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Abstract. For coprime p, q ∈ Z≥2, the triplet vertex operator algebra Wp,q is a non-
simple extension of the universal Virasoro vertex operator algebra of central charge cp,q =
1− 6(p−q)2

pq , and it is a basic example of a vertex operator algebra appearing in logarithmic
conformal field theory. Here, we give a new construction of Wp,q different from the original
screening operator definition of Feigin–Gainutdinov–Semikhatov–Tipunin. Using our ear-
lier work on the tensor category structure of modules for the Virasoro algebra at central
charge cp,q, we show that the simple modules appearing in the decomposition of Wp,q as
a module for the Virasoro algebra have PSL2-fusion rules and generate a symmetric ten-
sor category equivalent to RepPSL2. Then we use the theory of commutative algebras in
braided tensor categories to construct Wp,q as an appropriate non-simple modification of
the canonical algebra in the Deligne tensor product of RepPSL2 with this Virasoro subcate-
gory. As a consequence, we show that the automorphism group of Wp,q is PSL2(C). We also
define a braided tensor category O0

cp,q consisting of modules for the Virasoro algebra at
central charge cp,q that induce to untwisted modules of Wp,q. We show that O0

cp,q tensor
embeds into the PSL2(C)-equivariantization of the category of Wp,q-modules and is closed
under contragredient modules. We conjecture that O0

cp,q has enough projective objects and
is the correct category of Virasoro modules for constructing logarithmic minimal models in
conformal field theory.

Key words: triplet vertex operator algebras; PSL2 automorphism group; braided tensor
categories; logarithmic conformal field theory

2020 Mathematics Subject Classification: 17B69; 18M15; 81R10; 81T40

Dedicated with admiration and
gratitude to James Lepowsky on
the occasion of his 80th birthday

1 Introduction

The triplet W -algebras Wp,q for coprime p, q ∈ Z≥1 are fundamental examples of vertex operator
algebras (VOAs) with finite but non-semisimple representation theory. When q = 1, Wp,1 is
a simple and C2-cofinite VOA with 2p simple modules [3], automorphism group PSL2(C) [2], and
a non-semisimple modular tensor category of representations [44, 82]. Moreover, as conjectured
in [33] and proved recently in [18, 19, 44], this modular tensor category is equivalent to the
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category of finite-dimensional representations of a quasi-Hopf modification of the restricted
quantum group of sl2 at the root of unity eπi/p. When p, q ≥ 2, Wp,q is no longer simple
but is still C2-cofinite [5, 83]. These more complicated VOAs are the subject of this paper. Our
main results are a new construction of Wp,q for p, q ≥ 2 using tensor category methods and
a proof that, as in the q = 1 case, the automorphism group of Wp,q is PSL2(C).

We first review what has already been established about Wp,q for p, q ≥ 2. The triplet
algebra Wp,q was constructed in [34] as the intersection of the kernels of two screening operators
acting on the lattice VOA V√

2pqZ. It has central charge cp,q = 1− 6(p−q)2

pq , contains the universal
Virasoro VOA Vcp,q of central charge cp,q as a subalgebra, and is non-simple with the rational
simple Virasoro VOA Lcp,q of central charge cp,q as its unique simple quotient. Just as Lcp,q is
the VOA of minimal models in rational conformal field theory in physics, Wp,q is the VOA of W -
extended logarithmic minimal models in logarithmic conformal field theory [71, 72, 73, 74, 42, 43].
Such logarithmic conformal field theories sometimes arise in the analysis of statistical models at
critical points; in particular the (p, q) = (2, 3) case is relevant for critical percolation (see, for
example, [25] and references therein).

The VOA structure and representation theory of Wp,q for q ≥ 2 are not yet as well understood
as in the q = 1 case. However, the decomposition ofWp,q as a module for the Virasoro algebra Vir
is already known [5, 8, 34, 83]

Wp,q = Vcp,q ⊕
∞∑
n=2

(2n− 1) · L2np−1,1, (1.1)

where L2np−1,1 is the simple Vir-module of central charge cp,q and lowest conformal weight
(np − 1)(nq − 1). This decomposition follows from the fact that screening operators acting
on V√

2pqZ and its modules form almost exact Felder complexes [37] of Feigin–Fuchs modules
for Vir [32], along with the detailed socle series structure of Feigin–Fuchs modules. In particular,
Wp,q, as the intersection of the kernel of two screening operators acting on V√

2pqZ, is generated
by the socles of the Feigin–Fuchs Vir-modules that make up V√

2pqZ, together with the vacuum.
It is not clear whether it is possible to describe this intersection of kernels of screening operators
without using the rather technical structural results on Feigin–Fuchs modules.

Another known result on the structure of Wp,q is that it is a C2-cofinite VOA (see [5] for
the q = 2 case and [83] in general), which thanks to [46] implies that its representation category
is a finite abelian braided monoidal category. Simple Wp,q-modules have been classified in [6] for
the q = 2 case and [83] in general, while logarithmic indecomposable Wp,q-modules have been
constructed in [7, 69]. The monoidal structure on the category of Wp,q-modules is not rigid,
essentially because Wp,q is not simple or self-contragredient when q ≥ 2, but fusion rules have
been obtained by various methods in, for example, [70, 73, 77, 86].

Now we review conjectures on Wp,q. In [35], a relation (though not quite an equivalence) was
conjectured between the monoidal categories of modules for Wp,q and for a certain “Kazhdan–
Lusztig dual” quantum group, generalizing the previously-mentioned equivalence between the
categories of modules for Wp,1 and for the restricted quantum group of sl2. Proving a pre-
cise version of this conjecture remains one of the most significant open problems pertaining to
the Wp,q triplet algebra. Another problem is determining the automorphism group of Wp,q,
which is PSL2(C) in the q = 1 case [2]. It was suggested in [34] that PSL2(C) should also act
by VOA automorphisms of Wp,q in the q ≥ 2 case. However, although two derivations of Wp,q

labeled E and F were constructed in [83], it was not checked there whether the exponentials
of E and F actually generate an action of PSL2(C) by automorphisms.

In the present paper, we give a new construction of Wp,q that is independent of the original
construction in [34]. In particular, we use tensor category methods, rather than analysis of
screening operators on V√

2pqZ, to show directly that the Vir-module direct sum on the right-
hand side of (1.1) admits the structure of a VOA. Moreover, we show that the VOA structure
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on the Vir-module direct sum in (1.1) is sufficiently unique, so that we can conclude that
the VOA we have constructed is isomorphic to the triplet algebra Wp,q constructed in [34].
As the main application of our construction, we prove the previously-mentioned conjecture
that the automorphism group of Wp,q is PSL2(C), with fixed-point subalgebra Vcp,q . This will
follow from the fact (which will be obvious from our construction) that the multiplicity spaces
of the indecomposable Vir-module direct summands in (1.1) carry irreducible representations
of PSL(2,C) which are suitably compatible with the vertex operator that we construct on the
direct sum in (1.1). Our result that Vcp,q is the fixed-point subalgebra of the PSL(2,C)-action
on Wp,q has implications for the relationship between the representation theories of Wp,q and
the Virasoro algebra (similar to [61]) that we will explore in Section 5. We discuss our results
and methods in more detail next.

Our starting point is our previous paper [63] where we detailed some of the tensor structure
of the category Ocp,q of C1-cofinite modules for the universal Virasoro VOA Vcp,q of central
charge cp,q. This is the same as the category of finite-length modules for the Virasoro alge-
bra Vir of central charge cp,q whose composition factors are irreducible quotients of reducible
Verma modules, and it is a non-rigid braided tensor category [15]. By (1.1), Wp,q is an infinite
direct sum of modules in Ocp,q , which by [22, 47] implies that Wp,q has the structure of a commu-
tative algebra in the ind-completion (or direct limit completion) Ind(Ocp,q) of the braided tensor
category Ocp,q . Our goal is to use the tensor structure of Ocp,q to construct an at first possibly
different commutative algebra structure (with PSL2(C) automorphism group) on the Vir-module
direct sum in (1.1), without assuming that (1.1) already admits such a commutative algebra or
VOA structure. Then by [47], any commutative algebra structure that we obtain on the right-
hand side of (1.1) is equivalent to some VOA structure, which we must then show is isomorphic
to the already-known VOA Wp,q using a suitable uniqueness result.

To achieve this, we first show in Section 2 that the Vir-module direct summands in (1.1),
except with the non-simple VOA Vcp,q replaced by its contragredient module V ′

cp,q , are closed
under the fusion tensor product of Ocp,q . Moreover, we show that these summands have the same
fusion rules as the simple modules in the category RepPSL2 of finite-dimensional continuous
PSL2(C)-modules. This fusion rule calculation is subtle since Ocp,q is non-semisimple and in par-
ticular contains logarithmic modules (on which the Virasoro operator L0 acts non-semisimply).
To show in Theorem 2.1 below that the fusion tensor product L2mp−1,1 ⊠ L2np−1,1 in Ocp,q is
essentially semisimple (and in particular not logarithmic), we use fusion rules from [63] that
show L2mp−1,1 ⊠ L2np−1,1 is a quotient of the “Kac module” K2mp−1,2np−1, which is a certain
finite-length submodule of a Feigin–Fuchs Vir-module [68]. This shows the fusion tensor prod-
uct is non-logarithmic, but to calculate it precisely, we need further analysis using the detailed
structure of K2mp−1,2np−1 to show that L2mp−1,1⊠L2np−1,1 is precisely the top socle series layer
of K2mp−1,2np−1 (except in the m = n case, where a direct summand of V ′

cp,q rather than its
simple quotient appears). It is interesting that even though our tensor category construction
of Wp,q is independent of screening operators, it is not independent of the socle series structure
of Feigin–Fuchs modules, since these inform the structure of K2mp−1,2np−1 that we use in our
computation of L2mp−1,1 ⊠ L2np−1,1.

Motivated by these Virasoro fusion rules, we then in Section 3 define CPSL2 to be the full
subcategory ofOcp,q consisting of finite direct sums of the modules V ′

cp,q and L2np−1,1 for n ∈ Z≥2.
We show that the fusion tensor product on Ocp,q gives CPSL2 the structure of a rigid symmetric
tensor category with new unit object V ′

cp,q rather than Vcp,q , which is not an object of CPSL2 .
Moreover, we show that CPSL2 is symmetric tensor equivalent to RepPSL2. The most interesting
part of the proof is showing that CPSL2 is rigid, since its objects are not rigid as objects of Ocp,q

(because the unit objects in Ocp,q and CPSL2 are different). We prove that CPSL2 is rigid by
showing that a certain F -matrix entry (or 6j-symbol) associated to a suitable associativity
isomorphism is non-zero, and we show this using constraints on the F -matrix coming from the
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hexagon axiom for braided tensor categories. This is partially related to (but in this specific case
much simpler than) Huang’s proof of rigidity for the module category of a rational C2-cofinite
VOA [45], where relevant F -matrix entries were shown to be non-zero using information coming
from modular character transformations.

Alternatively, one could use the RepPSL2 fusion rules of CPSL2 together with the recent
paper [31] to show that CPSL2 is rigid. However, we believe that constraining F -matrices using
the hexagon axiom may be useful for proving rigidity in further examples of vertex algebraic
tensor categories where the fusion rules are not fully known. We also remark that calculating
F -matrices (or 6j-symbols) is an interesting problem in its own right since F -matrices appear
directly in rational conformal field theory [67] and state-sum invariants of 3-manifolds such as
Reshetikhin–Turaev [75] and Turaev–Viro [84] invariants, and they are also related to Kashaev’s
volume conjecture for hyperbolic knots [56]. They are also relevant in the classification of
semisimple tensor categories with given fusion rules [78], since the information in the 6j-symbols
is precisely what is forgotten in passing from a semisimple tensor category to its Grothendieck
ring.

In Section 4, we complete our tensor-categorical construction of Wp,q. First, since CPSL2 and
RepPSL2 are symmetric tensor equivalent, the canonical algebra of RepPSL2 induces a sim-
ple commutative algebra W ′

p,q in the Deligne product category Ind(RepPSL2 ⊗ CPSL2) with
decomposition

W ′
p,q = V ′

cp,q ⊕
∞⊕
n=2

V2n−2 ⊗ L2np−1,1, (1.2)

where V2n−2 is the (2n − 1)-dimensional simple continuous PSL2(C)-module. For information
about canonical algebras, see, for example, [29], or [16] for a more detailed exposition, where
canonical algebras are constructed by “gluing” braid-reversed equivalent braided tensor cate-
gories. We then show that applying the forgetful fiber functor RepPSL2 → Vec to (1.2) yields
a simple commutative algebra in Ind(CPSL2) with automorphism group PSL2(C) and with the
same Vir-module decomposition as (1.1), except that Vcp,q is replaced by V ′

cp,q . Next, we explain
how to use the unique (up to scaling) non-zero Vir-homomorphism V ′

cp,q → Vcp,q to turn the sim-
ple commutative algebra structure on W ′

p,q into a commutative algebra structure on the direct
sum on the right-hand side of (1.1) with a unique simple ideal and simple quotient.

We then have to show that the commutative algebra structure we have obtained on the
right-hand side of (1.1) yields the same VOA Wp,q of [34] under the correspondence between
commutative algebras and VOAs from [47]. Thus we show that W ′

p,q is the unique simple
commutative algebra structure on the direct sum in (1.2) and use this to prove that the algebra
structure on (1.1) is also unique if it has a suitable simple ideal. Since the triplet algebra Wp,q

has such a simple ideal, it follows that the algebra we have constructed is indeed the triplet
algebra, and moreover, we can show that the automorphism group of Wp,q is PSL2(C) by transfer
from W ′

p,q. These results are formally stated in Theorem 4.6 and Corollary 4.7.
Finally, in Section 5, we use the VOA extension theory of [17, 22, 47] to discuss tensor-

categorical relations between the Virasoro category Ocp,q and the triplet category Rep(Wp,q).
Using the induction tensor functor F from Ocp,q to the category of “non-local”, or “twisted”,
Wp,q-modules, we define the category O0

cp,q to be the full subcategory of Ocp,q consisting of
modules which induce to ordinary modules for the triplet algebra, that is, objects of Rep(Wp,q).
We then show that when restricted to this subcategory, F defines a fully faithful tensor functor
from O0

cp,q to the PSL2(C)-equivariantization of Rep(Wp,q). However, unlike in the q = 1 case
considered in [66, Section 7], induction does not give an equivalence between O0

cp,q and the
equivariantization Rep(Wp,q)

PSL2(C) because Wp,q is not simple.
The main result of Section 5 is that O0

cp,q contains all simple objects of Ocp,q and is a ribbon
Grothendieck–Verdier category in the sense of [13], where the Grothendieck–Verdier duality
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(a weaker duality structure than rigidity) is given by contragredient modules (see [9]). The main
difficulty is to show that O0

cp,q is actually closed under taking contragredients. We conjecture
that O0

cp,q , unlike the larger category Ocp,q , has enough projective objects. If so, then it is natural
to conjecture that O0

cp,q is the correct category of Vir-modules to use to build a full logarithmic
minimal model conformal field theory.

