standard braiding on Rep slo, which restricts to the standard
braiding on Rep PSLs. Then the second braiding R on Repsls is given by

= o nin
RVn17Vn2 - (_1) ! QRan 7Vn27
while the two braidings R on the non-trivial 3-cocycle twist of Repsly are given by

75, +i- RVannz if ning is Odd7
Viy Vg = : :
nne RV, Vi, if nyno is even,

where i is a square root of —1; to see why, simply note that all these braidings satisfy the hexagon
axiom (keeping in mind (3.9) in the 3-cocycle twist case), and thus they must comprise all the
braidings from [44, Proposition 6.3]. These braidings on Rep slz and its 3-cocycle twist all restrict
to the standard braiding on Rep PSLj, so the tensor equivalence between Cs, and Rep PSLa
preserves braidings. |

Remark 3.9. In [27], Deligne showed that any rigid symmetric tensor category of moderate
growth over an algebraically closed field K of characteristic 0 is super-Tannakian, that is, equiv-
alent to Rep(G, z) for some affine supergroup scheme G and suitable element z € G(K) of
order 2. For Cpgy,,, it is easy to calculate directly from the balancing equation that the braiding
is symmetric, and the fusion rules (3.5) easily imply that Cpgr, has moderate growth (see, for
example, the exposition [30, Section 2.6] for the definition of moderate growth). Thus another
way to prove Theorem 3.8 would be to show that Rep PSLs is characterized as a super-Tannakian
category by its fusion rules.

4 Commutative algebras and vertex operator algebras

Let (C,X,1, A,1,7,R) be a braided tensor category. A commutative algebra (A, pa,ta) in C is
an object A equipped with morphisms pa: AKA — A, 14: 1 — A satisfying the following
properties:

(1) Unitality: pao (ta®Idg) =14 and pg o (Idg Xey) =74.

(2) Associativity: pa o (Ida B pa) = pao (paXIdg) oA aa.

(3) Commutativity: pa = pra0oRa A
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Since A is commutative, ideals in A are the same as left ideals, and a left ideal is a subob-
ject I C A such that Im pa|amr € I. A commutative algebra A in C is simple if its only (left)
ideals are 0 and A.

If (A pa,t4) and (B, up,tp) are two commutative algebras in C, then an algebra isomor-
phism (A, pa,ta) — (B, up,tp) is a C-isomorphism g: A — B such that gotq = tp, gopus =
upo(gxg). Let Aute(A) be the group of automorphisms of the commutative algebra (A, pia, t4)
in C.

If C is a braided tensor category of modules for a VOA V, then a commutative algebra A
in C with an injective unit map ¢4 is the same thing as a VOA A which contains V' as a vertex
operator subalgebra and which is an object of C when considered as a V-module [47]. In this
setting, the relation between the multiplication map pua: AKX A — A and the vertex opera-
tor Ya: A® A — A((x)) is a0 Vg = Y4, where Vg is the tensor product intertwining operator
of type ( AAA).

In this paper, we are particularly concerned with the VOA extension V., , — W, for co-
prime p,q € Z>2, where W), ; is the triplet VOA introduced in [34]. The structure of W), as
a V. _-module follows from [34, Definition 4.1 and Lemma 3.5.2]; see also [5, Proposition 5.4,

Cp,q
[8, Section 4], [83, Proposition 4.14 and Definition 5.1]. Namely,
o0
Wp,q = K:Ll S @(QTL - 1) : £2np—1,1 (4.1)
n=2

as a Vir-module. Moreover, W), is not simple, since by [83, Theorem 5.4] there is non-split
short exact sequence of W), ;-modules

0—1Iq — Wpq— L., —0. (4.2)

Cp,q

Here I, 4 is a simple ideal such that I,,, = @,~,(2n — 1) - Lapp—1,1 as a Vir-module, and L,
is the simple Virasoro VOA of central charge ¢, 4, which is isomorphic to £; 1 as a Vir-module.
Note that W), is not an object of O, since it has infinite length as a Vir-module, but it
is an object of the direct limit completion, or ind-category, Ind(QO,, ), which is also a vertex
algebraic braided tensor category by the main theorem of [22]. Thus W), is a commutative
algebra in Ind(O,, ) by the main results of [47].

In the rest of this section, we will give a new construction of Wp,. Without assuming
that (4.1) already admits a VOA structure, we will use tensor category methods to construct
a VOA structure on the Virasoro direct sum on the right-hand side of (4.1) such that I, is
still a simple ideal. We will then show that any such VOA structure on (4.1) is unique up to
isomorphism, and therefore our construction yields the same VOA as the triplet algebra W),
constructed in [34]. Our construction will make it obvious that the group Aut(W,,) of VOA
automorphisms of W), , is PSLy(C). This result on Aut(W,,) was proved for the ¢ = 1 case
in [2], and some of the work in [34] and [83] suggested that the same result should hold in
general, although these papers did not give full proofs in the ¢ > 2 case. To construct W, g,
we will first use Theorem 3.8 to obtain a simple commutative algebra W];,q in Cpsr, on which
PSL2(C) acts by automorphisms, such that

Wy, = K5 & D Von—a ® Lonp-1,1 = D Vo & Lan (4.3)

n=2 n=0

as a PSLy(C) x Vir-module; here as before, V,, denotes the (n + 1)-dimensional simple sls-
module, which is a PSLg(C)-module if and only if n is even. Then we will use the non-zero
Vir-homomorphism ¢: K7 ; — K11 to transfer this simple algebra structure on W), , to a non-
simple algebra structure on the Vir-module W, of (4.1) such that the Vir-submodule I,
from (4.2) is a simple ideal.
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Proposition 4.1. There is a unique (up to isomorphism) simple commutative algebra structure
on the object
o0
Wy, =P@n+1) L (4.4)
n=0
of Ind(Cpsr,,). Moreover, AUtInd(CPSLz)(WAq) = PSLy(C) and W, , has the decomposition (4.3)
as a PSLy(C) x Vir-module.

Proof. Since Cpgy, is a rigid symmetric tensor category equivalent to Rep PSLs by Theorem 3.8,
we can “glue” Rep PSLy and Cpgr,, as in [16, Main Theorem 1] to obtain a simple commuta-
tive algebra in the ind-category of the Deligne tensor product category Rep PSLo ® Cpgy,, with
the decomposition (4.3). This algebra is essentially the canonical algebra of Rep PSLy; see, for
example, [29, Section 7.9], and compare also with the Peter—Weyl Theorem for the compact
real form SOs3(R) of PSLy(C). Applying the (forgetful) fiber functor from Rep PSLy to the
category Vec of finite-dimensional vector spaces and observing that Vec ® Cpgsr, = CpsL, as
symmetric tensor categories, we get a commutative algebra Wz;7q in Ind(Cpsgr,,) with the decom-
position (4.4); see, for example, [64, Appendix A].

