|
SIGMA 22 (2026), 013, 74 pages arXiv:2308.03438
https://doi.org/10.3842/SIGMA.2026.013
Hochschild Cohomology of the Fukaya Category via Floer Cohomology with Coefficients
Jack Smith
Cambridge, UK
Received January 28, 2025, in final form January 25, 2026; Published online February 11, 2026
Abstract
Given a monotone Lagrangian $L$ in a compact symplectic manifold $X$, we construct a commutative diagram relating the closed-open string map $\mathcal{CO}_\lambda \colon \operatorname{QH}^*(X) \to \operatorname{HH}^*(\mathcal{F} (X)_\lambda)$ to a variant of the length-zero closed-open map on $L$ incorporating $\mathbf{k}[\operatorname{H}_1(L; \mathbb{Z})]$ coefficients, denoted $\mathcal{CO}^0_\mathbf{L}$. The former is categorically important but very difficult to compute, whilst the latter is geometrically natural and amenable to calculation. We further show that, after a suitable completion, injectivity of $\mathcal{CO}^0_\mathbf{L}$ implies injectivity of $\mathcal{CO}_\lambda$. Via Sheridan's version of Abouzaid's generation criterion, this gives a powerful tool for proving split-generation of the Fukaya category. We illustrate this by showing that the real part of a monotone toric manifold (of minimal Chern number at least 2) split-generates the Fukaya category in characteristic 2. We also give a short new proof (modulo foundational assumptions in the non-monotone case) that the Fukaya category of an arbitrary compact toric manifold is split-generated by toric fibres.
Key words: Fukaya category; Lagrangian submanifold; Floer cohomology.
pdf (1186 kb)
tex (95 kb)
References
- Abouzaid M., A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. 112 (2010), 191-240, arXiv:1001.4593.
- Abouzaid M., Family Floer cohomology and mirror symmetry, in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, 813-836, arXiv:1404.2659.
- Abreu M., Macarini L., Remarks on Lagrangian intersections in toric manifolds, Trans. Amer. Math. Soc. 365 (2013), 3851-3875, arXiv:1105.0640.
- Albers P., A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. 2008 (2008), rnm134, 56 pages, arXiv:math.SG/0512037.
- Alston G., Amorim L., Floer cohomology of torus fibers and real Lagrangians in Fano toric manifolds, Int. Math. Res. Not. 2012 (2012), 2751-2793, arXiv:1003.3651.
- Amorim L., Cho C.-H., Ungraded matrix factorizations as mirrors of non-orientable Lagrangians, Acta Math. Sin. (Engl. Ser.) 40 (2024), 26-42, arXiv:2205.01046.
- Auroux D., Mirror symmetry and $T$-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51-91, arXiv:0706.3207.
- Batyrev V.V., Quantum cohomology rings of toric manifolds, Astérisque 218 (1993), 9-34, arXiv:alg-geom/9310004.
- Biran P., Cornea O., Quantum structures for Lagrangian submanifolds, arXiv:0708.4221.
- Biran P., Cornea O., Lagrangian topology and enumerative geometry, Geom. Topol. 16 (2012), 963-1052, arXiv:1011.2271.
- Cannas da Silva A., Lectures on symplectic geometry, Lecture Notes in Math., Vol. 1764, Springer, Berlin, 2001.
- Charette F., Cornea O., Categorification of Seidel's representation, Israel J. Math. 211 (2016), 67-104, arXiv:1307.7235.
- Cho C.-H., Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004), 1803-1843, arXiv:math.SG/0308224.
- Cho C.-H., Hong H., Lau S.-C., Localized mirror functor for Lagrangian immersions, and homological mirror symmetry for $\mathbb{P}^1_{a,b,c}$, J. Differential Geom. 106 (2017), 45-126, arXiv:1308.4651.
- Cho C.-H., Hong H., Lau S.-C., Localized mirror functor constructed from a Lagrangian torus, J. Geom. Phys. 136 (2019), 284-320, arXiv:1406.4597.
- Cho C.-H., Oh Y.-G., Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), 773-814, arXiv:math.SG/0308225.
- Cohen R.L., Jones J.D.S., A homotopy theoretic realization of string topology, Math. Ann. 324 (2002), 773-798, arXiv:math.GT/0107187.
- Cornea O., Lalonde F., Cluster homology: An overview of the construction and results, Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 1-12.
- Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., Vol. 124, American Mathematical Society, Providence, RI, 2011.
- Damian M., Floer homology on the universal cover, Audin's conjecture and other constraints on Lagrangian submanifolds, Comment. Math. Helv. 87 (2012), 433-462, arXiv:1006.3398.
- Danilov V.I., The geometry of toric varieties, Russian Math. Surveys 33 (1978), 97-154.
- Duistermaat J.J., Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution, Trans. Amer. Math. Soc. 275 (1983), 417-429.
- Eilenberg S., Moore J.C., Limits and spectral sequences, Topology 1 (1962), 1-23.
- Eisenbud D., Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., Vol. 150, Springer, New York, 1995.
- Evans J.D., Lekili Y., Generating the Fukaya categories of Hamiltonian $G$-manifolds, J. Amer. Math. Soc. 32 (2019), 119-162, arXiv:1507.05842.
- Fukaya K., Floer homology for $3$ manifold with boundary I, Preprint, 1999, available at https://www.math.kyoto-u.ac.jp/ fukaya/bdrt1.pdf.