2 Some Virasoro fusion rules

To give a novel construction of the Wp,q triplet VOA, without using screening operators [34,
35], we first need to calculate the fusion rules for the Virasoro modules which appear in the
decomposition of Wp,q as a Virasoro module. Thus let Vir be the Virasoro Lie algebra with basis
{Ln | n ∈ Z} ∪ {c}, where c is central and

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm+n,0c

for m,n ∈ Z. In this paper, we will only consider Vir-modules on which c acts by the central
charge cp,q = 1− 6(p−q)2

pq for some coprime p, q ∈ Z≥2.
Let Vcp,q be the universal Virasoro VOA of central charge cp,q [40]. By [15], the category Ocp,q

of C1-cofinite Vcp,q -modules admits the vertex algebraic braided tensor category structure of [48,
49, 50, 51, 52, 53, 54, 55]. More specifically, Ocp,q is the category of finite-length Vir-modules
of central charge cp,q whose composition factors are of the form Lr,s for some r, s ∈ Z≥1. Here,
Lr,s is the simple highest-weight Vir-module of central charge cp,q whose lowest L0-eigenvalue is

hr,s =
r2 − 1

4
· q
p
− rs− 1

2
+

s2 − 1

4
· p
q
.

Note the symmetries hr,s = hr+p,s+q and hr,s = h−r−s, which imply that each simple object
of Ocp,q is isomorphic to a unique Lr,s such that r ∈ Z≥1, 1 ≤ s ≤ q, and qr ≥ ps.

In [63], we determined some of the braided tensor category structure of Ocp,q , focusing mainly
on the Virasoro Kac modules Kr,s defined in [68]. For each r, s ∈ Z≥1, Kr,s is the submodule
of a Feigin–Fuchs module [32] (of lowest L0-eigenvalue hr,s) generated by all vectors with L0-
eigenvalue strictly less than hr,s+rs. Thus unlike the simple modules Lr,s, we do not necessarily
have Kr,s = Kr′,s′ if hr,s = hr′,s′ ; instead, Kr,s is a proper submodule of Kr+p,s+q, for example.
As special cases, there are non-split short exact sequences

0 −→ L(m+2)p−r,1 −→ Kmp+r,1 −→ Lmp+r,1 −→ 0,

0 −→ L1,(n+2)q−s −→ K1,nq+s −→ L1,nq+s −→ 0 (2.1)

for m,n ∈ Z≥0, 1 ≤ r ≤ p − 1, and 1 ≤ s ≤ q − 1. As a Vir-module, the universal Virasoro
VOA Vcp,q is isomorphic to K1,1. In particular, by (2.1), the unique simple Vir-module quotient
of Vcp,q is L1,1, and the unique simple Vir-submodule is L2p−1,1 = L1,2q−1.

In [63], we used Belavin–Polyakov–Zamolodchikov differential equations to show that K1,2 is
rigid and self-dual in the tensor category Ocp,q , which implies in particular that the tensoring
functors K1,2 ⊠ • and •⊠K1,2 are exact (see, for example, [29, Proposition 4.2.1]), and that

HomVir(K1,2 ⊠W1,W2) ∼= HomVir(W1,K1,2 ⊠W2) (2.2)

for any modules W1, W2 in Ocp,q (see, for example, [29, Proposition 2.10.8]). Due to the
symmetry cp,q = cq,p, the same results hold for K2,1.

In [63], we also completely determined the fusion products K1,2⊠Kr,s inOcp,q for all r, s ∈ Z≥1.
In particular, there is a short exact sequence

0 −→ Kr,s−1 −→ K1,2 ⊠Kr,s −→ Kr,s+1 −→ 0, (2.3)
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which splits if and only if q ∤ s. In our proof of this result, the surjection K1,2 ⊠ Kr,s → Kr,s+1

comes from the intertwining operator of type
( Kr,s+1

K1,2Kr,s

)
obtained by restricting a Heisenberg

Fock module intertwining operator involving the corresponding Feigin–Fuchs modules to their
Kac submodules. The existence of a non-zero map Kr,s−1 → K1,2 ⊠ Kr,s then follows from
the W1 = Kr,s−1, W2 = Kr,s case of (2.2). It is not easy to show that the resulting sequence of
maps (2.3) is exact, but once this is done, it is then clear that K1,2 ⊠ Kr,s

∼= Kr,s−1 ⊕ Kr,s+1

when q ∤ s, because in this case the conformal weights of Kr,s−1 and Kr,s+1 are non-congruent
mod Z and thus a non-trivial extension is impossible. When q | s, on the other hand, it turns
out that K1,2 ⊠Kr,s is a logarithmic extension of Kr,s+1 by Kr,s−1. See [63] for more details.

We also showed in [63, Theorem 6.7] that

Kr,1 ⊠K1,s
∼= Kr,s (2.4)

for all r, s ∈ Z≥1. The map Kr,1 ⊠ K1,s → Kr,s again comes from restricting a Heisenberg Fock
module intertwining operator involving Feigin–Fuchs modules to their Kac submodules, though
the proof that it is an isomorphism is non-trivial and uses the exact sequence (2.3). The exact
sequence (2.3) can also be used to compute K1,2 ⊠ Lr,s for all r, s ∈ Z≥1, since every simple
module Lr,s has a resolution by Kac modules (this follows from (2.1) in the s = 1 and r = 1
cases); see [63, Theorem 6.8] for details.

As we will discuss in more detail later, the simple Vir-submodules of the triplet vertex al-
gebra Wp,q will come from among the modules Lnp−1,1 = L1,nq−1 for n ∈ Z≥2 (actually, for
the Vir-submodules of Wp,q, we will only need n even). At irrational central charges, the fu-
sion rules for such simple modules were determined in [39] using Zhu algebra methods, while
at central charge c1,q, their fusion rules were determined in [66] using the action of SU(2) by
automorphisms on the doublet algebra, an abelian intertwining algebra extension of the triplet
algebra W1,q. But at central charge cp,q with p ≥ 2, Zhu algebra computations seem to be diffi-
cult, and it is not a priori clear that SU(2) acts on the triplet or doublet algebra. So instead,
we prove the fusion rules using properties of Virasoro Kac modules derived in [63]:

Theorem 2.1. In the tensor category Ocp,q for coprime p, q ∈ Z≥2,

Lmp−1,1 ⊠ Lnp−1,1
∼=

m+n−2⊕
i=|m−n|+2

i+m+n≡0 mod 2

Lip−1,1

for m,n ∈ Z≥2 such that m ̸= n, while

Lnp−1,1 ⊠ Lnp−1,1
∼= K′

1,1 ⊕
n−1⊕
j=2

L2jp−1,1

for n ∈ Z≥2, where K′
1,1 is the contragredient dual of K1,1.

Proof. Since the tensor product on Ocp,q is commutative, and since the tensor product formulas
in the theorem statement are symmetric inm and n, we assume throughout the proof thatm ≥ n.
We will use the short exact sequences

0 −→ Lmp+1,1 −→ Kmp−1,1 −→ Lmp−1,1 −→ 0,

0 −→ L1,nq+1 −→ K1,nq−1 −→ L1,nq−1 −→ 0,

which are special cases of (2.1). Equation (2.1) also gives surjections Kmp+1,1 ↠ Lmp+1,1 and
K1,nq+1 ↠ L1,nq+1. So noting that L1,nq−1 = Lnp−1,1, we have right exact sequences

Kmp+1,1 −→ Kmp−1,1 −→ Lmp−1,1 −→ 0,

K1,nq+1 −→ K1,nq−1 −→ Lnp−1,1 −→ 0.
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As the tensor product on Ocp,q is right exact, we can tensor these two right exact sequences into
a single right exact sequence using (2.4):

Kmp+1,nq−1 ⊕Kmp−1,nq+1 −→ Kmp−1,nq−1 −→ Lmp−1,1 ⊠ Lnp−1,1 −→ 0 (2.5)

(see, for example, [62, Lemma 2.5]).
In particular, Lmp−1,1 ⊠ Lnp−1,1 is some quotient of Kmp−1,nq−1. Using the diagrams in [63,

Section 2.3], as well as the conformal weight symmetries hp+r,q+s = hr,s and h−r,−s = hr,s
for r, s ∈ Z, Kmp−1,nq−1 has the following composition series structure:

Kmp−1,nq−1:

L1,(m−n)q+1

Lp−1,(m−n+1)q+1 L(m−n+2)p−1,1

L(m−n+2)p+1,1 L1,(m−n+2)q+1

Lp−1,(m−n+3)q+1 L(m−n+4)p−1,1

L(m−n+4)p+1,1 L1,(m−n+4)q+1

...
...

Lp−1,(m+n−3)q+1 L(m+n−2)p−1,1

L(m+n−2)p+1,1 L1,(m+n−2)q+1

Lp−1,(m+n−1)q+1.

(2.6)

All simple Vir-modules appearing in this diagram are distinct. The simple modules which only
receive arrows are the composition factors of the socle of Kmp−1,nq−1, the simple modules which
both receive and originate arrows are the composition factors of the middle layer of the socle
series, and the simple modules which only originate arrows are the composition factors of the
top layer of the socle series. Each arrow in the diagram signifies an indecomposable subquotient
of Kmp−1,nq−1 of length 2.

From (2.6), the simple quotients of Kmp−1,nq−1 are precisely the simple quotients claimed

for Lmp−1,1⊠Lnp−1,1 in the theorem statement. Also, for m = n, Knp−1,nq−1 has a quotient K̃1,1

of length 2 with a non-split short exact sequence

0 −→ L1,1 −→ K̃1,1 −→ L2p−1,1 −→ 0.

Taking the contragredient of this short exact sequence and observing that h1,1 < h2p−1,1, we see

that K̃′
1,1 is generated by a highest-weight vector of conformal weight h1,1 = 0 and thus is

a length 2 quotient of the Virasoro Verma module of lowest conformal weight 0. By the same
argument applied to (2.1), this length 2 quotient must also be isomorphic to K1,1, and it follows

that K̃1,1
∼= K′

1,1. Thus the formulas claimed for Lmp−1,1 ⊠ Lnq−1,1 in the theorem statement
yield the quotient of Kmp−1,nq−1/M , where M is the submodule containing Soc(Kmp−1,nq−1)
such that M/Soc(Kmp−1,nq−1) is the direct sum of all simple modules appearing in the middle
layer of the socle series of Kmp−1,nq−1 except for L1,1 in the m = n case.
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We now show that the kernel K of the surjection Kmp−1,nq−1 ↠ Lmp−1,1 ⊠ Lnp−1,1 from the
right exact sequence (2.5) is contained in M , so that we get a surjection

Lmp−1,1 ⊠ Lnp−1,1 ↠ Kmp−1,nq−1/M. (2.7)

Indeed, by considering the composition

Kmp+1,nq−1 ⊕Kmp−1,nq+1 ↠ K ↠ K/(K ∩M) ↪→ Kmp−1,nq−1/M,

we see that any simple quotient of K/(K ∩M) is a homomorphic image of either Kmp+1,nq−1

or Kmp−1,nq+1 and is also a composition factor of Kmp−1,nq−1/M . However, the diagrams in [63,
Section 2.3] show that the simple quotients of Kmp+1,nq−1 are

L(m−n+2)p+1,1,L(m−n+4)p+1,1, . . . ,L(m+n−2)p+1,1,

and the simple quotients of Kmp−1,nq+1 are

L1,(m−n)q+1,L1,(m−n+2)q+1, . . . ,L1,(m+n−2)q+1 if m > n,

L1,2q+1,L1,4q+1, . . . ,L1,(2n−2)q+1 if m = n. (2.8)

Thus from (2.6), combining the simple quotients of Kmp+1,nq−1 and Kmp−1,nq+1 yields all com-
position factors of the middle socle layer of Kmp−1,nq−1, except for L1,1 in the m = n case. This
means the simple quotients of Kmp+1,nq−1 and Kmp−1,nq+1 are disjoint from the composition
factors of Kmp−1,nq−1/M , showing that K/(K ∩M) has no simple quotients. Thus K ∩M = K,
that is, K ⊆M . This establishes the surjection (2.7).

We still need to show that (2.7) is an isomorphism, that is, M = K. It is enough to show
that K contains all composition factors in the middle socle layer of Kmp−1,nq−1, except for L1,1
in the m = n case. Again, from (2.6), the composition factors of the middle socle layer are

L1,iq+1, m− n ≤ i ≤ m+ n− 2, i+m+ n ≡ 0 mod 2,

Ljp+1,1, m− n+ 2 ≤ j ≤ m+ n− 2, j +m+ n ≡ 0 mod 2.

For any of these simple modules W = L1,iq+1 or Ljp+1,1, let W̃ ⊆ Kmp−1,nq−1 be the submodule
containing Soc(Kmp−1,nq−1) such that W̃/Soc(Kmp−1,nq−1) is the direct sum of all composition
factors of the middle socle layer except for W . Thus if W occurs as a composition factor
of Lmp−1,1 ⊠ Lnp−1,1, then K ⊆ W̃ , and hence there is a surjection

Lmp−1,1 ⊠ Lnp−1,1 ↠ Kmp−1,nq−1/W̃ .

We denote the indecomposable summand of Kmp−1,nq−1/W̃ that contains W as a submodule
by Qi if W = L1,iq+1 and by Pj if W = Ljp+1,1. Thus to complete the proof of the theorem, it is
enough to show that there is no surjection Lmp−1,1⊠Lnp−1,1 ↠ Qi or Pj form−n ≤ i ≤ m+n−2,
i+m+ n ≡ 0 mod 2 or m− n+ 2 ≤ j ≤ m+ n− 2, j +m+ n ≡ 0 mod 2, except in the case
that m = n and i = 0.

We first consider Qm−n. By (2.6), there is a non-split exact sequence

0 −→ L1,(m−n)q+1 −→ Qm−n −→ L1,(m−n+2)q−1 −→ 0.

Since h1,(m−n)q+1 < h1,(m−n+2)q−1, the same argument as used previously in the m = n case,
using (2.1), implies that Qm−n

∼= K′
1,(m−n)q+1. Thus using symmetries of vertex algebraic inter-

twining operators from [38],

Hom(Lmp−1,1 ⊠ Lnp−1,1, Qm−n) ∼= Hom(Lmp−1,1 ⊠K1,(m−n)q+1,L1,nq−1).
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So by (2.4) and (2.1), a surjection Lmp−1,1 ⊠ Lnp−1,1 ↠ Qm−n would induce a surjection

Kmp−1,(m−n)q+1
∼−→ Kmp−1,1 ⊠K1,(m−n)q+1 ↠ Lmp−1,1 ⊠K1,(m−n)q+1 ↠ L1,nq−1.

Such a surjection follows from (2.1) if m = n, but if m > n, then replacing n 7→ m− n in (2.8)
shows that the simple quotients of Kmp−1,(m−n)q+1 are given by

L1,nq+1,L1,(n+2)q+1, . . . ,L1,(2m−n−2)q+1.

This set of modules does not include L1,nq−1, so Qm−n cannot be a simple quotient of Lmp−1,1⊠
Lnp−1,1 except in the case m = n.

We next consider Qi for m−n+2 ≤ i ≤ m+n− 2, i+m+n ≡ 0 mod 2. From (2.6), there
is a length 2 submodule Q̃i ⊆ Qi with a short exact sequence

0 −→ L1,iq+1 −→ Q̃i −→ L1,iq−1 −→ 0.

Comparing with (2.1), Q̃i
∼= K1,iq−1 since both must be the same length 2 quotient of the Verma

module of lowest conformal weight h1,iq−1. Then (2.6) again yields an exact sequence

0 −→ K1,iq−1 −→ Qi −→ L1,(i+2)q−1 −→ 0,

when m − n + 2 ≤ i < m + n − 2, and Qm+n−2
∼= K1,(m+n−2)q−1. Now to show that Qi is not

a quotient of Lmp−1,1 ⊠ Lnp−1,1, it is enough to show that there is no surjection

K1,2 ⊠ Lmp−1,1 ⊠ Lnp−1,1 ↠ K1,2 ⊠Qi,

since ⊠ is right exact. Using [63, Theorems 6.5 and 6.8] (see also (2.3)), there is an exact
sequence

0 −→ K1,iq−2 ⊕K1,iq −→ K1,2 ⊠Qi −→ L1,(i+2)q−2 −→ 0

for m− n+ 2 ≤ i < m+ n− 2, while

K1,2 ⊠Qm+n−2
∼= K1,(m+n−2)q−2 ⊕K1,(m+n−2)q.