Since W is obtained from a commutative algebra in Ind(Rep PSLy ® Cpgr,,), the alge-
bra multlphcatlon pwy Wy BW, o — W) is a PSLy(C)-module homomorphism if we give
the (2n 4+ 1)- dlmensmnal multlphclty space of each Lo, in W’ the structure of the PSLy(C)-
module Vo, as in (4.3). This is equivalent to saying that PSLQ( ) acts on W, by algebra
automorphisms. Moreover, since the original commutative algebra in Ind(Rep PSLa ® Cpgr,) is
simple, Wé’q has no non-zero proper PSLy(C)-invariant ideals. We claim that this implies WAq
has no non-zero proper ideals and thus is simple as an algebra in Ind(Cpgr,, ).

The proof of the claim is similar to part of the proof of [64, Proposition C.1]. First,
since Ind(Cpgr,,) is semisimple, any non-zero ideal of W];q contains a copy of Lo, for some
n € Z>o. Thus it is enough to show that for any n € Z>¢ and non-zero v € Va,, the ideal
generated by v ® Lo, € W), . contains Lo, since pwy \wy me, = T/W;’;q is surjective. To prove
this, let 7

tm: Vom @ Loy — W;;qa

Tm, - W];q — Vo, ® Lo,

for m € Z>¢ be the obvious inclusion and projection morphisms in Ind(Cpgr,,). Since Va, ® Loy,
is PSLy(C)-invariant, it generates a PSLg(C)-invariant ideal which must be all of W}, ,. This
implies in particular that for any n € Z>q, m o pwy,, © (im X iy) # 0 for some m, and in fact

m = n since L,, X L,, contains Ly only if m = n. Then since pwy,, is a PSLy(C)-homomorphism,

70 0 puwy , © (im Bin) = (-, )20 @ Ty, 90 (4.5)

where (-, )2, is the unique (up to scaling) non-degenerate PSLy(C)-invariant bilinear form on Va,
and 7T(2)n,2n2 Lon X Lo, — Ly is as in (3.6) (and is surjective). Now we want the ideal generated
by v ® Ly, to contain Lg for any non-zero v € Va,,. In fact, taking v" € V3, such that (v, v)a, # 0,
(4.5) implies that Immg o /.,Lwlqu|(v/®£2n)|g(v®£2n) = Ly. Since the ideal generated by v ® Loy, is
semisimple, it thus contains Ly as required. This completes the proof that WzlJ,q is a simple
algebra in Ind(Cpsr, ).

Finally, to show that the simple commutative algebra structure on (4.4) is unique up to
isomorphism and that PSLy(C) is the full automorphism group of Wp ¢ We may replace Cps,
with any symmetric tensor category C equivalent to Rep PSLy and then replace W;;,q with the
corresponding simple algebra in Ind(C). That is, it is enough to find C such that any simple
commutative algebra in Ind(C) of the form

A=Pn+1) Xy,
n=0
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where X5, is the image of V5, under a symmetric tensor equivalence Rep PSLy — C, is unique
up to isomorphism and has automorphism group PSLy(C). See, for example, [64, Appendix A]
and the last paragraph in the proof of [64, Theorem 7.1] for why this is sufficient.

One possibility for C is a subcategory of the braided tensor category O of C1-cofinite modules
for the Virasoro VOA of central charge 1. Namely, we take C to be the full subcategory of Oy
whose objects are isomorphic to finite direct sums of simple Vir-modules Xs,, of central charge 1
and lowest conformal weight hg} 11 = n?. It is shown that C = Rep PSLy as symmetric tensor
categories in [60, Example 4.12]. Moreover, [64, Theorem B.1] shows that any simple VOA,
equivalently simple commutative algebra, A in Ind(C) such that A = @77 ,(2n + 1) - Xy, as
a Vir-module is isomorphic to the sly-root lattice VOA V. vaz- Now, the group of algebra auto-
morphisms of V5, is the group of VOA automorphisms that fix Xo; but this is the group of
all VOA automorphisms since X is the Virasoro vertex operator subalgebra of V. /a7 and hence
is fixed by any automorphism. Then since V| 5, is isomorphic to the simple affine VOA of sly
at level 1, which is generated by its conformal weight 1 space that is a Lie algebra isomorphic
to sl, the automorphism group of V5, is isomorphic to Aut(sly) = Ad(SL2(C)) = PSL(C).
This completes the proof of the proposition. [ |

Now we need to adjust the simple commutative algebra structure on W’ pq 1 Ind(Cpsr,,) to get
a non-simple commutative algebra structure on the Vir-module W), ; in (4.1), which is an object
of Ind(O,, ). For future applications, we work in a general situation. Let (C,X,1,A,l,r,R) be
a braided tensor category, and let C' C C be a full subcategory which is closed under X. We
assume C’ has an object 1’ together with a morphism ¢: 1’ — 1 in C such that

l/X:lXO(gpﬁldx), ’I“IX:’I“XO(InggO) (4.6)

are isomorphisms for any object X in C’ (like in (3.3)), and such that (C',X, A, l',7",R) is
a braided tensor category. For example, we could take C = Ind(O,,,) and C" = Ind(Cpsr,, ).

Now suppose we have objects A and A’ in C and C’, respectively, equipped with a mor-
phism ®: A — A’. For example, if A=1&® J and A’ =1’ ® J for some object J in C’, then we
could take ® = ¢ @ Id;. We also assume that the maps

®o—: Hom(1',4") — Hom(1', 4), —op: Hom(1,A) — Hom(1', A) (4.7)
and

®o—: Hom((4)™, A") — Hom((4")™", 4),

— 0 ®®": Hom(A™ A) — Hom((A')™", A) (4.8)

for n = 1,2, 3 are isomorphisms. Note that these maps would obviously be isomorphisms if ®
and ¢ were isomorphisms in C, but we are not assuming this. Note also that (4.7) and the n = 2
case of (4.8) yield isomorphisms

Hom(1’, A") — Hom(1, A), Hom(A'X A’ A") — Hom(AX A, A),

Lar —— LA, HaAr = A,

such that
Doy =140, Dopgy =pgo (PR D). (4.9)
Similarly, the n = 1 case of (4.8) yields an isomorphism

Hom(A’, A’) — Hom(A, A), dr—g
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such that
dog =god. (4.10)
With this setup, we now prove the following.
Theorem 4.2. In the setting of the previous paragraph,
(1) (A par,ear) is a commutative algebra in C' if and only if (A, pa,ta) is a commutative

algebra in C, where (var, par) and (14, pna) are related by (4.9).