- Fukaya K., Floer homology and mirror symmetry. II, in Minimal Surfaces, Geometric Analysis and Symplectic Geometry (Baltimore, MD, 1999), Adv. Stud. Pure Math., Vol. 34, Mathematical Society of Japan, Tokyo, 2002, 31-127.
- Fukaya K., Floer homology for families—a progress report, in Integrable Systems, Topology, and Physics (Tokyo, 2000), Contemp. Math., Vol. 309, American Mathematical Society, Providence, RI, 2002, 33-68.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Stud. Adv. Math., Vol. 46, American Mathematical Society, Providence, RI, 2009.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), 23-174, arXiv:0802.1703.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), 609-711, arXiv:0810.5654.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory and mirror symmetry on compact toric manifolds, Astérisque 376 (2016), vi+340 pages, arXiv:1009.1648.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Antisymplectic involution and Floer cohomology, Geom. Topol. 21 (2017), 1-106.
- Ganatra S., Symplectic cohomology and duality for the wrapped Fukaya category, Ph.D. Thesis, massachusetts Institute of Technology, 2012, available at https://www.proquest.com/docview/1238001248, arXiv:1304.7312.
- Ganatra S., Automatically generating Fukaya categories and computing quantum cohomology, arXiv:1605.07702.
- Givental A.B., Homological geometry and mirror symmetry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 472-480.
- Givental A.B., A mirror theorem for toric complete intersections, in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math., Vol. 160, Birkhäuser, Boston, MA, 1998, 141-175, arXiv:alg-geom/9701016.
- Haug L., On the quantum homology of real Lagrangians in Fano toric manifolds, Int. Math. Res. Not. 2013 (2013), 3171-3220, arXiv:1108.5605.
- Hu S., Lalonde F., A relative Seidel morphism and the Albers map, Trans. Amer. Math. Soc. 362 (2010), 1135-1168, arXiv:math.SG/0510260.
- Hyvrier C., Lagrangian circle actions, Algebr. Geom. Topol. 16 (2016), 1309-1342, arXiv:1307.8196.
- Keller B., Derived invariance of higher structures on the Hochschild complex, Preprint, available at https://webusers.imj-prg.fr/ bernhard.keller/publ/dih.pdf.
- Konstantinov M., Higher rank local systems in Lagrangian Floer theory, arXiv:1701.03624.
- McDuff D., Tolman S., Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. 2006 (2006), 72826, 77 pages, arXiv:math.SG/0404338.
- Nishinou T., Nohara Y., Ueda K., Potential functions via toric degenerations, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 31-33, arXiv:0812.0066.
- Oh Y.-G., Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Int. Math. Res. Not. (1996), 305-346.
- Perutz T., Sheridan N., Constructing the relative Fukaya category, J. Symplectic Geom. 21 (2023), 997-1076, arXiv:2203.15482.
- Ritter A.F., Circle actions, quantum cohomology, and the Fukaya category of Fano toric varieties, Geom. Topol. 20 (2016), 1941-2052, arXiv:1406.7174.
- Ritter A.F., Smith I., The monotone wrapped Fukaya category and the open-closed string map, Selecta Math. (N.S.) 23 (2017), 533-642, arXiv:1201.5880.
- Seidel P., $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997), 1046-1095, arXiv:dg-ga/9511011.
- Seidel P., Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), 103-149, arXiv:dg-ga/9511011.
- Seidel P., Fukaya categories and Picard-Lefschetz theory, Zur. Lect. Adv. Math., European Mathematical Society (EMS), Zürich, 2008.
- Seidel P., Abstract analogues of flux as symplectic invariants, Mém. Soc. Math. Fr. (N.S.) 137 (2014), 135 pages, arXiv:1108.0394.
- Sheridan N., Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space, Invent. Math. 199 (2015), 1-186, arXiv:1111.0632.
- Sheridan N., On the Fukaya category of a Fano hypersurface in projective space, Publ. Math. Inst. Hautes Études Sci. 124 (2016), 165-317, arXiv:1306.4143.
- Smith I., Floer cohomology and pencils of quadrics, Invent. Math. 189 (2012), 149-250, arXiv:1006.1099.
- Smith J., Floer cohomology of Platonic Lagrangians, J. Symplectic Geom. 17 (2019), 477-601, arXiv:1510.08031.
- Smith J., Quantum cohomology and closed-string mirror symmetry for toric varieties, Q. J. Math. 71 (2020), 395-438, arXiv:1802.00424.
- Smith J., Superfiltered $A_\infty$-deformations of the exterior algebra, and local mirror symmetry, J. Lond. Math. Soc. 105 (2022), 2203-2248, arXiv:1910.01096.
- The Stacks Project Authors, The Stacks Project, 2023, available at https://stacks.math.columbia.edu.
- Tonkonog D., The closed-open string map for $S^1$-invariant Lagrangians, Algebr. Geom. Topol. 18 (2018), 15-68, arXiv:1504.01621.
- Vakil R., The rising sea—foundations of algebraic geometry, Princeton University Press, Princeton, NJ, 2025.
- Weibel C.A., An introduction to homological algebra, Cambridge Stud. Adv. Math., Vol. 38, Cambridge University Press, Cambridge, 1994.
- Zinger A., Pseudocycles and integral homology, Trans. Amer. Math. Soc. 360 (2008), 2741-2765, arXiv:math.AT/0605535.
|
|