In either case, K1,iq is a direct summand of K1,2 ⊠ Qi since h1,iq ̸= h1,iq−2, h1,(i+2)q−2 mod Z.
Thus a surjection L1,mp−1 ⊠ L1,np−1 ↠ Qi would induce a surjection

Kmp−1,nq−2
∼−→ Kmp−1,1 ⊠K1,nq−2 ↠ Lmp−1,1 ⊠ L1,nq−2

∼−→ K1,2 ⊠ Lmp−1,1 ⊠ L1,nq−1 ↠ K1,2 ⊠Qi ↠ K1,iq.

From the diagrams in [63, Section 2.3], it is clear that K1,iq
∼= L1,iq, but that Kmp−1,nq−2 has

no simple quotient of the form L1,iq if q ∤ (nq − 2). For the remaining q = 2 case, Kmp−1,nq−2 =
Kmp−1,(n−1)q has simple quotients L1,(m−n+1)q,L1,(m−n+3)q, . . . ,L1,(m+n−3)q, and these do not
include L1,iq since i+m+n ≡ 0 mod 2. This proves thatQi is not a quotient of Lmp−1,1⊠Lnp−1,1,
and therefore L1,iq+1 is not a composition factor of Lmp−1,1 ⊠ Lnp−1,1.

Finally, the case of Pj for m − n + 2 ≤ j ≤ m + n − 2, j + m + n ≡ 0 mod 2 is similar
by cp,q = cq,p symmetry. In this case, (2.6) and (2.1) yield a short exact sequence

0 −→ Kjp−1,1 −→ Pj −→ L(j+2)p−1,1 −→ 0

when m− n+ 2 ≤ j < m+ n − 2, and Pm+n−2
∼= K(m+n−2)p−1,1. Then similar to the Qi case,

a surjection Lmp−1,1 ⊠ Lnp−1,1 ↠ Pj would induce a surjection

Kmp−2,nq−1
∼−→ Kmp−2,1 ⊠K1,nq−1 ↠ Lmp−2,1 ⊠ L1,nq−1

∼−→ K2,1 ⊠ Lmp−1,1 ⊠ Lnp−1,1 ↠ K2,1 ⊠ Pj ↠ Kjp,1.

But Kjp,1
∼= Ljp,1, and the diagrams in [63, Section 2.3] show that Ljp,1 is not a simple quotient

of Kmp−2,nq−1 (whether p = 2 or p > 2). Thus there is no surjection Lmp−1,1⊠Lnp−1,1 ↠ Pj , and
therefore Ljp+1,1 is not a composition factor of Lmp−1,1⊠Lnp−1,1 for m−n+2 ≤ j ≤ m+n−2,
j +m+ n ≡ 0 mod 2. This completes the proof of the theorem. ■
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3 An sl2-type tensor category

The sl2-like fusion rules of Theorem 2.1 suggest that we consider the additive full subcate-
gory Csl2 ⊆ Ocp,q such that

{K′
1,1} ∪ {Lnp−1,1 | n ∈ Z≥3} (3.1)

is a complete list of representatives of the isomorphism classes of indecomposable objects in Csl2 .
That is, every object of Csl2 is isomorphic to a finite direct sum of objects from (3.1). In partic-
ular, K1,1 and L2p−1,1 are not objects of Csl2 . In this section, we will show that Csl2 is a tensor
subcategory of Ocp,q with different unit object K′

1,1, and that Csl2 is rigid and tensor equivalent
to some 3-cocycle twist of the category Rep sl2 of finite-dimensional sl2-modules.

In view of Theorem 2.1, to show that Csl2 is closed under the tensor product ⊠ on Ocp,q , it
only remains to show that if W is an object of Csl2 , then K′

1,1 ⊠ W is also an object of Csl2 .
In fact, since we want K′

1,1 to be the unit object of Csl2 , we want K′
1,1 ⊠W ∼= W . To prove this,

we need the following lemma (compare with [65, Lemma 2.19]).

Lemma 3.1. If W is an object of Csl2, then L1,1 ⊠W = 0.

Proof. The simple VOA quotient Lcp,q of Vcp,q is isomorphic to L1,1 as a Vir-module. Also, Lcp,q

is a rational VOA, and every simple Lcp,q -module is isomorphic to Lr,s for some 1 ≤ r ≤ p − 1
and 1 ≤ s ≤ q − 1 [85]. If W is any object of Ocp,q , then L1,1 ⊠W is an Lcp,q -module by [63,
Lemma 5.11]. On the other hand, the quotient map K1,1 ↠ L1,1 induces a surjection

W
∼−→ K1,1 ⊠W ↠ L1,1 ⊠W.

Thus L1,1 ⊠ W is an Lcp,q -module which is a quotient of W . Then if W is an object of Csl2
the only such quotient of W is 0, since any simple quotient of W is isomorphic to Lnp−1,1 for
some n ≥ 2 (note from (2.1) that L2p−1,1 is the unique simple quotient of K′

1,1). ■

We now define left and right unit isomorphism candidates in Csl2 . First, it follows from (2.1),
the exactness of the contragredient functor, and the fact that simple Vir-modules are self-
contragredient, that we have exact sequences

0 −→ L2p−1,1 −→ K1,1
π−→ L1,1 −→ 0,

0 −→ L1,1
η−→ K′

1,1 −→ L2p−1,1 −→ 0. (3.2)

We fix φ = η ◦ π : K′
1,1 → K1,1, and then for any object W in Csl2 , we define homomorphisms

l′W : K′
1,1 ⊠W

φ⊠IdW−−−−→ K1,1 ⊠W
lW−−→W,

r′W : W ⊠K′
1,1

IdW⊠φ−−−−→W ⊠K1,1
rW−−→W, (3.3)

where lW and rW are the left and right unit isomorphisms in Ocp,q , respectively.

Proposition 3.2. For any object W in Csl2, l′W and r′W are isomorphisms.

Proof. By elementary properties of braided tensor categories, rW = lW ◦ RW,K1,1 , where R
is the natural braiding isomorphism in Ocp,q . Thus naturality implies r′W = l′W ◦ RW,K′

1,1
, and

hence l′W is an isomorphism if and only if r′W is.
To show l′W is an isomorphism, it is enough to show that φ ⊠ IdW is an isomorphism, and

for this it is enough to show that

π ⊠ IdW : K′
1,1 ⊠W −→ L2p−1,1 ⊠W,

η ⊠ IdW : L2p−1,1 ⊠W −→ K1,1 ⊠W
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are both isomorphisms. By (3.2) and right exactness of ⊠, we have right exact sequences

L1,1 ⊠W −→ K′
1,1 ⊠W

π⊠IdW−−−−→ L2p−1,1 ⊠W −→ 0,

L2p−1,1 ⊠W
η⊠IdW−−−−→ K1,1 ⊠W −→ L1,1 ⊠W −→ 0.

It then follows from Lemma 3.1 that π ⊠ IdW is an isomorphism and η ⊠ IdW is surjective.
To show that η ⊠ IdW is also injective and thus an isomorphism, it suffices to show that

L2p−1,1 ⊠ W ∼= W , since then the finite-dimensional weight spaces of L2p−1,1 ⊠ W and K1,1 ⊠
W ∼= W will have the same dimension. To prove L2p−1,1 ⊠ W ∼= W , we may assume W is
indecomposable, and the case W = Lnp−1,1 for n ≥ 3 is covered by Theorem 2.1. For the
case W = K′

1,1, (3.2) and right exactness of ⊠ yield a right exact sequence

L2p−1,1 ⊠ L1,1 −→ L2p−1,1 ⊠K′
1,1 −→ L2p−1,1 ⊠ L2p−1,1 −→ 0.

Since L2p−1,1⊠L1,1 = 0 by the same argument as in the proof of Lemma 3.1, and since L2p−1,1⊠
L2p−1,1

∼= K′
1,1 by Theorem 2.1, we get L2p−1,1 ⊠K′

1,1
∼= K′

1,1, as required. ■

Theorem 2.1 and Proposition 3.2 now show in particular that Csl2 is closed under the tensor
product on Ocp,q . To write the tensor products of indecomposable objects in Csl2 in a uniform
way, we introduce the notation

Ln =

{
K′

1,1 if n = 0,

L(n+2)p−1,1 if n ≥ 1.
(3.4)

for n ∈ Z≥0. Then Theorem 2.1 and Proposition 3.2 imply

Lm ⊠ Ln ∼=
m+n⊕

k=|m−n|
k+m+n≡0 mod 2

Lk (3.5)

for all m,n ∈ Z≥0. These are precisely the fusion rules of finite-dimensional simple sl2-modules,
if we identify Ln with the (n+ 1)-dimensional simple sl2-module of highest weight n.

Proposition 3.2 also shows that there are natural isomorphisms l′ : K′
1,1 ⊠ • −→ IdCsl2 , r

′ : •
⊠K′

1,1 −→ IdCsl2 . Further, the associativity isomorphisms A and braiding isomorphisms R
on Ocp,q restrict to natural isomorphisms on Csl2 that satisfy the pentagon and hexagon axioms
of a braided monoidal category.

Theorem 3.3. (Csl2 ,⊠,K′
1,1,A, l′, r′,R) is a semisimple braided tensor category.

Proof. To show that Csl2 is semisimple, it is enough to show that K′
1,1 is simple as an object

of Csl2 (though it is not simple in Ocp,q). Indeed, from (3.2), the only non-trivial subobject
of K′

1,1 is L1,1, which is not an object of Csl2 . Thus Csl2 is a semisimple abelian category.
To show that Csl2 is a braided tensor category, it remains to prove the triangle axiom for l′, r′,

and A. Indeed, since the associativity isomorphisms are natural and the triangle axiom holds
in Ocp,q , we have

(r′W1
⊠ IdW2) ◦ AW1,K′

1,1,W2
= (rW1 ⊠ IdW2) ◦ ((IdW1 ⊠ φ)⊠ IdW2) ◦ AW1,K′

1,1,W2

= (rW1 ⊠ IdW2) ◦ AW1,K1,1,W2 ◦ (IdW1 ⊠ (φ⊠ IdW2))

= (IdW1 ⊠ lW2) ◦ (IdW1 ⊠ (φ⊠ IdW2)) = IdW1 ⊠ l′W2

for any objects W1, W2 in Csl2 , as required. ■
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We next show that the tensor category Csl2 is rigid. Actually, this follows rather easily using
Theorem 1.1 of the recent paper [31], which appeared after we had already begun this work. Here
we present a more explicit and self-contained proof, starting by showing that L1 is rigid and self-
dual. The key point is to determine the associativity isomorphism AL1,L1,L1 : L1 ⊠ (L1 ⊠L1)→
(L1 ⊠ L1) ⊠ L1 explicitly enough. Since Csl2 is semisimple, this associativity isomorphism is
determined by the F -matrix, or 6j-symbols, and it turns out that proving rigidity amounts to
showing that a certain F -matrix entry is non-zero. We will prove this by using the hexagon
axiom of a braided tensor category to constrain the F -matrix. To prepare, we fix some notation.

Recalling the notation (3.4) and the fusion rules (3.5), let

πk
mn : Lm ⊠ Ln −→ Lk, ikmn : Lk −→ Lm ⊠ Ln

for m,n ∈ Z≥0, |m− n| ≤ k ≤ m+ n, k+m+ n ≡ 0 mod 2 denote a system of surjections and
injections such that

πk
mn ◦ ik

′
mn = δk,k′IdLk

,

m+n∑
k=|m−n|

k+m+n≡0 mod 2

ikmn ◦ πk
mn = IdLm⊠Ln . (3.6)

For simplicity, we may assume that if m < n, then πk
mn ◦ RLm,Ln = πk

nm. We may also assume
that πn

0n = l′Ln
and πn

n0 = r′Ln
for all n ∈ Z≥0. For the case m = n, we have

πk
nn ◦ RLn,Ln = Rk

n · πk
nn

for some Rk
n ∈ C×. In fact, using the methods of [44, Sections 7 and 8] and [64, Section 6] (see

in particular the calculations preceding [64, Theorem 6.3]), we get

Rk
n = eπi(h(k+2)p−1,1−2h(n+2)p−1,1).

We will need the case of n = 1, in particular,

R0
1 = eπipq/2, R2

1 = −eπipq/2. (3.7)

Next we consider the triple tensor product L1⊠ (L1⊠L1). For k = 0, 2, we define morphisms

Πk : L1 ⊠ (L1 ⊠ L1)
IdL1

⊠πk
11−−−−−−→ L1 ⊠ Lk

π1
1k−−→ L1,

Π̃k : (L1 ⊠ L1)⊠ L1
πk
11⊠IdL1−−−−−−→ L1 ⊠ Lk

π1
k1−−→ L1.

It is easy to see that {Π0,Π2}, respectively {Π̃0, Π̃2} is a basis of Hom(L1 ⊠ (L1 ⊠ L1),L1),
respectively Hom((L1 ⊠ L1)⊠ L1,L1). Thus we can define the F -matrix, or 6j-symbols, by

Π̃k ◦ AL1,L1,L1 =
∑
l=0,2

FklΠl.

Note that the 2× 2 matrix F =
[
F00 F02
F20 F22

]
is invertible.

Theorem 3.4. The tensor category Csl2 is rigid.

Proof. Since Csl2 is braided and semisimple, it is enough to show that each simple object W has
a left dual W ∗. We will first show that L1 = L3p−1,1 is rigid and self-dual using the evaluation
and coevaluation candidates

π0
11 : L1 ⊠ L1 −→ L0 = K′

1,1, i011 : L0 −→ L1 ⊠ L1.
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Similar to [23, Lemma 4.2.1] and [31, Lemma 2.1], it is enough to show that the composition

L1
∼−→ L1 ⊠ L0

IdL1
⊠i011−−−−−→ L1 ⊠ (L1 ⊠ L1)

∼−→ (L1 ⊠ L1)⊠ L1
π0
11⊠IdL1−−−−−−→ L0 ⊠ L1

∼−→ L1

is a non-zero scalar multiple of IdL1 . From the definitions and (3.6), this composition equals

Π̃0 ◦ AL1,L1,L1 ◦
(
IdL1 ⊠ i011

)
◦ (r′L1

)−1 =
∑
k=0,2

F0k ·Πk ◦
(
IdL1 ⊠ i011

)
◦ i110

=
∑
k=0,2

F0k · π1
1k ◦

(
Id⊠ πk

11

)
◦
(
IdL1 ⊠ i011

)
◦ i110 = F00 · IdL1 .