(2) A C'-morphism ¢g': A" — A" is an algebra isomorphism between two commutative algebra
structures (A/,MS,),LS,)) and (A’,M(AQ,),LEZ)? if and only if g: A — A defined by (4.10)
is an algebra isomorphism between (A,MA ,LAI)) and (A,u(j),Lf)), where (,U,E;),LE;)) for
i =1,2 are defined by (4.9).

Proof. (1) For the left unit property of a commutative algebra, we calculate

prao (ta®Idg) ol ' o® = g0 (taRIds)o (Idg ®P)oly)
= ppo0o(IdaR®)o(1y®Idy)o (eRIdy)o (I'y)?
= a0 (PR ®) o (1a KIda)o (')t
=P opgo(ty ®Idg)o ()t

using the naturality of the left unit isomorphisms in C, (4.6), and (4.9). Since the two maps
in (4.8) are isomorphisms in the n =1 case, it follows that

a0 (ba®Tda) ol =Tdy < paro (tar ®Idar) o ()t = Ida.

Thus the left unit property holds for (A, pas,t4/) if and only if it holds for (A, pa,ta)-

It follows similarly that the right unit property for (A’, uar, 1) is equivalent to the right
unit property for (A, pa,ta). Alternatively, this follows from the left unit property and the
equivalence of the commutativity of 4 and p4, which we prove next. Since

,uA07?,14,140((1)@(1)):(I)OIUJA/07?,14/714/7 pao (PR ®)=Popqy

by (4.9) and the naturality of the braiding isomorphisms, the assumption that the two maps
in (4.8) are isomorphisms in the n = 2 case implies that pg o R4 4 = pa if and only if pyr o
Rarar = par. Thus py is commutative if and only if p40 is. Similarly, p14 is associative if and
only if 4 is because

,U,AO(IdA&HA)O(@&((PX“I))) = @OHA/ @) (IdA/ &,U,A/)
and
,LLAO([LA&IdA)O.AA’A’AO((I)&(q)g(I))) = q)O[LA/ O(MA/ IZIdA’)OAA/,A’,A/

by (4.9) and naturality of the associativity isomorphisms, and because the two maps in (4.8)
are isomorphisms in the n = 3 case. This proves the first statement of the theorem.

(2) Now suppose ¢': A" — A’ and g: A — A are two morphisms related by (4.10). If g is
a C-isomorphism with inverse ¢~ !, then ¢’ is a C’-isomorphism with inverse (g_l)/ characterized
by ® o (g_l)/ =g 1o® asin (4.10). Indeed,

Poglo(g!) =gog o =0
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by (4.10), and therefore ¢’ o (g_l), = Id 4 since the first map of (4.8) is an isomorphism in
the n = 1 case. Similarly, (g‘l)l og’ =1Idy, and similarly ¢ is a C-isomorphism if ¢’ is a C’-
isomorphism.

Now we consider how ¢ and ¢’ relate to different algebra structures on A and A’. We have

gobgl)ocpzcl)og’oLS,), Lf)ogp:@oLg}

and
goulfo(@R@)=dogonl) 4P o(gRg o (@R®) =dou) oKy
by (4.9) and (4.10). Thus

go qul) = L(j) +——go 5541,) = LE42,)

since the maps in (4.7) are an isomorphism, and
1 2 1 2
go,uiy) :M;)O(ggg) Hg/o,u,gl,) :p&)o(g’&g’)

since the maps in (4.8) are isomorphisms in the n = 2 case. This proves that g: (A, ,ufi), LS)) —

(4, uf), Lf)) is an isomorphism of C-algebras if and only if g': (A4’, ,u(Al,), LS,)) — (A, ,u(j,), Lf,)) is
an isomorphism of C’-algebras. |

Taking M(Al) = ,uf) and u%,) = uf,) in part (2) of the preceding theorem, we get the following.
Corollary 4.3. In the setting of Theorem 4.2, suppose (A, ua,ta) is a commutative algebra
inC and (A, par,tar) is a commutative algebra in C' such that (pa,ta) and (par,tar) are related
by (4.9). Then Autc(A) = Auter (A'), with isomorphism g — g’ given by (4.10).

Next, still in the setting of Theorem 4.2, we consider the relation between simplicity of the
C’-algebra A’ and ideals of the C-algebra A. Since ® need not be a C-isomorphism, A need
not be simple if A’ is, but it will be almost simple under mild conditions. First we prove the
following.

Lemma 4.4. In the setting of Theorem 4.2, suppose (A, pa,ta) is a commutative algebra in C
and (A’ par,tar) is a commutative algebra in C' such that (pa,ta) and (par,tar) are related
by (4.9), and assume that A =1® J and A" = 1" & J for some object J in C'. Assume also
that 14 and vy are the inclusions of 1 and 1" into the direct sums 1 ® J and 1' & J, respectively,
and that ® = o ®1dy;. Then Im® =Im e & J is an ideal of A.

Proof. Since A =1 J, we need to show Im pi4|1xme € Im ® and Im g4l jxme € Im ®. The
first inclusion holds because fia|1xm e = lim @, and the second holds because

Im,uA]JgIm@ = ImuA o ((I)&CI))bgA/ = Im(I)O,uA/|J|X|A/,
using (4.9). [

Proposition 4.5. In the setting of Lemma 4.4, assume also that any subobject I C Im ® decom-
poses as a direct sum I = I;® 1y in C with Iy C Imy and I; C J, and that any subobject I' C A’
decomposes as a direct sum I' = Iy, @ Iy in C' with Iy C 1" and I; C J.

(1) If A’ is a simple commutative algebra in C' and Im ¢ is a simple object of C, then Im ® is
a simple ideal of A.

(2) Conversely, if Im ® is a simple ideal of A and 1’ is a simple object of C', then A’ is a simple
commutative algebra in C’.
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Proof. (1) To show that Im® =Im¢ & J is a simple ideal of A, let I C Im ® be any non-zero
ideal. By assumption, I = I7 & I; for C-subobjects Iy C Im ¢ and I; C J, with either Iy # 0
or Iy # 0. In the first case, Iy = Im ¢ since Im ¢ is simple, so

I 2 Im,U,A|A|Z,Im<p 2 Im/j/A @) (@IX(I))’A/&]_/ = Imq)O[,LA/’AqXH_/ = ImCI)oT;V =Im®.

Thus I = Im @, proving that Im ® is a simple ideal if I; # 0.