Thus if F00 ̸= 0, then L1 is rigid with evaluation 1
F00
· π0

11 and coevaluation i011.
To show that F00 ̸= 0, we will use the hexagon axiom, which asserts in particular that the

two compositions

L1 ⊠ (L1 ⊠ L1)
Id⊠R−−−→ L1 ⊠ (L1 ⊠ L1)

A−→ (L1 ⊠ L1)⊠ L1
R⊠Id−−−→ (L1 ⊠ L1)⊠ L1,

L1 ⊠ (L1 ⊠ L1)
A−→ (L1 ⊠ L1)⊠ L1

R−→ L1 ⊠ (L1 ⊠ L1)
A−→ (L1 ⊠ L1)⊠ L1

are equal; here we have dropped labels on morphisms for brevity. Composing these two composi-
tions with Π̃k form = 0, 2 yields constraints on the F -matrix (see, for example, [1, equation 2.3]),
namely

Rk
1FklR

m
1 =

∑
m=0,2

FkmR1
m1Fml

for k, l ∈ {0, 2}, where R1
m1 is defined by π1

1m◦RLm,L1 = R1
m1 ·π1

m1. By our conventions, R1
m1 = 1

for m = 0, 2, and thus using (3.7), the above equation is equivalent to

(−1)pq
[
F00 −F02

−F20 F22

]
=

[
F00 F02

F20 F22

]2
. (3.8)

The equation for the upper left entry yields (−1)pqF00 = F 2
00+F02F20, and thus the determinant

of F is a multiple of F00:

det(F ) = F00F22 − F02F20 = F00F22 − (−1)pqF00 + F 2
00 = F00(F22 − (−1)pq + F00).

Since the matrix F is invertible and thus det(F ) ̸= 0, it follows that F00 ̸= 0 as well. This proves
that L1 is rigid and self-dual.

Rigidity of the remaining simple objects Ln for n ≥ 2 now follows by induction on n. Indeed,
assuming by induction that Ln is rigid, then Ln+1 is a direct summand of L1⊠Ln ∼= Ln−1⊕Ln+1,
which is rigid and self-dual because it is a tensor product of rigid and self-dual objects of Csl2
(see, for example, [57, Lemma A.3]). Thus Ln+1 is also rigid and self-dual (see, for example,
[63, Lemma 5.9]. ■

Remark 3.5. We emphasize that the modules Ln, n ≥ 0, are not rigid when considered as
objects of Ocp,q . This is because the unit object of Ocp,q is different from that of Csl2 .

Remark 3.6. It is not difficult to find all solutions of (3.8). Considering the possibilities F02 = 0
and F02 ̸= 0 separately, the invertible solutions for F are given by[

(−1)pq 0
0 (−1)pq

]
,

[
−1

2(−1)
pq t

− 3
4t −1

2(−1)
pq

]
, t ∈ C×.
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These solutions imply that the intrinsic dimension of L1, which is defined to be the endo-
morphism of L0 obtained by composing the evaluation and coevaluation morphisms of L1, is
either ±1 or ±2. The next theorem will rule out the first possibility, and thus the actual F -
matrix is given by the second matrix above for some t ∈ C× (and t will depend on the choice of
normalizations for πk

11, k = 0, 2).

Remark 3.7. As far as we are aware, our proof of Theorem 3.4 is the first rigidity proof for
VOAs that uses explicit calculation of F -matrices via general categorical principles. In previous
rigidity proofs for VOAs, such as [21, 45, 63, 66, 82], F -matrix entries have been calculated or
constrained by analytic methods, such as by solving regular singular point differential equations.

In principal, it might be possible to prove L1 = L3p−1,1 is rigid in Csl2 by such analytic
methods, using BPZ partial differential equations derived from explicit expressions for singular
vectors given by the Benoit–Saint-Aubin formula [10]. But although these differential equations
are explicit [59, Section 5.3], they have rather high order and do not seem particularly easy to
solve explicitly. Thus in Theorem 3.4 we have used the hexagon axiom to constrain F instead.

Alternatively, as we remarked above, we could use [31, Theorem 1.1] to prove Ln is rigid
in Csl2 . This would require showing that dimEnd(L⊠m

n ) < m! for some m ∈ Z≥1, and this is
rather easy from the fusion rules (3.5). In examples of vertex algebraic tensor categories where
the fusion rules are not fully known, the methods from our proof of Theorem 3.4 may be more
useful.

By (3.5) and Theorems 3.3 and 3.4, Csl2 is a rigid semisimple tensor category with the same
fusion rules as the category Rep sl2 of finite-dimensional sl2-modules. Such categories were
classified up to tensor equivalence in [58], so we could use this classification to identify Csl2 .
However, here we will mainly focus on the full tensor subcategory CPSL2 ⊆ Csl2 whose objects
are isomorphic to finite direct sums of the modules L2n, n ∈ Z≥0. This subcategory has the
same fusion rules as the category RepPSL2 of finite-dimensional modules for the algebraic
group PSL2(C).

Theorem 3.8. The category CPSL2 is braided tensor equivalent to RepPSL2.

Proof. In view of (3.5) and Theorems 3.3 and 3.4, it follows from [58, Theorem A∞] that Csl2
is tensor equivalent to some 3-cocycle twist of the category RepUζ(sl2) of finite-dimensional
modules for the quantum group of sl2 at ζ = ±1 or ζ not a root of unity. Here ζ denotes
a square root of the parameter denoted q in [58]. The only difference between RepUζ(sl2) and

its non-trivial 3-cocycle twist is that the 3-cocycle twist has a new associativity isomorphism Ã
characterized by

ÃVn1 ,Vn2 ,Vn3
= (−1)n1n2n3AVn1 ,Vn2 ,Vn3

, (3.9)

where Vn is the (n + 1)-dimensional simple object of RepUζ(sl2). It is not difficult to use [58,
Theorem A∞] to see that the non-trivial 3-cocycle twist of RepUζ(sl2) is tensor equivalent
to RepU−ζ(sl2), so Csl2 is tensor equivalent to RepUζ(sl2) for either ζ = ±1 or ζ not a root of
unity. We need to rule out the latter possibility.

From [44, Proposition 6.3], the tensor category RepUζ(sl2) admits two or four braidings
characterized by the value of RV1,V1 . Thus Csl2 also admits two or four braidings, and RL1,L1 in
particular is given by

R±1
L1,L1

= ±
(
−ζ3/2 · i011 ◦ π0

11 + ζ−1/2 · i211 ◦ π2
11

)
for one of the four possible choices of signs, using the notation of (3.6). In particular,

R2
L1,L1

= ζ±3 · i011 ◦ π0
11 + ζ∓1 · i211 ◦ π2

11. (3.10)
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On the other hand, the balancing equation

e2πiL0 = R2
L1,L1

◦
(
e2πiL0 ⊠ e2πiL0

)
for vertex algebraic tensor categories (see, for example, [45, Theorem 4.1]) implies that

R2
L1,L1

= e−4πih3p−1,1
(
i011 ◦ π0

11 + e2πih4p−1,1 · i211 ◦ π2
11

)
= (−1)pqIdL1⊠L1 . (3.11)

Comparing (3.10) and (3.11), we get ζ = (−1)pq. Thus Csl2 is tensor equivalent to RepU±1(sl2),
and the tensor equivalence is also braided if we equip RepU±1(sl2) with the appropriate one of
its two braidings.

Since RepU−1(sl2) is tensor equivalent to the non-trivial 3-cocycle twist of RepU1(sl2) =
Rep sl2, and since (3.9) implies that the 3-cocycle twist does not affect the associativity iso-
morphisms of the tensor subcategory RepPSL2 ⊆ Rep sl2, it follows that the subcategory
CPSL2 ⊆ Csl2 is tensor equivalent to RepPSL2. Moreover, this is an equivalence of braided
tensor categories if we equip RepPSL2 with the restriction of some suitable braiding on Rep sl2
or its 3-cocycle twist. Let R be the standard braiding on Rep sl2, which restricts to the standard
braiding on RepPSL2. Then the second braiding R̃ on Rep sl2 is given by

R̃Vn1 ,Vn2
= (−1)n1n2RVn1 ,Vn2

,

while the two braidings R̃ on the non-trivial 3-cocycle twist of Rep sl2 are given by

R̃Vn1 ,Vn2
=

{
±i · RVn1 ,Vn2

if n1n2 is odd,

RVn1 ,Vn2
if n1n2 is even,

where i is a square root of −1; to see why, simply note that all these braidings satisfy the hexagon
axiom (keeping in mind (3.9) in the 3-cocycle twist case), and thus they must comprise all the
braidings from [44, Proposition 6.3]. These braidings on Rep sl2 and its 3-cocycle twist all restrict
to the standard braiding on RepPSL2, so the tensor equivalence between Csl2 and RepPSL2

preserves braidings. ■

Remark 3.9. In [27], Deligne showed that any rigid symmetric tensor category of moderate
growth over an algebraically closed field K of characteristic 0 is super-Tannakian, that is, equiv-
alent to Rep(G, z) for some affine supergroup scheme G and suitable element z ∈ G(K) of
order 2. For CPSL2 , it is easy to calculate directly from the balancing equation that the braiding
is symmetric, and the fusion rules (3.5) easily imply that CPSL2 has moderate growth (see, for
example, the exposition [30, Section 2.6] for the definition of moderate growth). Thus another
way to prove Theorem 3.8 would be to show that RepPSL2 is characterized as a super-Tannakian
category by its fusion rules.

4 Commutative algebras and vertex operator algebras

Let (C,⊠,1,A, l, r,R) be a braided tensor category. A commutative algebra (A,µA, ιA) in C is
an object A equipped with morphisms µA : A ⊠ A −→ A, ιA : 1 −→ A satisfying the following
properties:

(1) Unitality : µA ◦ (ιA ⊠ IdA) = lA and µA ◦ (IdA ⊠ ιA) = rA.

(2) Associativity : µA ◦ (IdA ⊠ µA) = µA ◦ (µA ⊠ IdA) ◦ AA,A,A.

(3) Commutativity : µA = µA ◦ RA,A.
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Since A is commutative, ideals in A are the same as left ideals, and a left ideal is a subob-
ject I ⊆ A such that ImµA|A⊠I ⊆ I. A commutative algebra A in C is simple if its only (left)
ideals are 0 and A.

If (A,µA, ιA) and (B,µB, ιB) are two commutative algebras in C, then an algebra isomor-
phism (A,µA, ιA)→ (B,µB, ιB) is a C-isomorphism g : A → B such that g ◦ ιA = ιB, g ◦ µA =
µB ◦(g⊠g). Let AutC(A) be the group of automorphisms of the commutative algebra (A,µA, ιA)
in C.

If C is a braided tensor category of modules for a VOA V , then a commutative algebra A
in C with an injective unit map ιA is the same thing as a VOA A which contains V as a vertex
operator subalgebra and which is an object of C when considered as a V -module [47]. In this
setting, the relation between the multiplication map µA : A ⊠ A → A and the vertex opera-
tor YA : A⊗A→ A((x)) is µA ◦Y⊠ = YA, where Y⊠ is the tensor product intertwining operator
of type

(
A
AA

)
.

In this paper, we are particularly concerned with the VOA extension Vcp,q ↪→ Wp,q for co-
prime p, q ∈ Z≥2, where Wp,q is the triplet VOA introduced in [34]. The structure of Wp,q as
a Vcp,q -module follows from [34, Definition 4.1 and Lemma 3.5.2]; see also [5, Proposition 5.4],
[8, Section 4], [83, Proposition 4.14 and Definition 5.1]. Namely,

Wp,q
∼= K1,1 ⊕

∞⊕
n=2

(2n− 1) · L2np−1,1 (4.1)

as a Vir-module. Moreover, Wp,q is not simple, since by [83, Theorem 5.4] there is non-split
short exact sequence of Wp,q-modules

0 −→ Ip,q −→Wp,q −→ Lcp,q −→ 0. (4.2)

Here Ip,q is a simple ideal such that Ip,q ∼=
⊕∞

n=1(2n − 1) · L2np−1,1 as a Vir-module, and Lcp,q

is the simple Virasoro VOA of central charge cp,q, which is isomorphic to L1,1 as a Vir-module.
Note that Wp,q is not an object of Ocp,q since it has infinite length as a Vir-module, but it
is an object of the direct limit completion, or ind-category, Ind(Ocp,q), which is also a vertex
algebraic braided tensor category by the main theorem of [22]. Thus Wp,q is a commutative
algebra in Ind(Ocp,q) by the main results of [47].

In the rest of this section, we will give a new construction of Wp,q. Without assuming
that (4.1) already admits a VOA structure, we will use tensor category methods to construct
a VOA structure on the Virasoro direct sum on the right-hand side of (4.1) such that Ip,q is
still a simple ideal. We will then show that any such VOA structure on (4.1) is unique up to
isomorphism, and therefore our construction yields the same VOA as the triplet algebra Wp,q

constructed in [34]. Our construction will make it obvious that the group Aut(Wp,q) of VOA
automorphisms of Wp,q is PSL2(C). This result on Aut(Wp,q) was proved for the q = 1 case
in [2], and some of the work in [34] and [83] suggested that the same result should hold in
general, although these papers did not give full proofs in the q ≥ 2 case. To construct Wp,q,
we will first use Theorem 3.8 to obtain a simple commutative algebra W ′

p,q in CPSL2 on which
PSL2(C) acts by automorphisms, such that

W ′
p,q
∼= K′

1,1 ⊕
∞⊕
n=2

V2n−2 ⊗ L2np−1,1
∼=

∞⊕
n=0

V2n ⊗ L2n (4.3)

as a PSL2(C) × Vir-module; here as before, Vn denotes the (n + 1)-dimensional simple sl2-
module, which is a PSL2(C)-module if and only if n is even. Then we will use the non-zero
Vir-homomorphism φ : K′

1,1 → K1,1 to transfer this simple algebra structure on W ′
p,q to a non-

simple algebra structure on the Vir-module Wp,q of (4.1) such that the Vir-submodule Ip,q
from (4.2) is a simple ideal.
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Proposition 4.1. There is a unique (up to isomorphism) simple commutative algebra structure
on the object

W ′
p,q =

∞⊕
n=0

(2n+ 1) · L2n (4.4)

of Ind(CPSL2). Moreover, AutInd(CPSL2
)(W

′
p,q)
∼= PSL2(C) and W ′

p,q has the decomposition (4.3)
as a PSL2(C)× Vir-module.

Proof. Since CPSL2 is a rigid symmetric tensor category equivalent to RepPSL2 by Theorem 3.8,
we can “glue” RepPSL2 and CPSL2 as in [16, Main Theorem 1] to obtain a simple commuta-
tive algebra in the ind-category of the Deligne tensor product category RepPSL2 ⊗ CPSL2 with
the decomposition (4.3). This algebra is essentially the canonical algebra of RepPSL2; see, for
example, [29, Section 7.9], and compare also with the Peter–Weyl Theorem for the compact
real form SO3(R) of PSL2(C). Applying the (forgetful) fiber functor from RepPSL2 to the
category Vec of finite-dimensional vector spaces and observing that Vec ⊗ CPSL2

∼= CPSL2 as
symmetric tensor categories, we get a commutative algebra W ′

p,q in Ind(CPSL2) with the decom-
position (4.4); see, for example, [64, Appendix A].

Since W ′
p,q is obtained from a commutative algebra in Ind(RepPSL2 ⊗ CPSL2), the alge-

bra multiplication µW ′
p,q

: W ′
p,q ⊠ W ′

p,q → W ′
p,q is a PSL2(C)-module homomorphism if we give

the (2n + 1)-dimensional multiplicity space of each L2n in W ′
p,q the structure of the PSL2(C)-

module V2n as in (4.3). This is equivalent to saying that PSL2(C) acts on W ′
p,q by algebra

automorphisms. Moreover, since the original commutative algebra in Ind(RepPSL2 ⊗ CPSL2) is
simple, W ′

p,q has no non-zero proper PSL2(C)-invariant ideals. We claim that this implies W ′
p,q

has no non-zero proper ideals and thus is simple as an algebra in Ind(CPSL2).
The proof of the claim is similar to part of the proof of [64, Proposition C.1]. First,

since Ind(CPSL2) is semisimple, any non-zero ideal of W ′
p,q contains a copy of L2n for some

n ∈ Z≥0. Thus it is enough to show that for any n ∈ Z≥0 and non-zero v ∈ V2n, the ideal
generated by v ⊗ L2n ⊆W ′

p,q contains L0, since µW ′
p,q
|W ′

p,q⊠L0 = r′W ′
p,q

is surjective. To prove

this, let

im : V2m ⊗ L2m −→W ′
p,q, πm : W ′

p,q −→ V2m ⊗ L2m
for m ∈ Z≥0 be the obvious inclusion and projection morphisms in Ind(CPSL2). Since V2n ⊗L2n
is PSL2(C)-invariant, it generates a PSL2(C)-invariant ideal which must be all of W ′

p,q. This
implies in particular that for any n ∈ Z≥0, π0 ◦ µW ′

p,q
◦ (im ⊠ in) ̸= 0 for some m, and in fact

m = n since Lm⊠Ln contains L0 only if m = n. Then since µW ′
p,q

is a PSL2(C)-homomorphism,

π0 ◦ µW ′
p,q
◦ (im ⊠ in) = (·, ·)2n ⊗ π0

2n,2n, (4.5)

where (·, ·)2n is the unique (up to scaling) non-degenerate PSL2(C)-invariant bilinear form on V2n

and π0
2n,2n : L2n ⊠ L2n → L0 is as in (3.6) (and is surjective). Now we want the ideal generated

by v ⊗ L2n to contain L0 for any non-zero v ∈ V2n. In fact, taking v′ ∈ V2n such that (v′, v)2n ̸= 0,
(4.5) implies that Imπ0 ◦ µW ′

p,q
|(v′⊗L2n)⊠(v⊗L2n) = L0. Since the ideal generated by v ⊗ L2n is

semisimple, it thus contains L0 as required. This completes the proof that W ′
p,q is a simple

algebra in Ind(CPSL2).
Finally, to show that the simple commutative algebra structure on (4.4) is unique up to

isomorphism and that PSL2(C) is the full automorphism group of W ′
p,q, we may replace CPSL2

with any symmetric tensor category C equivalent to RepPSL2 and then replace W ′
p,q with the

corresponding simple algebra in Ind(C). That is, it is enough to find C such that any simple
commutative algebra in Ind(C) of the form

A =

∞⊕
n=0

(2n+ 1) ·X2n,
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where X2n is the image of V2n under a symmetric tensor equivalence RepPSL2 → C, is unique
up to isomorphism and has automorphism group PSL2(C). See, for example, [64, Appendix A]
and the last paragraph in the proof of [64, Theorem 7.1] for why this is sufficient.

One possibility for C is a subcategory of the braided tensor category O1 of C1-cofinite modules
for the Virasoro VOA of central charge 1. Namely, we take C to be the full subcategory of O1

whose objects are isomorphic to finite direct sums of simple Vir-modules X2n of central charge 1
and lowest conformal weight h

(1)
2n+1,1 = n2. It is shown that C ∼= RepPSL2 as symmetric tensor

categories in [60, Example 4.12]. Moreover, [64, Theorem B.1] shows that any simple VOA,
equivalently simple commutative algebra, A in Ind(C) such that A ∼=

⊕∞
n=0(2n + 1) · X2n as

a Vir-module is isomorphic to the sl2-root lattice VOA V√
2Z. Now, the group of algebra auto-

morphisms of V√
2Z is the group of VOA automorphisms that fix X0; but this is the group of

all VOA automorphisms since X0 is the Virasoro vertex operator subalgebra of V√
2Z and hence

is fixed by any automorphism. Then since V√
2Z is isomorphic to the simple affine VOA of sl2

at level 1, which is generated by its conformal weight 1 space that is a Lie algebra isomorphic
to sl2, the automorphism group of V√

2Z is isomorphic to Aut(sl2) = Ad(SL2(C)) = PSL2(C).
This completes the proof of the proposition. ■

Now we need to adjust the simple commutative algebra structure on W ′
p,q in Ind(CPSL2) to get

a non-simple commutative algebra structure on the Vir-module Wp,q in (4.1), which is an object
of Ind(Ocp,q). For future applications, we work in a general situation. Let (C,⊠,1,A, l, r,R) be
a braided tensor category, and let C′ ⊆ C be a full subcategory which is closed under ⊠. We
assume C′ has an object 1′ together with a morphism φ : 1′ → 1 in C such that

l′X = lX ◦ (φ⊠ IdX), r′X = rX ◦ (IdX ⊠ φ) (4.6)

are isomorphisms for any object X in C′ (like in (3.3)), and such that (C′,⊠,A, l′, r′,R) is
a braided tensor category. For example, we could take C = Ind(Ocp,q) and C′ = Ind(CPSL2).

Now suppose we have objects A and A′ in C and C′, respectively, equipped with a mor-
phism Φ: A→ A′. For example, if A = 1⊕ J and A′ = 1′ ⊕ J for some object J in C′, then we
could take Φ = φ⊕ IdJ . We also assume that the maps

Φ ◦ − : Hom(1′, A′) −→ Hom(1′, A), − ◦ φ : Hom(1, A) −→ Hom(1′, A) (4.7)

and

Φ ◦ − : Hom
((
A′)⊠n

, A′) −→ Hom
((
A′)⊠n

, A
)
,

− ◦ Φ⊠n : Hom
(
A⊠n, A

)
−→ Hom

((
A′)⊠n

, A
)

(4.8)

for n = 1, 2, 3 are isomorphisms. Note that these maps would obviously be isomorphisms if Φ
and φ were isomorphisms in C, but we are not assuming this. Note also that (4.7) and the n = 2
case of (4.8) yield isomorphisms

Hom(1′, A′) −→ Hom(1, A),

ιA′ 7−→ ιA,

Hom(A′ ⊠A′, A′) −→ Hom(A⊠A,A),

µA′ 7−→ µA,

such that

Φ ◦ ιA′ = ιA ◦ φ, Φ ◦ µA′ = µA ◦ (Φ⊠ Φ). (4.9)

Similarly, the n = 1 case of (4.8) yields an isomorphism

Hom(A′, A′) −→ Hom(A,A), g′ 7−→ g
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such that

Φ ◦ g′ = g ◦ Φ. (4.10)

With this setup, we now prove the following.

Theorem 4.2. In the setting of the previous paragraph,

(1) (A′, µA′ , ιA′) is a commutative algebra in C′ if and only if (A,µA, ιA) is a commutative
algebra in C, where (ιA′ , µA′) and (ιA, µA) are related by (4.9).

(2) A C′-morphism g′ : A′ → A′ is an algebra isomorphism between two commutative algebra
structures

(
A′, µ

(1)
A′ , ι

(1)
A′

)
and

(
A′, µ

(2)
A′ , ι

(2)
A′

)
if and only if g : A → A defined by (4.10)

is an algebra isomorphism between
(
A,µ

(1)
A , ι

(1)
A

)
and

(
A,µ

(2)
A , ι

(2)
A

)
, where

(
µ
(i)
A , ι

(i)
A

)
for

i = 1, 2 are defined by (4.9).

Proof. (1) For the left unit property of a commutative algebra, we calculate

µA ◦ (ιA ⊠ IdA) ◦ l−1
A ◦ Φ = µA ◦ (ιA ⊠ IdA) ◦ (Id1 ⊠ Φ) ◦ l−1

A′

= µA ◦ (IdA ⊠ Φ) ◦ (ιA ⊠ IdA′) ◦ (φ⊠ IdA′) ◦ (l′A′)−1

= µA ◦ (Φ⊠ Φ) ◦ (ιA′ ⊠ IdA′) ◦ (l′A′)−1

= Φ ◦ µA′ ◦ (ιA′ ⊠ IdA′) ◦ (l′A′)−1

using the naturality of the left unit isomorphisms in C, (4.6), and (4.9). Since the two maps
in (4.8) are isomorphisms in the n = 1 case, it follows that

µA ◦ (ιA ⊠ IdA) ◦ l−1
A = IdA ←→ µA′ ◦ (ιA′ ⊠ IdA′) ◦ (l′A′)−1 = IdA′ .

Thus the left unit property holds for (A′, µA′ , ιA′) if and only if it holds for (A,µA, ιA).

It follows similarly that the right unit property for (A′, µA′ , ιA′) is equivalent to the right
unit property for (A,µA, ιA). Alternatively, this follows from the left unit property and the
equivalence of the commutativity of µA′ and µA, which we prove next. Since

µA ◦ RA,A ◦ (Φ⊠ Φ) = Φ ◦ µA′ ◦ RA′,A′ , µA ◦ (Φ⊠ Φ) = Φ ◦ µA′

by (4.9) and the naturality of the braiding isomorphisms, the assumption that the two maps
in (4.8) are isomorphisms in the n = 2 case implies that µA ◦ RA,A = µA if and only if µA′ ◦
RA′,A′ = µA′ . Thus µA is commutative if and only if µA′ is. Similarly, µA is associative if and
only if µA′ is because

µA ◦ (IdA ⊠ µA) ◦ (Φ⊠ (Φ⊠ Φ)) = Φ ◦ µA′ ◦ (IdA′ ⊠ µA′)

and

µA ◦ (µA ⊠ IdA) ◦ AA,A,A ◦ (Φ⊠ (Φ⊠ Φ)) = Φ ◦ µA′ ◦ (µA′ ⊠ IdA′) ◦ AA′,A′,A′

by (4.9) and naturality of the associativity isomorphisms, and because the two maps in (4.8)
are isomorphisms in the n = 3 case. This proves the first statement of the theorem.

(2) Now suppose g′ : A′ → A′ and g : A → A are two morphisms related by (4.10). If g is
a C-isomorphism with inverse g−1, then g′ is a C′-isomorphism with inverse

(
g−1

)′
characterized

by Φ ◦
(
g−1

)′
= g−1 ◦ Φ as in (4.10). Indeed,

Φ ◦ g′ ◦
(
g−1

)′
= g ◦ g−1 ◦ Φ = Φ
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by (4.10), and therefore g′ ◦
(
g−1

)′
= IdA′ since the first map of (4.8) is an isomorphism in

the n = 1 case. Similarly,
(
g−1

)′ ◦ g′ = IdA′ , and similarly g is a C-isomorphism if g′ is a C′-
isomorphism.

Now we consider how g and g′ relate to different algebra structures on A and A′. We have

g ◦ ι(1)A ◦ φ = Φ ◦ g′ ◦ ι(1)A′ , ι
(2)
A ◦ φ = Φ ◦ ι(2)A′

and

g ◦ µ(1)
A ◦ (Φ⊠ Φ) = Φ ◦ g′ ◦ µ(1)

A′ , µ
(2)
A ◦ (g ⊠ g) ◦ (Φ⊠ Φ) = Φ ◦ µ(2)

A′ ◦ (g′ ⊠ g′)

by (4.9) and (4.10). Thus

g ◦ ι(1)A = ι
(2)
A ←→ g′ ◦ ι(1)A′ = ι

(2)
A′

since the maps in (4.7) are an isomorphism, and

g ◦ µ(1)
A = µ

(2)
A ◦ (g ⊠ g)←→ g′ ◦ µ(1)

A′ = µ
(2)
A′ ◦ (g′ ⊠ g′)

since the maps in (4.8) are isomorphisms in the n = 2 case. This proves that g :
(
A,µ

(1)
A , ι

(1)
A

)
→(

A,µ(2)
A

, ι(2)
A

)
is an isomorphism of C-algebras if and only if g′ :

(
A′, µ(1)

A′ , ι
(1)
A′

)
→

(
A′, µ(2)

A′ , ι
(2)
A′

)
is

an isomorphism of C′-algebras. ■

Taking µ
(1)
A = µ

(2)
A and µ

(1)
A′ = µ

(2)
A′ in part (2) of the preceding theorem, we get the following.

Corollary 4.3. In the setting of Theorem 4.2, suppose (A,µA, ιA) is a commutative algebra
in C and (A′, µA′ , ιA′) is a commutative algebra in C′ such that (µA, ιA) and (µA′ , ιA′) are related
by (4.9). Then AutC(A) ∼= AutC′

(
A′), with isomorphism g 7→ g′ given by (4.10).

Next, still in the setting of Theorem 4.2, we consider the relation between simplicity of the
C′-algebra A′ and ideals of the C-algebra A. Since Φ need not be a C-isomorphism, A need
not be simple if A′ is, but it will be almost simple under mild conditions. First we prove the
following.

Lemma 4.4. In the setting of Theorem 4.2, suppose (A,µA, ιA) is a commutative algebra in C
and (A′, µA′ , ιA′) is a commutative algebra in C′ such that (µA, ιA) and (µA′ , ιA′) are related
by (4.9), and assume that A = 1 ⊕ J and A′ = 1′ ⊕ J for some object J in C′. Assume also
that ιA and ιA′ are the inclusions of 1 and 1′ into the direct sums 1⊕J and 1′⊕J , respectively,
and that Φ = φ⊕ IdJ . Then ImΦ = Imφ⊕ J is an ideal of A.

Proof. Since A = 1⊕ J , we need to show ImµA|1⊠ImΦ ⊆ ImΦ and ImµA|J⊠ImΦ ⊆ ImΦ. The
first inclusion holds because µA|1⊠ImΦ = lImΦ, and the second holds because

ImµA|J⊠ImΦ = ImµA ◦ (Φ⊠ Φ)|J⊠A′ = ImΦ ◦ µA′ |J⊠A′ ,

using (4.9). ■

Proposition 4.5. In the setting of Lemma 4.4, assume also that any subobject I ⊆ ImΦ decom-
poses as a direct sum I = I1⊕IJ in C with I1 ⊆ Imφ and IJ ⊆ J , and that any subobject I ′ ⊆ A′

decomposes as a direct sum I ′ = I1′ ⊕ IJ in C′ with I1′ ⊆ 1′ and IJ ⊆ J .

(1) If A′ is a simple commutative algebra in C′ and Imφ is a simple object of C, then ImΦ is
a simple ideal of A.

(2) Conversely, if ImΦ is a simple ideal of A and 1′ is a simple object of C′, then A′ is a simple
commutative algebra in C′.
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Proof. (1) To show that ImΦ = Imφ⊕ J is a simple ideal of A, let I ⊆ ImΦ be any non-zero
ideal. By assumption, I = I1 ⊕ IJ for C-subobjects I1 ⊆ Imφ and IJ ⊆ J , with either I1 ̸= 0
or IJ ̸= 0. In the first case, I1 = Imφ since Imφ is simple, so

I ⊇ ImµA|A⊠Imφ ⊇ ImµA ◦ (Φ⊠ Φ)|A′⊠1′ = ImΦ ◦ µA′ |A′⊠1′ = ImΦ ◦ r′A′ = ImΦ.

Thus I = ImΦ, proving that ImΦ is a simple ideal if I1 ̸= 0.
In the second case, that IJ ̸= 0, the ideal ImµA′ |A′⊠IJ of A′ generated by IJ is equal to A′

because A′ is simple. Thus since ImµA′ |1′⊠IJ = IJ ⊆ J , and since ImµA′ |J⊠IJ decomposes as
the direct sum of subobjects of 1′ and J by assumption, we get 1′ ⊆ ImµA′ |J⊠IJ . Then

I ⊇ ImµA|J⊠IJ = ImµA ◦ (Φ⊠ Φ)|J⊠IJ = ImΦ ◦ µA′ |J⊠IJ ⊇ ImΦ|1′ = Imφ.