In the second case, that I; # 0, the ideal Im pa/| 4y, of A’ generated by I; is equal to A’
because A’ is simple. Thus since Im pa/|1/x7 , =1; C J, and since Im p14/| yxr, decomposes as
the direct sum of subobjects of 1’ and J by assumption, we get 1’ C Im p4/| jsar,. Then

I D) Im,U,AL]g[J = Im,uA o ((D &(I))‘J@]J =Imo ONA"J@IJ D) Im(D‘]_/ = Imgo

Thus again I = Im ® by the argument of the preceding paragraph. This proves the first part of
the proposition.

(2) Conversely, to show that A’ is a simple algebra, let I’ be a non-zero ideal of A’. By
assumption, I’ = Iy, @ I for some Iy, C 1’ and I; C J, with either I;s # 0 or I; # 0. In the
first case, I3 = 1’ since we assume 1’ is simple in C’. Then I’ = A’ because piar|amyr = 4, is
surjective. Thus A’ is simple if I3, # 0.

In the second case, that I; # 0, the ideal Im 14| aws, of A generated by I is equal to Im @
because Im ® is a simple ideal. Thus since Im p14|1xr, = I; C J and since Im p14| yxy, decomposes
as a direct sum of subobjects of 1 and J by assumption, we get

Ime CImpalsmr, =Impg o (PXP)|jmr, =ImP o pal|mr,.

Since Im®|; = J, it follows that Imp4/|j=7, is not contained in J. Since by assumption
Im 4| jsar, decomposes as a direct sum of subobjects of 1’ and J, this forces I3/ # 0, and we
get I = A’ as in the preceding paragraph. |

We can now apply the preceding general results to the case C = Ind(O,,,) and C' =
Ind(Cpsr,,), with 1 = K1; and 1/ = IC’L1 = Ly. We take the map ¢: 1’ — 1 to be the
one appearing in (3.3), so that (4.6) holds in this setting. Also, Im¢ = L9, 1 is simple in C,
while 1’ is simple in C’, as required in Proposition 4.5. Recalling (4.1) and (4.4), we set A = 1@ J
and 1’ @ J, where J = @7 ,(2n + 1) - Loy, and then we define ® = ¢ @ Id;, as required in
Lemma 4.4. Note that as required in Proposition 4.5, any C-subobject I C Im ® decomposes as
a direct sum of subobjects of Im ¢ = L9, ;1 1 and J because Im ® is semisimple and Lo,_1,1 does
not occur as a direct summand of J. Similarly, any C’-subobject of A’ decomposes as a direct
sum of subobjects of 1’ = Ly and J because £y does not occur as a direct summand of J.
We can now prove the main theorem of this paper.

Theorem 4.6. Let p,q € Z>2 be coprime.

ere 1s a unique up 1o 1Somorpnism o] centrail charge c. suc a
1) There i : to i hism VOA W, tral charge c,, such that

Wpe =K1 & @(2" — 1) Lopp-1,1

n=2
as a Vir-module and such that I, s = @, 1 (2n — 1) - Lopp—11 is a simple ideal.

(2) The VOA automorphism group of W, 4 is isomorphic to PSLy(C), and

Wpe= (Vo ® K1) ® @ Van—2 ® Lanp-1,1 (4.11)

n=2

as a PSLy(C) x Vir-module.
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Proof. (1) By [47], and using the notation in the paragraph before the theorem statement, it
is equivalent to show that there is a unique commutative algebra structure on A = 1 & J such
that Im ¢ @ J is a simple ideal. To apply the preceding results, we still need to check that the
linear maps in (4.7) and (4.8) are isomorphisms. For more uniform notation, we set A% = 1,
(A’)g0 =1" and ®¥° = o, so that we need to show

®o—: Hom((4)™, A") — Hom((A')™", 4),
—0®™: Hom(A™, A) — Hom((4))™", A)
are isomorphisms for n =0, 1,2, 3.
To show ® o — is an isomorphism, we write

() = B Cmi+1)-2ma+1) - Lop, - K Lo,

mi,...,mp=0
o0

= P @m+D)@uat 1) Ny, - 1 Tnyma);

mi,...,mMnp=>0

where Ny, . m, is the multiplicity of 1" in Lop,, B -+ Loy, and Jp, . m, is a finite direct sum

n

of objects Lo, for m > 1. Under this identification, and observing that
Hom(1', J) = Hom(Jp,,...mn, 1) = Hom(Jpy . m,, 1) =0,

the map ® o — induces a map

IT @n+1)--@m.+1) (N, - Hom(1', 1) & Hom(Jm,....m,. J))

mi,...,mMn=0

— ﬁ (2my+1)---(2m, + 1)

mi,...,mnp=0

X (Nm17-~~7mn ' Hom(ll, 1) S Hom(‘]mhm,mm J))>

which we need to show is an isomorphism. In fact, since ® = ¢ @ Id;, the induced map is

oo
H (2m1 + 1) e (an + 1) ’ (th---,mn : (‘P o _) D IdHom(Jm1 ,,,,, an))a
mi,...,Mnp=0
and this is an isomorphism because ¢ o —: Hom(1’,1’) — Hom(1’,1) is: it sends the basis

endomorphism Idys to the basis homomorphism ¢. This proves that ® o — is an isomorphism
for n =0,1,2,3 (and in fact for any n € Z>g).

To show — o ®¥" is an isomorphism, the direct sum decompositions A = 1@®J and A’ = 1'®J
together with the unit isomorphisms of C and C’ imply that

NEn ~ 47 T n . Xm Xn ~ - n . TXm
(A" _1@S:BI<m> JEm A _1@5291(’”) JEm.,

Thus we need the map

Hom(1, 4) & () <;> Hom (5, 4) —» Hom(1', 4) & € <;> - Hom (J%™, A)

m=1
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induced by — o ®" to be an isomorphism. Using ® = ¢ @ Id; and (4.6), it is straightforward
to see that this induced map is

- n
(—ev)o P (m> Tdgom(mm,4)-
m=1

Now, — o ¢ is an isomorphism because under the identifications
Hom(1, A) = Hom(1,1), Hom(1’, A) = Hom(1’,1),

it sends the basis endomorphism Id; to the basis homomorphism ¢. Thus — o ®®" is an isomor-
phism for n = 0,1,2,3 (and in fact for all n € Z>o).

We can now use Proposition 4.1, Theorem 4.2 (1), and Proposition 4.5 (1) to show that
A =1®J has a commutative C-algebra structure such that Im ® = Im @ J is a simple ideal. To

) . o : : 1) (1)
show that this commutative algebra structure is unique up to isomorphism, suppose (A, My sty )
2 @ . . : .
and (A, Mgyt ) are two commutative algebra structures such that Im ® is a simple ideal. Then
Proposition 4.5 (2) yields two simple commutative C’-algebras (A4’, ufj,), LS,)) and (A’ uf,), Lf,))
which must be isomorphic by Proposition 4.1. Thus the two commutative C-algebra structures
on A are isomorphic by Theorem 4.2 (2).