Thus again I = ImΦ by the argument of the preceding paragraph. This proves the first part of
the proposition.

(2) Conversely, to show that A′ is a simple algebra, let I ′ be a non-zero ideal of A′. By
assumption, I ′ = I1′ ⊕ IJ for some I1′ ⊆ 1′ and IJ ⊆ J , with either I1′ ̸= 0 or IJ ̸= 0. In the
first case, I1′ = 1′ since we assume 1′ is simple in C′. Then I ′ = A′ because µA′ |A′⊠1′ = r′1′ is
surjective. Thus A′ is simple if I1′ ̸= 0.

In the second case, that IJ ̸= 0, the ideal ImµA|A⊠IJ of A generated by IJ is equal to ImΦ
because ImΦ is a simple ideal. Thus since ImµA|1⊠IJ = IJ ⊆ J and since ImµA|J⊠IJ decomposes
as a direct sum of subobjects of 1 and J by assumption, we get

Imφ ⊆ ImµA|J⊠IJ = ImµA ◦ (Φ⊠ Φ)|J⊠IJ = ImΦ ◦ µA′ |J⊠IJ .

Since ImΦ|J = J , it follows that ImµA′ |J⊠IJ is not contained in J . Since by assumption
ImµA′ |J⊠IJ decomposes as a direct sum of subobjects of 1′ and J , this forces I1′ ̸= 0, and we
get I = A′ as in the preceding paragraph. ■

We can now apply the preceding general results to the case C = Ind(Ocp,q) and C′ =
Ind(CPSL2), with 1 = K1,1 and 1′ = K′

1,1 = L0. We take the map φ : 1′ → 1 to be the
one appearing in (3.3), so that (4.6) holds in this setting. Also, Imφ ∼= L2p−1,1 is simple in C,
while 1′ is simple in C′, as required in Proposition 4.5. Recalling (4.1) and (4.4), we set A = 1⊕J
and 1′ ⊕ J , where J =

⊕∞
n=1(2n + 1) · L2n, and then we define Φ = φ ⊕ IdJ , as required in

Lemma 4.4. Note that as required in Proposition 4.5, any C-subobject I ⊆ ImΦ decomposes as
a direct sum of subobjects of Imφ ∼= L2p−1,1 and J because ImΦ is semisimple and L2p−1,1 does
not occur as a direct summand of J . Similarly, any C′-subobject of A′ decomposes as a direct
sum of subobjects of 1′ = L0 and J because L0 does not occur as a direct summand of J .
We can now prove the main theorem of this paper.

Theorem 4.6. Let p, q ∈ Z≥2 be coprime.

(1) There is a unique up to isomorphism VOA Wp,q of central charge cp,q such that

Wp,q
∼= K1,1 ⊕

∞⊕
n=2

(2n− 1) · L2np−1,1

as a Vir-module and such that Ip,q =
⊕∞

n=1(2n− 1) · L2np−1,1 is a simple ideal.

(2) The VOA automorphism group of Wp,q is isomorphic to PSL2(C), and

Wp,q
∼= (V0 ⊗K1,1)⊕

∞⊕
n=2

V2n−2 ⊗ L2np−1,1 (4.11)

as a PSL2(C)× Vir-module.
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Proof. (1) By [47], and using the notation in the paragraph before the theorem statement, it
is equivalent to show that there is a unique commutative algebra structure on A = 1 ⊕ J such
that Imφ⊕ J is a simple ideal. To apply the preceding results, we still need to check that the
linear maps in (4.7) and (4.8) are isomorphisms. For more uniform notation, we set A⊠0 = 1,(
A′)⊠0

= 1′ and Φ⊠0 = φ, so that we need to show

Φ ◦ − : Hom
((
A′)⊠n

, A′) −→ Hom
((
A′)⊠n

, A
)
,

− ◦ Φ⊠n : Hom
(
A⊠n, A

)
−→ Hom

((
A′)⊠n

, A
)

are isomorphisms for n = 0, 1, 2, 3.
To show Φ ◦ − is an isomorphism, we write

(
A′)⊠n ∼=

∞⊕
m1,...,mn=0

(2m1 + 1) · · · (2mn + 1) · L2m1 ⊠ · · ·⊠ L2mn

∼=
∞⊕

m1,...,mn=0

(2m1 + 1) · · · (2mn + 1) · (Nm1,...,mn · 1′ ⊕ Jm1,...,mn),

where Nm1,...,mn is the multiplicity of 1′ in L2m1 ⊠ · · · L2mn and Jm1,...,mn is a finite direct sum
of objects L2m for m ≥ 1. Under this identification, and observing that

Hom(1′, J) = Hom(Jm1,...,mn ,1
′) = Hom(Jm1,...,mn ,1) = 0,

the map Φ ◦ − induces a map

∞∏
m1,...,mn=0

(2m1 + 1) · · · (2mn + 1) · (Nm1,...,mn ·Hom(1′,1′)⊕Hom(Jm1,...,mn , J))

−→
∞∏

m1,...,mn=0

(2m1 + 1) · · · (2mn + 1)

× (Nm1,...,mn ·Hom(1′,1)⊕Hom(Jm1,...,mn , J)),

which we need to show is an isomorphism. In fact, since Φ = φ⊕ IdJ , the induced map is

∞∏
m1,...,mn=0

(2m1 + 1) · · · (2mn + 1) · (Nm1,...,mn · (φ ◦ −)⊕ IdHom(Jm1,...,mn ,J)
),

and this is an isomorphism because φ ◦ − : Hom(1′,1′) → Hom(1′,1) is: it sends the basis
endomorphism Id1′ to the basis homomorphism φ. This proves that Φ ◦ − is an isomorphism
for n = 0, 1, 2, 3 (and in fact for any n ∈ Z≥0).

To show −◦Φ⊠n is an isomorphism, the direct sum decompositions A = 1⊕J and A′ = 1′⊕J
together with the unit isomorphisms of C and C′ imply that

(
A′)⊠n ∼= 1′ ⊕

n⊕
m=1

(
n

m

)
· J⊠m, A⊠n ∼= 1⊕

n⊕
m=1

(
n

m

)
· J⊠m.

Thus we need the map

Hom(1, A)⊕
n⊕

m=1

(
n

m

)
·Hom

(
J⊠m, A

)
−→ Hom(1′, A)⊕

n⊕
m=1

(
n

m

)
·Hom

(
J⊠m, A

)
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induced by − ◦ Φ⊠n to be an isomorphism. Using Φ = φ ⊕ IdJ and (4.6), it is straightforward
to see that this induced map is

(− ◦ φ)⊕
n⊕

m=1

(
n

m

)
· IdHom(J⊠m,A).

Now, − ◦ φ is an isomorphism because under the identifications

Hom(1, A) ∼= Hom(1,1), Hom(1′, A) ∼= Hom(1′,1),

it sends the basis endomorphism Id1 to the basis homomorphism φ. Thus −◦Φ⊠n is an isomor-
phism for n = 0, 1, 2, 3 (and in fact for all n ∈ Z≥0).

We can now use Proposition 4.1, Theorem 4.2 (1), and Proposition 4.5 (1) to show that
A = 1⊕J has a commutative C-algebra structure such that ImΦ = Imφ⊕J is a simple ideal. To
show that this commutative algebra structure is unique up to isomorphism, suppose

(
A,µ

(1)
A , ι

(1)
A

)
and

(
A,µ

(2)
A , ι

(2)
A

)
are two commutative algebra structures such that ImΦ is a simple ideal. Then

Proposition 4.5 (2) yields two simple commutative C′-algebras
(
A′, µ

(1)
A′ , ι

(1)
A′

)
and

(
A′, µ

(2)
A′ , ι

(2)
A′

)
which must be isomorphic by Proposition 4.1. Thus the two commutative C-algebra structures
on A are isomorphic by Theorem 4.2 (2).

(2) By Proposition 4.1 and Corollary 4.3, the automorphism group of the commutative algebra
structure on A = 1 ⊕ J from the proof of part (1) of the theorem is isomorphic to PSL2(C).
Moreover, for g′ ∈ AutC′

(
A′), where A′ is the simple commutative algebra of Proposition 4.1,

the identities (4.10) and Φ = φ ⊕ IdJ imply that the corresponding g ∈ AutC(A) is given
by g = Id1 ⊕ g′|J (because (Id1 ⊕ g′) ◦ Φ = Φ ◦ g′). Thus by (4.3),

A ∼= (V0 ⊗ 1)⊕
∞⊕
n=1

V2n ⊗ L2n

as a PSL2(C)-module.
Finally, to complete the proof of the theorem, we just need to observe that the automorphisms

of A = Wp,q considered as a commutative algebra in C are the same as its automorphisms
considered as a VOA. Indeed, by the isomorphism between commutative algebras in C and VOA
extensions of Vcp,q proven in [47], elements of AutC(A) are precisely the VOA automorphisms
of Wp,q that fix 1 = Vcp,q = K1,1 pointwise. But all VOA automorphisms of Wp,q fix Vcp,q

pointwise because they fix the conformal vector ω which generates Vcp,q as a VOA. This completes
the proof of the theorem. ■

Since [83, Theorem 5.4] shows that the ideal Ip,q of the triplet algebra Wp,q introduced in [34]
is simple, Theorem 4.6 immediately implies the following.

Corollary 4.7. The triplet algebra Wp,q introduced in [34] has automorphism group isomorphic
to PSL2(C), and the PSL2(C)× Vir-module decomposition (4.11) holds.

Remark 4.8. Note that there are now two independent ways to prove the existence of the VOA
Wp,q in Theorem 4.6. The original method of [34] defines Wp,q as the intersection of the kernel
of two screening operators on the lattice VOA V√

2pqZ and then uses Felder complexes [37] and
the socle series structure of Feigin–Fuchs modules [32] to show that Wp,q has the correct decom-
position as a Vir-module. On the other hand, the method presented in this section defines Wp,q

as the VOA structure corresponding (via [47]) to the commutative algebra obtained from W ′
p,q

using the equations (4.9). Using the first method, it is easier to see that Wp,q is a VOA, but
it is more difficult to determine the structure of Wp,q as Vir-module, and it seems extremely
difficult to rigorously determine the automorphism group of Wp,q using this definition. Using



24 R. McRae and V. Sopin

the second method, the main difficulty is that we need the technical fusion rule computation
of Theorem 2.1 to show that the PSL(2,C) × Vir-module W ′

p,q of (4.3) admits the structure
of a simple commutative algebra in Ind(RepPSL2 ⊗ CPSL2). But once we have this result, the
determination of the automorphism group of Wp,q in Theorem 4.6 (2) is fairly straightforward.

5 Relations between Virasoro
and triplet algebra representation theory

As in [66, Section 7], we can use Corollary 4.7 and VOA extension theory [17, 22, 47] to relate
the Virasoro tensor category Ocp,q studied in our previous paper [63] with the representation
category of the triplet algebra Wp,q. Let Rep(Wp,q) be the category of grading-restricted gener-
alized Wp,q-modules, that is, modules with finite-dimensional generalized L0-eigenspaces. It is
a finite abelian category and a braided tensor category [46], but it is not rigid. On the other
hand, contragredient dual modules give Rep(Wp,q) the weaker duality structure of a ribbon
Grothendieck–Verdier category [9].

Now as discussed in the previous section A := Wp,q has the structure of a commutative
algebra in the braided tensor category C := Ind(Ocp,q), and G := PSL2(C) acts on A by algebra
automorphisms. Let ModC(A) be the category of modules for the commutative algebra A in C.
Specifically, an object of ModC(A) is an objectX of C equipped with a morphism µX : A⊠X → X
satisfying unitality and associativity

µX ◦ (ιA ⊠ IdX) = lX , µX ◦ (IdX ⊠ µX) = µX ◦ (µA ⊠ IdX) ◦ AA,A,X .

A morphism from (X1, µX1) to (X2, µX2) in ModC(A) is a C-morphism f : X1 → X2 such
that f ◦ µX1 = µX2 ◦ (IdA ⊠ f). Let Mod0C(A) be the category of local A-modules in C, which
consists of A-modules (X,µX) such that

µX ◦ RX,A ◦ RA,X = µX .

Then ModC(A) is a tensor category, and its subcategory Mod0C(A) is a braided tensor category.

By [83, Proposition 4.14 and Theorem 5.13], all simple objects of Rep(Wp,q) are (possibly
infinite) direct sums of simple Vir-modules in Ocp,q . Thus by the same argument as in the proof
of [21, Proposition 3.1.3], every object of Rep(Wp,q) is an object of Ind(Ocp,q) when considered
as a Vir-module. So by [47, Theorem 3.4] and [17, Theorem 3.65], Rep(Wp,q) is a braided tensor
subcategory of Mod0C(A). It is a proper subcategory because, for example, the ind-category C
contains infinite direct sums of Wp,q-modules, while Rep(Wp,q) does not.

There is a monoidal tensor functor of induction F : C → ModC(A) defined by

F (W ) = (A⊠W, (µA ⊠ IdW ) ◦ AA,A,W ), F (f) = IdA ⊠ f

for objects W and morphisms f in C. Induction is right exact because the tensor product ⊠
on C is right exact. Induction also satisfies Frobenius reciprocity, that is, there is a natural
isomorphism

HomC(W,X)
∼−→ HomA(F (W ), (X,µX)), f 7−→ µX ◦ (IdA ⊠ f) (5.1)

for all objects W in C and (X,µX) in ModC(A).

Definition 5.1. Let O0
cp,q be the full subcategory of Ocp,q consisting of objects W such that

F (W ) is an object of Rep(Wp,q).
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Using [17, Proposition 2.65], for example, O0
cp,q is equivalently the full subcategory of ob-

jects W of Ocp,q such that the double braiding R2
A,W in C is the identity and such that F (W )

has finite-dimensional conformal weight spaces and a lower bound on conformal weights. Be-
cause F is a monoidal functor, O0

cp,q is a monoidal subcategory ofOcp,q , and by [17, Theorem 2.67]
for example, F |O0

cp,q
: O0

cp,q → Rep(Wp,q) is a braided monoidal functor.

Proposition 5.2. The braided monoidal category O0
cp,q is closed under quotients, contains all

Kac modules Kr,s for r, s ∈ Z≥1, and contains all simple objects of Ocp,q .

Proof. First, O0
cp,q is closed under quotients because Ocp,q and Rep(Wp,q) are closed under

quotients, and because F is right exact and thus preserves surjections.
Next, to show that K1,2 is an object of O0

cp,q , we note from (4.1) and [63, Theorem 6.8] that

F (K1,2) ∼= Wp,q ⊠K1,2
∼= K1,2 ⊕

∞⊕
n=2

(2n− 1) · L1,2nq−2

as a Vir-module. Since the conformal weights satisfy

h1,2nq−2 = pqn2 − (2p+ q)n+
3

2
+

3p

4q
= h1,2 + (np− 1)(nq − 2),

the conformal weight spaces of F (K1,2) are finite dimensional, and the conformal weights of
F (K1,2) have a lower bound and are all congruent to h1,2 mod Z. The balancing equation for
the double braiding then implies

R2
Wp,q ,K1,2

= e2πiL0 ◦
(
e−2πiL0 ⊠ e−2πiL0

)
= e2πi(h1,2−0−h1,2) = IdWp,q ,K1,2 ,

so K1,2 is an object of O0
cp,q . By cp,q = cq,p symmetry, K2,1 is also an object of O0

cp,q .
For the remaining Kac modules in Ocp,q , it follows from [63, Theorem 4.7] that for r, s ∈ Z≥1,

there is a surjectionK⊠(r−1)
2,1 ⊠K(s−1)

1,2 ↠ Kr,s. So becauseO0
cp,q is a monoidal subcategory ofOcp,q

which is closed under quotients, Kr,s is an object of O0
cp,q for all r, s ∈ Z≥1. Finally, the simple

objects of Ocp,q can be parametrized by Lr,s for 1 ≤ r ≤ p and s ∈ Z≥1 such that ps ≥ qr. For
all such (r, s), the diagrams in [63, Section 2.3] show that Lr,s is a quotient of Kr,s, so all Lr,s
are objects of O0

cp,q . ■

Because G = PSL2(C) acts on Wp,q by automorphisms, the category ModC(A) has a G-
equivariantization ModC(A) as defined in [29, Section 2.7] for example. Concretely, this is
the category consisting of objects (X,µX) of ModC(A) equipped with a continuous representa-
tion φX : G→ AutC(X) such that φX(g) ◦ µX = µX ◦ (g ⊠ φX(g)) for all g ∈ G. Morphisms
from (X1, µX1 , φX1) to (X2, µX2 , φX2) in ModC(A)

G consist of all morphisms f : X1 → X2 in
ModC(A) such that φX2(g)◦f = f ◦φX1(g) for all g ∈ G. Note that the A-action µX of an object
of ModC(A) is equivalent to a Vcp,q -module intertwining operator YX : Wp,q ⊗X → X[log x]{x}
such that YX = µX ◦ Y⊠, where Y⊠ is the canonical tensor product Vcp,q -module intertwining
operator of type

(
X

Wp,qX

)
in C. Thus in vertex algebraic terms, the G-representation φX of an

object of ModC(A) satisfies

φX(g)(YX(a, x)b) = YX(g · a, x)φX(b) (5.2)

for all g ∈ G, a ∈Wp,q, and b ∈ X.
The G-equivariantization ModC(A)G is a braided tensor category (see, for example, [29] or the

discussion in [66, Section 7]), and as in [66, Lemma 7.13], induction defines a braided monoidal
functor F : Ocp,q → ModC(A)

G (though we cannot say that F is exact because Ocp,q is not
rigid). For an object W in Ocp,q , the representation φF (W ) is defined by φF (W )(g) = g ⊠ IdW
for all g ∈ G. Note that the subcategory Rep(Wp,q) ⊆ ModC(A) also has a G-equivariantization
which is a braided tensor subcategory of ModC(A)

G, and thus F restricts to a braided tensor
functor from O0

cp,q to Rep(Wp,q)
PSL2(C).



26 R. McRae and V. Sopin

Theorem 5.3. The braided monoidal induction functor F : C → ModC(A)
G is fully faithful. In

particular, F |O0
cp,q

: O0
cp,q → Rep(Wp,q)

PSL2(C) is fully faithful.

Proof. We continue to use the notation A for Wp,q considered as a commutative algebra
in C = Ind(Ocp,q), and we continue to set G = PSL2(C). We need to show that for any ob-
jects W1, W2 in C, the map

F : HomC(W1,W2) −→ HomG×A(F (W1), F (W2)), f 7−→ IdA ⊠ f

is an isomorphism. Since A = 1⊕ J as an object of C, where 1 = K1,1 and J =
⊕∞

n=1 V2n⊗L2n
as a G×Vir-module, we can define a projection πA : A→ 1 such that πA ◦ ιA = Id1. This allows
us to define

F̃ : HomG×A(F (W1), F (W2)) −→ HomC(W1,W2)

such that for Γ ∈ HomG×A(F (W1), F (W2)), F̃ (Γ) is the composition

W1

l−1
W1−−→ 1⊠W1

ιA⊠IdW1−−−−−→ A⊠W1
Γ−→ A⊠W2

πA⊠IdW2−−−−−−→ 1⊠W2

lW2−−→W2.

Since πA ◦ ιA = Id1, it is clear that F̃ (F (f)) = f for all C-morphisms f : W1 →W2.

To show that F
(
F̃ (Γ)

)
= Γ as well, note that if Γ: F (W1) → F (W2) is a morphism

in ModC(A)
G, then for all g ∈ G,

φF (W2)(g) ◦ Γ ◦ (ιA ⊠ IdW1) = Γ ◦ φF (W1)(g) ◦ (ιA ⊠ IdW1)

= Γ ◦ (g ⊠ IdW1) ◦ (ιA ⊠ IdW1) = Γ ◦ (ιA ⊠ IdW1).

That is, ImΓ ◦ (ιA ⊠ IdW1) is contained in the subspace of G-invariants of F (W2). In fact, this
subspace of G-invariants is precisely Im ιA ⊠ IdW2 since J ⊠ W2

∼=
⊕∞

n=1 V2n ⊗ (L2n ⊠ W2) is
a direct sum of non-trivial simple G-modules. It follows that

Γ ◦ (ιA ⊠ IdW1) = (ιA ⊠ IdW2) ◦ (πA ⊠ IdW2) ◦ Γ ◦ (ιA ⊠ IdW2).

Using this identity along with the triangle axiom of a tensor category the right unit property
of the algebra multiplication µA, and naturality of the associativity isomorphisms the mor-
phism F

(
F̃ (Γ)

)
= IdA ⊠ F̃ (Γ) reduces to the composition

A⊠W1

IdA⊠l−1
W1−−−−−→ A⊠ (1⊠W1)

IdA⊠(ιA⊠IdW1
)

−−−−−−−−−−→ A⊠ (A⊠W1)

IdA⊠Γ−−−−→ A⊠ (A⊠W2)
AA,A,W2−−−−−→ (A⊠A)⊠W2

µA⊠IdW2−−−−−−→ A⊠W2.

Since Γ is in particular a morphism in ModC(A), this composition equals

A⊠W1

IdA⊠l−1
W1−−−−−→ A⊠ (1⊠W1)

IdA⊠(ιA⊠IdW1
)

−−−−−−−−−−→ A⊠ (A⊠W1)

AA,A,W1−−−−−→ (A⊠A)⊠W1

µA⊠IdW1−−−−−−→ A⊠W1
Γ−→ A⊠W2.

But this is just Γ by naturality of the associativity isomorphisms, the triangle axiom, and
the right unit property of µA. This completes the proof that the induction functor F is an
isomorphism on morphisms. ■
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Unlike in [66, Theorem 7.14], where it was shown that the PSL2(C)-equivariantization of the
representation category of the Wp,1 triplet VOA is braided tensor equivalent to a representation
category of the Virasoro algebra at central charge cp,1, it is not true that induction at cp,q
central charge for coprime p, q ≥ 2 gives an equivalence between O0

cp,q and Rep(Wp,q)
PSL2(C).

The problem is that unlike in the q = 1 case, Wp,q is not a simple VOA but rather has the
simple Virasoro VOA Lcp,q as its non-trivial simple quotient. This allows us to construct objects

of Rep(Wp,q)
PSL2(C) which are not in the essential image of the induction functor.

Example 5.4. Let X = V ⊗W where V is any finite-dimensional continuous G = PSL2(C)-
module and (W,YW ) is any Lcp,q -module with finite-dimensional L0-eigenspaces. Then X admits
the G-representation φX(g) = g⊗ IdW , and X is also a Wp,q-module with vertex operator YX =
IdV ⊗ YW (π(−), x), where π : Wp,q → Lcp,q is the surjective VOA homomorphism. Further,
(5.2) holds because π(g · a) = π(a) for all a ∈ Wp,q and g ∈ PSL2(C), so (X,YX , φX) is an
object of Rep(Wp,q)

PSL2(C) However, if V does not contain the trivial G-module V0 as a direct
summand, then X is not in the essential image of the induction functor F , because any non-zero
induced module always contains a non-zero PSL2(C)-invariant subspace.

Our next result will show that the above examples are typical. We continue to use the
notation A for Wp,q considered as a commutative algebra in C = Ind(Ocp,q), and we continue
to set G = PSL2(C). Since G acts continuously on any object X of ModC(A), we have X =⊕∞

n=0 V2n⊗X2n, whereX2n = HomG(V2n, X) is a Vir-module which is an object of C. We useXG

to denote the set of G-invariants in X, that is, XG = V0 ⊗X0.

Lemma 5.5. If (X,YX , φX) is an object of ModC(A)
G such that XG = 0, then as a G × Vir-

module, X =
⊕∞

n=1 V2n ⊗X2n where each X2n is an Lcp,q -module.

Proof. By assumption, X =
⊕∞

n=1 V2n ⊗X2n where each X2n is an object of C. To show that
each X2n is actually an Lcp,q -module, recall the simple ideal Ip,q = L2p−1,1 ⊕

⊕∞
n=1 V2n ⊗ L2n

from (4.2).

For any n ∈ Z≥1, there is nothing to prove ifX2n = 0, so we assume X2n ̸= 0 and take an arbi-
trary non-zero b ∈ X2n. Then V2n⊗b is a non-zero G-submodule of X with basis

{
v(i) ⊗ b

}2n+1

i=1
,

where
{
v(i)

}2n+1

i=1
is an orthonormal basis with respect to a non-degenerate sl2-invariant bilinear

form on V2n. Now take some non-zero a ∈ L2n, so that V2n⊗a is a non-zero G-submodule of Ip,q
with basis

{
v(i) ⊗ a

}2n+1

i=1
. Then

2n+1∑
i=1

YX
(
v(i) ⊗ a, x

)(
v(i) ⊗ b

)
∈ XG[log x]{x} = 0,

so because Ip,q is a simple Wp,q-module, the argument in the proof of [61, Lemma 4.18] using
the analytic associativity of YX and the Jacobson Density Theorem (see also [28, Lemma 3.1])
shows that YX

(
v(i) ⊗ a, x

)(
v(i) ⊗ b

)
= 0 for all i. In particular, the annihilator ideal

AnnWp,q

(
v(i) ⊗ b

)
=

{
w ∈Wp,q | YX(w, x)

(
v(i) ⊗ b

)
= 0

}
is non-zero and thus contains Ip,q for all i and all b ∈ L2n.

Since X is spanned by the vectors v(i) ⊗ b for non-zero b ∈ X2n, n ≥ 1, and 1 ≤ i ≤
2n + 1, we have now shown that YX(a, x)b = 0 for all a ∈ Ip,q and b ∈ X. Thus (X,Y X)
is a well-defined Lcp,q -module, where Y X = YX(π(−), x) and π : Wp,q → Lcp,q is the quotient
VOA homomorphism. In particular, each X2n is a (not necessarily grading restricted) Lcp,q -
module. ■
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As a first application, Lemma 5.5 gives some information about the relation between arbitrary
objects of ModC(A)

G and the essential image of the induction functor. Indeed, by Frobenius
reciprocity (5.1), the inclusion ιX : XG ↪→ X induces the ModC(A)-morphism

fX = µX ◦ (IdA ⊠ ιX) : F
(
XG

)
−→ X,

and fX is further a morphism in ModC(A)
G because

φX(g) ◦ fX = φX(g) ◦ µX ◦ (IdA ⊠ ιX) = µX ◦ (g ⊠ φX(g)) ◦ (IdA ⊠ ιX)

= µX ◦ (IdA ⊠ ιX) ◦ (g ⊠ IdXG) = fX ◦ φF (XG)(g)

for all g ∈ G. Although we cannot say that fX is an isomorphism in general (in contrast with [66,
Theorem 7.14] on the relation between the Virasoro and triplet algebras at cp,1 central charge),
the restriction of fX to G-invariants is an isomorphism. So the kernel and cokernel of fX have
no G-invariants, and Lemma 5.5 immediately yields the following.

Corollary 5.6. For any object (X,YX ;φX) of ModC(A)
G, there is a PSL2(C) ×Wp,q-module

exact sequence

0 −→ L −→ F
(
XG

) fX−−→ X −→ L̃ −→ 0,

where L and L̃ are PSL2(C)×Lcp,q -modules on which Wp,q acts through the quotient map Wp,q ↠
Lcp,q .

We can also use Lemma 5.5 to show that the subcategory O0
cp,q ⊆ Ocp,q defined previously is

closed under contragredient modules:

Proposition 5.7. If W is an object of O0
cp,q , then so is its contragredient W ′.

Proof. By assumption, the induced module F (W ) =
⊕∞

n=0 V2n⊗ (L2n⊠W ) is an object of the
category Rep(Wp,q) of grading-restricted generalized Wp,q-modules. We need to show the same
for F (W ′). First, since W ′ has finite length and F is right exact, induction on the length shows
that F (W ′) has finite-dimensional conformal weight spaces and a lower bound on conformal
weights, provided the same holds for F (L) whenever L is a simple object of Ocp,q . Indeed, this
holds for F (L) by Proposition 5.2. It remains to show that µF (W ′) ◦ R2

Wp,q ,F (W ′) = µF (W ′), or
equivalently, the vertex operator

YF (W ′) = µF (W ′) ◦ Y⊠ : Wp,q ⊗ F (W ′) −→ F (W ′)[log x]{x}

involves only integral powers of the formal variable x.
To do so, we consider the Wp,q-module contragredient F (W )′, which like F (W ) is an object

of Rep(Wp,q), with vertex operator defined by

⟨YF (W )′(v, x)w
′, w⟩ =

〈
w′, YF (W )

(
exL1

(
−x−2

)L0v, x−1
)
w
〉

for v ∈ Wp,q, w
′ ∈ F (W )′, and w ∈ F (W ) [38]. Using this relation and (5.2), it is easy to see

that F (W )′ is also an object of Rep(Wp,q)
PSL2(C), with

⟨φF (W )′(g) · w′, w⟩ =
〈
w′, φF (W )(g)

−1 · w
〉

for all g ∈ PSL2(C), w′ ∈ F (W )′, and w ∈ F (W ). In particular, F (W )′ is the (graded) dual
of F (W ) as both PSL2(C)- and Vir-module, that is,

F (W )′ ∼=
∞⊕
n=0

V ∗
2n ⊗ (L2n ⊠W )′ ∼= W ′ ⊕

∞⊕
n=1

V2n ⊗ (L2n ⊠W )′ (5.3)

as a PSL2(C)× Vir-module.
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The decomposition (5.3) shows that F (W ′)PSL2(C) ∼= (F (W )′)PSL2(C) ∼= W ′, so we get
a PSL2(C)×Wp,q-module homomorphism

f : F (W ′)
∼−→ F

(
(F (W )′)PSL2(C)

) fF (W )′−−−−→ F (W )′,

which is an isomorphism on PSL2(C)-invariant subspaces. Thus we have an exact sequence

0 −→ Kerf −→ F (W ′) −→ Im f −→ 0, (5.4)

where Im f is an object of Rep(Wp,q) since it is a submodule of F (W )′, and Kerf has no PSL2(C)-
invariants. Thus by Lemma 5.5, Kerf is an Lcp,q -module, that is, a direct sum of modules Lr,s
for 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q− 1, and Wp,q acts on Kerf through the quotient map Wp,q ↠ Lcp,q .
Note that Kerf is a grading-restricted Lcp,q -module since F (W ′) has finite-dimensional conformal
weight spaces.