(2) By Proposition 4.1 and Corollary 4.3, the automorphism group of the commutative algebra
structure on A = 1 & J from the proof of part (1) of the theorem is isomorphic to PSLa(C).
Moreover, for ¢’ € Auter(A'), where A’ is the simple commutative algebra of Proposition 4.1,
the identities (4.10) and ® = ¢ @ Id; imply that the corresponding g € Autc(A) is given
by g =1d1 @ ¢'|; (because (Idy ® ¢') o ® = ® o ¢'). Thus by (4.3),

Ag(%®1)@®v2n®£2n

n=1

as a PSLa(C)-module.

Finally, to complete the proof of the theorem, we just need to observe that the automorphisms
of A = W,, considered as a commutative algebra in C are the same as its automorphisms
considered as a VOA. Indeed, by the isomorphism between commutative algebras in C and VOA
extensions of V., . proven in [47], elements of Autc(A) are precisely the VOA automorphisms
of W4 that fix 1 = V. = = Ki1 pointwise. But all VOA automorphisms of W), fix V¢, .

pointwise because they fix the conformal vector w which generates V., , as a VOA. This completes
the proof of the theorem. |

Since [83, Theorem 5.4] shows that the ideal I, ; of the triplet algebra W), ; introduced in [34]
is simple, Theorem 4.6 immediately implies the following.

Corollary 4.7. The triplet algebra W, , introduced in [34] has automorphism group isomorphic
to PSLy(C), and the PSLa(C) x Vir-module decomposition (4.11) holds.

Remark 4.8. Note that there are now two independent ways to prove the existence of the VOA
Wp,q in Theorem 4.6. The original method of [34] defines W), ;, as the intersection of the kernel
of two screening operators on the lattice VOA V. /2pgz. and then uses Felder complexes [37] and
the socle series structure of Feigin-Fuchs modules [32] to show that W), ; has the correct decom-
position as a Vir-module. On the other hand, the method presented in this section defines W, ,
as the VOA structure corresponding (via [47]) to the commutative algebra obtained from W} ,
using the equations (4.9). Using the first method, it is easier to see that W, , is a VOA, but
it is more difficult to determine the structure of W), as Vir-module, and it seems extremely
difficult to rigorously determine the automorphism group of W), , using this definition. Using
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the second method, the main difficulty is that we need the technical fusion rule computation
of Theorem 2.1 to show that the PSL(2,C) x Vir-module W , of (4.3) admits the structure
of a simple commutative algebra in Ind(Rep PSLy ® Cpsy,,). But once we have this result, the
determination of the automorphism group of W), , in Theorem 4.6 (2) is fairly straightforward.

5 Relations between Virasoro
and triplet algebra representation theory

As in [66, Section 7], we can use Corollary 4.7 and VOA extension theory [17, 22, 47] to relate
the Virasoro tensor category O, , studied in our previous paper [63] with the representation
category of the triplet algebra W), ;. Let Rep(), ) be the category of grading-restricted gener-
alized W), ;-modules, that is, modules with finite-dimensional generalized Lo-eigenspaces. It is
a finite abelian category and a braided tensor category [46], but it is not rigid. On the other
hand, contragredient dual modules give Rep(WW,,) the weaker duality structure of a ribbon
Grothendieck—Verdier category [9].

Now as discussed in the previous section A := W, , has the structure of a commutative
algebra in the braided tensor category C := Ind(O,,,), and G := PSLy(C) acts on A by algebra
automorphisms. Let Mod¢(A) be the category of modules for the commutative algebra A in C.
Specifically, an object of Mod¢(A) is an object X of C equipped with a morphism py: AKX — X
satisfying unitality and associativity

px o (taXIdyx) = lx, px o (Idx Wpuyx) =px o(paXIdx)oAgax.

A morphism from (X1, px,) to (Xo,pux,) in Mode(A) is a C-morphism f: X3 — X such
that foux, = ux, o (Ida ¥ f). Let Mod2(A) be the category of local A-modules in C, which
consists of A-modules (X, ux) such that

Hx oRx aoRax =[x

Then Mod¢(A) is a tensor category, and its subcategory Modg (A) is a braided tensor category.

By [83, Proposition 4.14 and Theorem 5.13], all simple objects of Rep(W),,) are (possibly
infinite) direct sums of simple Vir-modules in O, ,. Thus by the same argument as in the proof
of [21, Proposition 3.1.3], every object of Rep(W, ) is an object of Ind(O,, ,) when considered
as a Vir-module. So by [47, Theorem 3.4] and [17, Theorem 3.65], Rep(W,, 4) is a braided tensor
subcategory of Modg(A). It is a proper subcategory because, for example, the ind-category C
contains infinite direct sums of W), ;-modules, while Rep(W), ;) does not.

There is a monoidal tensor functor of induction F': C — Mod¢(A) defined by

FW)=(ARW, (pa®Idw)oAsaw),  F(f)=IdaX f

for objects W and morphisms f in C. Induction is right exact because the tensor product X
on C is right exact. Induction also satisfies Frobenius reciprocity, that is, there is a natural
isomorphism

Home (W, X) = Homu (F(W), (X, px)),  fr— pxo(Ida® f) (5.1)
for all objects W in C and (X, px) in Mod¢(A).

Definition 5.1. Let ng,q be the full subcategory of O, , consisting of objects W such that
F(W) is an object of Rep(W), ).
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Using [17, Proposition 2.65], for example, (’)0 7 is equivalently the full subcategory of ob-
jects W of O, , such that the double braiding R2 2w in C is the identity and such that F (W)
has finite-dimensional conformal weight spaces and a lower bound on conformal weights. Be-
cause F'is a monoidal functor, Oop is a monoidal subcategory of O, ., and by [17, Theorem 2.67]
for example, F' |Oo > (’)0 . Rep(W ¢) is a braided monoidal functor.