We now write the vertex operator YF (W ′) as

YF (W ′) =
∑

λ+Z∈C/Z

K∑
k=0

Yλ,kxλ(log x)k,

where Yλ,k : Wp,q⊗F (W ′) −→ F (W ′)((x)) is a Laurent series and K is related to the maximum
Jordan block size of L0 acting on F (W ′) (see [49, Proposition 3.20 (c)]). Note that K is finite
by (5.4), since L0 acts semisimply on Kerf and the maximum Jordan block size for L0 acting
on the object Im f of Rep(Wp,q) is finite. For any λ + Z ∈ C/Z, xλYλ,K is a Vcp,q -module
intertwining operator of type

( F (W ′)
Wp,qF (W ′)

)
. It suffices to show that Yλ,K = 0 if either λ /∈ Z

or K > 0.
Indeed, if λ /∈ Z or K > 0, then Yλ,K(a, x)b ∈ (Kerf)((x)) for all a ∈ Wp,q, b ∈ F (W ′)

because Im f ⊆ F (W )′ is local and hence

∑
λ+Z∈C/Z

K∑
k=0

f(Yλ,K(a, x)b)xλ(log x)k = f(YF (W ′)(a, x)b)

= YF (W )′(a, x)f(b) ∈ F (W )′((x)).

Thus xλYλ,K is an intertwining operator of type
( Kerf
Wp,qF (W ′)

)
. Moreover, Yλ,K |K1,1⊗F (W ′) = 0

since as a Vcp,q -module, F (W ′) is local with vertex operator YF (W ′)|K1,1⊗F (W ′). Since Wp,q =
K1,1⊕

⊕∞
n=1 V2n⊗L2n, it remains to show that Yλ,K |(V2n⊗L2n)⊗F (W ′) = 0. In fact, by symmetries

of intertwining operators, xλYλ,K induces a Vcp,q -module intertwining operator

Y : (Kerf)′ ⊗ F (W ′) −→ (V2n ⊗ L2n)((x)),

which equals 0 if and only if Yλ,K |(V2n⊗L2n)⊗F (W ′) = 0. By [63, Lemma 5.11], the image of Y is
an Lcp,q -module. Thus because L2n = L2(n+1)p−1,1 is not an Lcp,q -module, Y = 0 and then so
is Yλ,K |(V2n⊗L2n)⊗F (W ′). This completes the proof of the proposition. ■

It is almost immediate from Propositions 5.2 and 5.7 that O0
cp,q is a locally finite abelian

category. Indeed, since it is a full subcategory of the locally finite abelian category Ocp,q which
contains 0 and is closed under finite direct sums and quotients, all that remains is to show
that O0

cp,q is closed under submodules. But if W̃ is a submodule of an object W of O0
cp,q , then W̃ ′

is a quotient of W ′ and thus is an object of O0
cp,q , and then so is W̃ ∼=

(
W̃ ′)′. Moreover, by [9],

contragredient modules give O0
cp,q the structure of a ribbon Grothendieck–Verdier category,

which means that taking contragredients is a contravariant auto-equivalence of Ocp,q and that
there is a natural isomorphism Hom(W ⊠ X,K′

1,1)
∼= Hom(W,X ′) for all objects W and X

in Ocp,q .
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Theorem 5.8. O0
cp,q is a locally finite abelian ribbon Grothendieck–Verdier category.

In [63, Section 7], we conjectured that there should be a suitable tensor subcategory of Ocp,q

that contains all simple objects of Ocp,q and has enough projectives, and that such a subcategory
should be the right category for constructing a full (bulk) logarithmic conformal field theory
based on the Virasoro algebra, that is, a logarithmic minimal module at cp,q central charge. We
now conjecture that O0

cp,q is the appropriate subcategory of Ocp,q for logarithmic conformal field
theory. Although we have not yet shown that O0

cp,q has enough projectives, it may be possible
to prove this using the existence and structure of projective objects in Rep(Wp,q) [69]. We leave
the problem of obtaining projective objects in O0

cp,q to future work.

6 Conclusion and outlook

In this paper, we have given a new tensor-categorical construction of the triplet W -algebra Wp,q

for coprime p, q ∈ Z≥2. Specifically, we have “glued” RepPSL2 with a subcategory of Vir-
modules at central charge cp,q having PSL2-fusion rules, and we have then appropriately modified
to obtain the non-simple VOA Wp,q. Due to the involvement of RepPSL2 in the construction,
a major corollary is that the automorphism group of Wp,q is PSL2(C), with no need to use
complicated analysis of screening operators to give an explicit action of PSL2(C). It would be
interesting to explore whether the PSL2(C)-action on Wp,q could be exploited to simplify the
proofs from [83] of important properties of Wp,q such as C2-cofiniteness and the classification of
its simple modules.

We have also defined a tensor subcategory O0
cp,q of Vir-modules at central charge cp,q that in-

duce to ordinary modules for Wp,q, and we have shown that it contains all simple objects of Ocp,q

and is closed under contragredients and thus is a ribbon Grothendieck–Verdier category. The
main remaining open problems for O0

cp,q are to show that it has enough projective objects, and to
explore its applications in logarithmic conformal field theory. For the latter problem, our result
that O0

cp,q is a Grothendieck–Verdier category will be key since there is now a theory of module
categories and Frobenius algebras for Grothendieck–Verdier categories under development [41],
and these structures are important in constructions of full CFTs [79, 80].

Beyond conformal field theory, topological quantum field theories and invariants of low-
dimensional manifolds can be constructed from braided tensor categories that are not necessarily
semisimple (see, for example, [11, 12, 14, 26] for some recent results), which is significant since
for example semisimple 4-dimensional topological field theories cannot detect exotic smooth
structures [76]. While most results in this direction assume rigidity for the braided tensor
categories under consideration, it would also be interesting to explore how much these results
generalize to non-rigid categories such as Rep(Wp,q) and O0

cp,q , or to the module categories for
universal affine sl2 VOAs studied in [65].

The triplet algebras Wp,q are special cases of a large class of VOAs sometimes called Feigin–
Tipunin algebras [36, 81]. In general, these VOAs are (or are expected to be) large extensions
of an affine W -algebra associated to a simple Lie algebra at a given level, such that the affine
W -subalgebra is the fixed points of a corresponding Lie group of automorphisms. Thus Wp,q is
the Feigin–Tipunin algebra associated to the principal affine W -algebra of sl2 at level −2 + p

q .
It would be interesting to explore whether the methods of this paper could be used to study
Feigin–Tipunin algebras beyond Wp,q. In fact, we expect that the methods of Section 4 can be
combined with the results of [65] to give a tensor-categorical construction of the Feigin–Tipunin
algebra associated to the universal affine VOA of sl2 (the affine W -algebra of sl2 for the trivial
nilpotent element) at level −2+ p

q for coprime p, q ∈ Z≥1; when p = 1, these algebras have been
recently studied in [24].
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Finally, we note that there are vertex operator superalgebra analogues of the triplet W -
algebras which are extensions of the N = 1 super Virasoro vertex operator superalgebra [4].
We expect that our methods could also apply to give tensor-categorical constructions of these
algebras, using the N = 1 super Virasoro tensor categories recently constructed in [20].
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[59] Koshida S., Kytölä K., The quantum group dual of the first-row subcategory for the generic Virasoro VOA,
Comm. Math. Phys. 389 (2022), 1135–1213, arXiv:2105.13839.

[60] McRae R., On the tensor structure of modules for compact orbifold vertex operator algebras, Math. Z. 296
(2020), 409–452, arXiv:1810.00747.

[61] McRae R., Twisted modules and G-equivariantization in logarithmic conformal field theory, Comm. Math.
Phys. 383 (2021), 1939–2019, arXiv:1910.13226.

[62] McRae R., Deligne tensor products of categories of modules for vertex operator algebras, arXiv:2304.14023.

[63] McRae R., Sopin V., Fusion and (non)-rigidity of Virasoro Kac modules in logarithmic minimal models at
(p, q)-central charge, Phys. Scr. 99 (2024), 035233, 42 pages, arXiv:22302.08907.

[64] McRae R., Yang J., An sl2-type tensor category for the Virasoro algebra at central charge 25 and applications,
Math. Z. 303 (2023), 32, 40 pages, arXiv:2202.07351.

[65] McRae R., Yang J., The nonsemisimple Kazhdan–Lusztig category for affine sl2 at admissible levels, Proc.
Lond. Math. Soc. 130 (2025), e70043, 83 pages, arXiv:2312.01088.

[66] McRae R., Yang J., Structure of Virasoro tensor categories at central charge 13−6p−6p−1 for integers p > 1,
Trans. Amer. Math. Soc. 378 (2025), 7451–7509, arXiv:2011.02170.

[67] Moore G., Seiberg N., Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989),
177–254.

[68] Morin-Duchesne A., Rasmussen J., Ridout D., Boundary algebras and Kac modules for logarithmic minimal
models, Nuclear Phys. B 899 (2015), 677–769, arXiv:1503.07584.

https://doi.org/10.1016/j.jpaa.2008.07.016
https://doi.org/10.1016/j.jpaa.2008.07.016
http://arxiv.org/abs/0712.4109
https://doi.org/10.1007/s00220-015-2292-1
http://arxiv.org/abs/1406.3420
https://doi.org/10.1007/978-3-642-39383-9
http://arxiv.org/abs/1012.4193
http://arxiv.org/abs/1012.4196
http://arxiv.org/abs/1012.4197
http://arxiv.org/abs/1012.4198
http://arxiv.org/abs/1012.4199
http://arxiv.org/abs/1012.4202
http://arxiv.org/abs/1110.1929
http://arxiv.org/abs/1110.1931
https://doi.org/10.1023/A:1007364912784
http://arxiv.org/abs/q-alg/9601025
https://doi.org/10.2307/2152763
https://doi.org/10.1007/s00220-021-04266-w
http://arxiv.org/abs/2105.13839
https://doi.org/10.1007/s00209-019-02445-z
http://arxiv.org/abs/1810.00747
https://doi.org/10.1007/s00220-020-03882-2
https://doi.org/10.1007/s00220-020-03882-2
http://arxiv.org/abs/1910.13226
http://arxiv.org/abs/2304.14023
https://doi.org/10.1088/1402-4896/ad23aa
http://arxiv.org/abs/22302.08907
https://doi.org/10.1007/s00209-022-03197-z
http://arxiv.org/abs/2202.07351
https://doi.org/10.1112/plms.70043
https://doi.org/10.1112/plms.70043
http://arxiv.org/abs/2312.01088
https://doi.org/10.1090/tran/9449
http://arxiv.org/abs/2011.02170
https://doi.org/10.1007/BF01238857
https://doi.org/10.1016/j.nuclphysb.2015.08.017
http://arxiv.org/abs/1503.07584


34 R. McRae and V. Sopin

[69] Nakano H., Projective covers of the simple modules for the triplet W -algebra Wp+,p− , arXiv:2305.12448.

[70] Nakano H., Fusion rules for the triplet W -algebra Wp+,p− , arXiv:2308.15954.

[71] Pearce P.A., Rasmussen J., Coset graphs in bulk and boundary logarithmic minimal models, Nuclear Phys. B
846 (2011), 616–649, arXiv:1010.5328.

[72] Rasmussen J., W-extended logarithmic minimal models, Nuclear Phys. B 807 (2009), 495–533,
arXiv:0805.2991.

[73] Rasmussen J., Fusion of irreducible modules in WLM(p, p′), J. Phys. A 43 (2010), 045210, 27 pages,
arXiv:0906.5414.

[74] Rasmussen J., Pearce P.A., W-extended fusion algebra of critical percolation, J. Phys. A 41 (2008), 295208,
30 pages, arXiv:0804.4335.

[75] Reshetikhin N., Turaev V.G., Invariants of 3-manifolds via link polynomials and quantum groups, Invent.
Math. 103 (1991), 547–597.

[76] Reutter D., Semisimple four-dimensional topological field theories cannot detect exotic smooth structure,
J. Topol. 16 (2023), 542–566, arXiv:2001.02288.

[77] Ridout D., Wood S., Modular transformations and Verlinde formulae for logarithmic (p+, p−)-models, Nu-
clear Phys. B 880 (2014), 175–202, arXiv:1310.6479.

[78] Rowell E., Stong R., Wang Z., On classification of modular tensor categories, Comm. Math. Phys. 292
(2009), 343–389, arXiv:0712.1377.

[79] Runkel I., Fjelstad J., Fuchs J., Schweigert C., Topological and conformal field theory as Frobenius alge-
bras, in Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math., Vol. 431, American
Mathematical Society, Providence, RI, 2007, 225–247, arXiv:math.CT/0512076.

[80] Runkel I., Gaberdiel M.R., Wood S., Logarithmic bulk and boundary conformal field theory and the full
centre construction, in Conformal Field Theories and Tensor Categories, Math. Lect. Peking Univ., Springer,
Heidelberg, 2014, 93–168, arXiv:1201.6273.

[81] Sugimoto S., On the Feigin–Tipunin conjecture, Selecta Math. (N.S.) 27 (2021), 86, 43 pages,
arXiv:2004.05769.

[82] Tsuchiya A., Wood S., The tensor structure on the representation category of the Wp triplet algebra,
J. Phys. A 46 (2013), 445203, 40 pages, arXiv:1201.0419.

[83] Tsuchiya A., Wood S., On the extended W -algebra of type sl2 at positive rational level, Int. Math. Res.
Not. 2015 (2015), 5357–5435, arXiv:1302.6435.

[84] Turaev V.G., Viro O.Y., State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31 (1992),
865–902.

[85] Wang W., Rationality of Virasoro vertex operator algebras, Int. Math. Res. Not. 1993 (1993), 197–211.

[86] Wood S., Fusion rules of the Wp,q triplet models, J. Phys. A 43 (2010), 045212, 18 pages, arXiv:0907.4421.

http://arxiv.org/abs/2305.12448
http://arxiv.org/abs/2308.15954
https://doi.org/10.1016/j.nuclphysb.2011.01.014
http://arxiv.org/abs/1010.5328
https://doi.org/10.1016/j.nuclphysb.2008.07.029
http://arxiv.org/abs/0805.2991
https://doi.org/10.1088/1751-8113/43/4/045210
http://arxiv.org/abs/0906.5414
https://doi.org/10.1088/1751-8113/41/29/295208
http://arxiv.org/abs/0804.4335
https://doi.org/10.1007/BF01239527
https://doi.org/10.1007/BF01239527
https://doi.org/10.1112/topo.12288
http://arxiv.org/abs/2001.02288
https://doi.org/10.1016/j.nuclphysb.2014.01.010
https://doi.org/10.1016/j.nuclphysb.2014.01.010
http://arxiv.org/abs/1310.6479
https://doi.org/10.1007/s00220-009-0908-z
http://arxiv.org/abs/0712.1377
https://doi.org/10.1090/conm/431/08275
https://doi.org/10.1090/conm/431/08275
http://arxiv.org/abs/math.CT/0512076
https://doi.org/10.1007/978-3-642-39383-9_4
http://arxiv.org/abs/1201.6273
https://doi.org/10.1007/s00029-021-00662-1
http://arxiv.org/abs/2004.05769
https://doi.org/10.1088/1751-8113/46/44/445203
http://arxiv.org/abs/1201.0419
https://doi.org/10.1093/imrn/rnu090
https://doi.org/10.1093/imrn/rnu090
http://arxiv.org/abs/1302.6435
https://doi.org/10.1016/0040-9383(92)90015-A
https://doi.org/10.1155/S1073792893000212
https://doi.org/10.1088/1751-8113/43/4/045212
http://arxiv.org/abs/0907.4421

	1 Introduction
	2 Some Virasoro fusion rules
	3 An sl_2-type tensor category
	4 Commutative algebras and vertex operator algebras
	5 Relations between Virasoro and triplet algebra representation theory
	6 Conclusion and outlook
	References