Proposition 5.2. The bmzded monoidal category (’)O .., s closed under quotients, contains all

Kac modules Ky s for r,s € Z>1, and contains all simple objects of O,

Proof. First, OO is closed under quotients because O, , and Rep(W),,) are closed under
quotients, and because F' is right exact and thus preserves surjections.
Next, to show that ;2 is an object of ng ,» We note from (4.1) and [63, Theorem 6.8] that

F(Ki2) =W, WKi2=Ki2@® @(2n — 1) L1 2ng—2
n=2

as a Vir-module. Since the conformal weights satisfy

3 3
hi2ng—2 = pgn® — (2p + q)n + 5t Zz = h12+ (np — 1)(ng — 2),
the conformal weight spaces of F/(K;2) are finite dimensional, and the conformal weights of
F(K12) have a lower bound and are all congruent to hj 2 mod Z. The balancing equation for
the double braiding then implies

2milo o (e=2milo g e~2milo) = 2milln2=0-h12) _ dy,

2 —
7?'I/Vp,qvlclz =6 /C1 29

so K1,2 is an object of (90 . By ¢pq = cqp symmetry, Ko 1 is also an object of (90 -

For the remaining Kac. modules in O, _, it follows from [63, Theorem 4.7] that for r, s € Zs,
there is a surjection Ky (1 D IC§S2 b — Kr,s. So because (90 is a monoidal subcategory of O, ,
which is closed under quotlents ICT s i1s an object of (’)0 for all r,s € Z>1. Finally, the simple
objects of O, , can be parametrized by L, s for 1 <r < p and s € Z>; such that ps > qr. For
all such (r,s), the diagrams in [63, Section 2.3] show that £, s is a quotient of g, so all L, g

are objects of ng = [

Cp,q?

Because G = PSLy(C) acts on W), by automorphisms, the category Mod¢(A) has a G-
equivariantization Mod¢(A) as defined in [29, Section 2.7] for example. Concretely, this is
the category consisting of objects (X, ux) of Mod¢(A) equipped with a continuous representa-
tion px: G — Aute(X) such that ¢x(g) o ux = pux o (9 M ex(g)) for all g € G. Morphisms
from (X1, f1x,, 0x,) to (X2, pix,, ¢x,) in Mode(A) consist of all morphisms f: X; — Xo in
Mod¢(A) such that ¢ x,(g)of = fopx, (g) for all g € G. Note that the A-action pux of an object
of Mod¢(A) is equivalent to a V., ,-module intertwining operator Yx: Wy, ® X — X[log z]{x}
such that Yx = ux o Vg, where Vg is the canonical tensor product V¢, -module intertwining
operator of type (Wqu X) in C. Thus in vertex algebraic terms, the G-representation ¢ x of an
object of Mod¢(A) satisfies

vx(9)(Yx(a,2)b) = Yx(g-a,2)px (b) (5:2)

forallge G, a € Wpy, and b € X.

The G-equivariantization Mode (A)® is a braided tensor category (see, for example, [29] or the
discussion in [66, Section 7]), and as in [66, Lemma 7.13], induction defines a braided monoidal
functor F: O,,, — Modc(A)¢ (though we cannot say that F is exact because O, is not
rigid). For an object W in O, , the representation ormw) is defined by prqy )(g) = g X Idy
for all g € G. Note that the subcategory Rep(W), ;) € Mod¢(A) also has a G-equivariantization
which is a braided tensor subcategory of Mode(A)Y, and thus F restricts to a braided tensor
functor from O(C)M to Rep (W), ,) 2@,
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Theorem 5.3. The braided monoidal induction functor F: C — Mode(A) is fully faithful. In
particular, F |(92pq : (’)SM — Rep(Wp,q)PSLQ(C) 18 fully faithful.

Proof. We continue to use the notation A for W, , considered as a commutative algebra
in ¢ =Ind(O,,,), and we continue to set G = PSL2(C). We need to show that for any ob-
jects W1, Wy in C, the map

F: Home (Wi, Wy) — Homgua(F(W1), F(W2)),  fr—IdaK f

is an isomorphism. Since A = 1@ J as an object of C, where 1 = K17 and J = @Zozl Von ® Lo,
as a (G x Vir-module, we can define a projection m4: A — 1 such that m4 ot = Idy. This allows
us to define

ﬁ: HomGXA(F(Wl), F(WQ)) — Homc(Wl, WQ)
such that for T' € Homgy 4 (F(W1), F(W3)), F(T') is the composition

7rA|XIdW2

ity LARId I
W S 1R, N AR W 5 AR W, 1R Wy —25 W
Since m4 014 = Idy, it is clear that F(F(f)) = f for all C-morphisms f: Wy — W.

To show that F(F(I')) = T as well, note that if I': F(W;) — F(W,) is a morphism
in Mod¢(A)%, then for all g € G,

Pruws)(g) o T o (ta®Idw,) =T o ppaw,)(g) o (ta K 1dw,)
=T o(gRIdw,)o (1A B1dy,) =T o (ts B Idw, ).

That is, ImT o (¢4 W Idyy, ) is contained in the subspace of G-invariants of F'(W3). In fact, this
subspace of G-invariants is precisely Imcq X Idyy, since J X Wy = @77 | Vap @ (Lo B Wa) is
a direct sum of non-trivial simple G-modules. It follows that

Io(taXIdw,) = (ta XIdw,) o (ma R1dw,) oo (14 K Idys,).

Using this identity along with the triangle axiom of a tensor category the right unit property
of the algebra multiplication pa, and naturality of the associativity isomorphisms the mor-
phism F(F(T')) =1ds X F(T) reduces to the composition

Id A X Id X (e o XId
A@W1—>A&(1&W1)M

IdAgl“

AR (AR W)

A LA, Wo

XId
1B AR (AR W) (AR A) KW, 2222 AR WY,

Since T is in particular a morphism in Mod¢(A), this composition equals

1d ARl

Aaawy
==

Id 4K (v 4 X1d
MR 2 AR W)

XId
ARARW, 2 AR W, 5 AR WS,

But this is just I' by naturality of the associativity isomorphisms, the triangle axiom, and
the right unit property of 4. This completes the proof that the induction functor F' is an
isomorphism on morphisms. |
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Unlike in [66, Theorem 7.14], where it was shown that the PSLy(C)-equivariantization of the
representation category of the W), ; triplet VOA is braided tensor equivalent to a representation
category of the Virasoro algebra at central charge c, 1, it is not true that induction at c, g
central charge for coprime p,q > 2 gives an equivalence between ng,q and Rep(Wp,q)PSLQ(C).
The problem is that unlike in the ¢ = 1 case, W, , is not a simple VOA but rather has the
simple Virasoro VOA L., , as its non-trivial simple quotient. This allows us to construct objects
of Rep(W) 4 )PSL?((C) which are not in the essential image of the induction functor.

Example 5.4. Let X =V ® W where V is any finite-dimensional continuous G = PSLy(C)-
module and (W, Yyy) is any L., ,-module with finite-dimensional Lg-eigenspaces. Then X admits
the G-representation ¢ x(g) = g ®Idw, and X is also a W), ;-module with vertex operator Yx =
Idy ® Yw(m(—), ), where m: W, — L, is the surjective VOA homomorphism. Further,
(5.2) holds because 7(g - a) = 7w(a) for all a € W), , and g € PSLy(C), so (X,Yx,¢x) is an
object of Rep(W,,,)"2(©) However, if V does not contain the trivial G-module Vj as a direct
summand, then X is not in the essential image of the induction functor F', because any non-zero
induced module always contains a non-zero PSLy(C)-invariant subspace.

Our next result will show that the above examples are typical. We continue to use the
notation A for W), , considered as a commutative algebra in C = Ind(O,,,), and we continue
to set G = PSLy(C). Since G acts continuously on any object X of Modc(A), we have X =
D, Von®Xa,, where Xo, = Homg(Vay,, X) is a Vir-module which is an object of C. We use X¢
to denote the set of G-invariants in X, that is, X¢ = V) ® Xj.

Lemma 5.5. If (X,Yx,px) is an object of Mod¢(A)Y such that X& = 0, then as a G x Vir-
module, X = @20:1 Von @ Xopn, where each Xap is an Le, ,-module.

Proof. By assumption, X = @7, Vo, ® X9, where each Xy, is an object of C. To show that
each Xy, is actually an L., -module, recall the simple ideal I, ; = Lop-11 @ @20:1 Von ® Lop
from (4.2).

For any n € Z>1, there is nothing to prove if X, = 0, so we assume Xs,, # 0 and take an arbi-
trary non-zero b € Xo,. Then V5, ® b is a non-zero G-submodule of X with basis {v ® b}QnH

2n+1 .

where {v }lzl is an orthonormal basis with respect to a non-degenerate sly-invariant bilinear
form on Va,. NOW take some non-zero a € Loy, so that V5, ®a is a non-zero G-submodule of I, ,

with basis {v ®a}2n+1 Then
2n+1
Z Yx (v(i) ® a,z) (v(i) ®b) € X%logz){z} =0,
i=1

so because I, is a simple W), ;-module, the argument in the proof of [61, Lemma 4.18] using
the analytic associativity of Yx and the Jacobson Density Theorem (see also [28, Lemma 3.1])
shows that Yx (v(i) ® a, :U) (v(i) ® b) = 0 for all 4. In particular, the annihilator ideal

Annyy, (v(i) ® b) = {w € Wpq | Yx(w,x) (v(i) & b) = 0}

is non-zero and thus contains I, ;, for all 7 and all b € Lo,.

Since X is spanned by the vectors v(¥ ® b for non-zero b € Xop, n > 1, and 1 < i <
2n + 1, we have now shown that Yx(a,z)b = 0 for all @ € I,, and b € X. Thus (X,Yx)
is a well-defined L, -module, where Yx = Yx(n(—),z) and n: W,y — L, , is the quotient
VOA homomorphism. In particular, each Xy, is a (not necessarily grading restricted) L.

X

module. [ |
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As a first application, Lemma 5.5 gives some information about the relation between arbitrary
objects of Mod¢(A)® and the essential image of the induction functor. Indeed, by Frobenius
reciprocity (5.1), the inclusion ty: X% < X induces the Mod¢(A)-morphism

fx =pxo(ldaHix): F(XY) — X,
and fy is further a morphism in Mod¢(A)® because

px(g) o fx = ¢x(g)opx o (IdaWix) = px o (g Wpx(g)) o (Ida Kex)
=px o (IdaXix) o (9RIdxe) = fx o ppxay(9)
for all g € G. Although we cannot say that fx is an isomorphism in general (in contrast with [66,
Theorem 7.14] on the relation between the Virasoro and triplet algebras at ¢, central charge),

the restriction of fx to G-invariants is an isomorphism. So the kernel and cokernel of fx have
no G-invariants, and Lemma 5.5 immediately yields the following.

Corollary 5.6. For any object (X,Yx;¢x) of Mode(A)Y, there is a PSLa(C) x W, ,-module
ezxact sequence

0—>L—>F(XG)f—X>X—>E—>0,

where L and L are PSLy(C) x L, ,-modules on which Wy, 4 acts through the quotient map Wy 4 —
L

Cp,q*

We can also use Lemma 5.5 to show that the subcategory ng e O
closed under contragredient modules:

pa defined previously is

Proposition 5.7. If W is an object of ngq, then so is its contragredient W'.

Proof. By assumption, the induced module F(W) = @7, Van, ® (L2, ®W) is an object of the
category Rep(W), ) of grading-restricted generalized W), ,-modules. We need to show the same
for F(W'). First, since W’ has finite length and F is right exact, induction on the length shows
that F(W’) has finite-dimensional conformal weight spaces and a lower bound on conformal
weights, provided the same holds for F'(L) whenever L is a simple object of O, . Indeed, this
holds for F'(L) by Proposition 5.2. It remains to show that ppyy) o R%A/p,q,F(W’) = Wp(wr), OF
equivalently, the vertex operator

Yy = tpawry 0 Yr: Wy ®@ F(W') — F(W')[log z]{x}

involves only integral powers of the formal variable x.
To do so, we consider the W), ;-module contragredient F'(W)’, which like F(W) is an object

of Rep(W,, 4), with vertex operator defined by

(Yewy (v, 2)w', w) = (w', Y, (eIL1 (—x72)L°v,x71)w>
for v € Wpq, w' € F(W)', and w € F(W) [38]. Using this relation and (5.2), it is easy to see
that F(W)' is also an object of Rep(W, 4)"32(©) with

(ermwy(g) - w' w) = <w/790F(W)(9)71 “w)

for all g € PSLy(C), v’ € F(W)', and w € F(W). In particular, F(W)’ is the (graded) dual
of F(W) as both PSLy(C)- and Vir-module, that is,

FW) 2P Vs, ® (Lon RW) 2 W' & P Van @ (Lon BW)' (5.3)
n=0

n=1

as a PSLy(C) x Vir-module.
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The decomposition (5.3) shows that F(W/)PSL2(©) = (F(w))PSL2(C) =~ W' 5o we get
a PSLy(C) x W), ;-module homomorphism

fF(W)/
e

fr F(W') = F((F(W))Psk0) FWY)',

which is an isomorphism on PSLs(C)-invariant subspaces. Thus we have an exact sequence
0 — Kerf — F(W') — Im f — 0, (5.4)

where Im f is an object of Rep(W,, 4) since it is a submodule of F(W)’, and Ker f has no PSLy(C)-
invariants. Thus by Lemma 5.5, Kerf is an L, -module, that is, a direct sum of modules L, s
for1<r<p-1,1<s<qg—1,and W), acts on Kerf through the quotient map W, — L., .
Note that Ker f is a grading-restricted L., ,-module since F'(W’) has finite-dimensional conformal
weight spaces.

We now write the vertex operator Ypy) as

K
Yrawy = >, Y r*(logz)*

A+ZEC/Z k=0

where Y 2 Wy @ F(W') — F(W’)((x)) is a Laurent series and K is related to the maximum
Jordan block size of Ly acting on F(W’) (see [49, Proposition 3.20 (c)]). Note that K is finite
by (5.4), since Ly acts semisimply on Kerf and the maximum Jordan block size for Ly acting
on the object Im f of Rep(W, ) is ﬁnite. For any A + Z € C/Z, x)‘yA’K is a V., ,-module
intertwining operator of type ( It suffices to show that Y\ g = 0 if either A\ ¢ Z
or K > 0.

Indeed, if A ¢ Z or K > 0, then V) g(a,z)b € (Kerf)((z)) for all a € W4, b € F(W/)
because Im f C F(W)’ is local and hence

w
Wp,qF(W’)) :

K
Z Zf(yAyK(a,x)b)x)‘(log z)F = f Yy (a, z)b)

MZeC/Z k=0
= Yrawy(a,z)f(b) € F(W)'((x)).

Thus a:)‘yA’K is an intertwining operator of type (W K;f(fw/)). Moreover, Y k|i, wermwny =0

since as a V., -module, F(W’) is local with vertex operator Yrwn ik, @rwr). Since Wy, =
Kiae®, Vgn®£2n, it remains to show that Y k| (vs,0c0,)@Fmv) = 0. In fact, by symmetries
of intertwining operators, :c/\yA, i induces a V., -module intertwining operator

V: (Kerf) @ FW') — (Vap @ Lan)((2)),

which equals 0 if and only if V) k|(vs,0c0,)2Fmw7) = 0. By [63, Lemma 5.11], the image of ) is
an L, -module. Thus because Loy, = Ly(n11)p—1,1 1S N0t an L., -module, Y = 0 and then so
is W\ x| (van@Lom)@r(w)- This completes the proof of the proposition. |

It is almost immediate from Propositions 5.2 and 5.7 that (’)0 ., 1s a locally finite abelian
category. Indeed, since it is a full subcategory of the locally finite abelian category O, , which
contains 0 and is closed under finite direct sums and quotients, all that remains is to show
that (’)0 ., 1s closed under submodules. But if W is a submodule of an object W of (’)Op ,» then w’
is a quotient of W’ and thus is an object of (90 , and then so is W & (W’ ) Moreover, by [9],
contragredient modules give (’)0 the structure of a ribbon Grothendieck—Verdier category,
which means that taking contragredlents is a contravariant auto-equivalence of O, , and that
there is a natural isomorphism Hom(W X X, K] ;) = Hom(W, X') for all objects W and X
in O

Cp,q*
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Theorem 5.8. ngq 1s a locally finite abelian ribbon Grothendieck—Verdier category.

In [63, Section 7], we conjectured that there should be a suitable tensor subcategory of O, ,
that contains all simple objects of O, , and has enough projectives, and that such a subcategory
should be the right category for constructing a full (bulk) logarithmic conformal field theory
based on the Virasoro algebra, that is, a logarithmic minimal module at ¢, 4 central charge. We
now conjecture that (’)Op , 18 the appropriate subcategory of O, . for logarithmic conformal field
theory. Although we have not yet shown that (’)0 has enough projectives, it may be possible
to prove this using the existence and structure of prOJectlve objects in Rep(W),4) [69]. We leave
the problem of obtaining projective objects in ng,q to future work.

6 Conclusion and outlook

In this paper, we have given a new tensor-categorical construction of the triplet W-algebra W, ,
for coprime p,q € Z>5. Specifically, we have “glued” Rep PSLy with a subcategory of Vir-
modules at central charge ¢, ; having PSLa-fusion rules, and we have then appropriately modified
to obtain the non-simple VOA W, ,. Due to the involvement of Rep PSLs in the construction,
a major corollary is that the automorphism group of W), is PSLy(C), with no need to use
complicated analysis of screening operators to give an explicit action of PSLy(C). It would be
interesting to explore whether the PSLy(C)-action on W), , could be exploited to simplify the
proofs from [83] of important properties of W), , such as Ca-cofiniteness and the classification of
its simple modules.

We have also defined a tensor subcategory (90 of Vir-modules at central charge ¢, , that in-
duce to ordinary modules for W, 4, and we have shown that it contains all simple objects of O, ,
and is closed under contragredients and thus is a ribbon Grothendieck—Verdier category. The
main remaining open problems for (’)0 are to show that it has enough projective objects, and to
explore its applications in logarlthmlc Conformal field theory. For the latter problem, our result
that OO is a Grothendieck—Verdier category will be key since there is now a theory of module
categorles and Frobenius algebras for Grothendieck—Verdier categories under development [41],
and these structures are important in constructions of full CFTs [79, 80].

Beyond conformal field theory, topological quantum field theories and invariants of low-
dimensional manifolds can be constructed from braided tensor categories that are not necessarily
semisimple (see, for example, [11, 12, 14, 26] for some recent results), which is significant since
for example semisimple 4-dimensional topological field theories cannot detect exotic smooth
structures [76]. While most results in this direction assume rigidity for the braided tensor
categories under consideration, it would also be interesting to explore how much these results
generalize to non-rigid categories such as Rep(W),) and O(C)p’q, or to the module categories for
universal affine sly VOAs studied in [65].

The triplet algebras W, , are special cases of a large class of VOAs sometimes called Feigin—
Tipunin algebras [36, 81]. In general, these VOAs are (or are expected to be) large extensions
of an affine W-algebra associated to a simple Lie algebra at a given level, such that the affine
W -subalgebra is the fixed points of a corresponding Lie group of automorphisms. Thus W), , is
the Feigin—Tipunin algebra associated to the principal affine W-algebra of sl at level —2 4 g.
It would be interesting to explore whether the methods of this paper could be used to study
Feigin—Tipunin algebras beyond W), ,. In fact, we expect that the methods of Section 4 can be
combined with the results of [65] to give a tensor-categorical construction of the Feigin-Tipunin
algebra associated to the universal affine VOA of sly (the affine W-algebra of sly for the trivial
nilpotent element) at level —2 4 % for coprime p, g € Z>1; when p = 1, these algebras have been
recently studied in [24].
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Finally, we note that there are vertex operator superalgebra analogues of the triplet W-
algebras which are extensions of the N = 1 super Virasoro vertex operator superalgebra [4].
We expect that our methods could also apply to give tensor-categorical constructions of these
algebras, using the NV = 1 super Virasoro tensor categories recently constructed in [20].
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