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Abstract. Hausdorfl Morita equivalence is an equivalence relation on singular foliations,
which induces a bijection between their leaves. Our main statement is that linearizability
along a leaf is invariant under Hausdorff Morita equivalence. The proof relies on a charac-
terization of tubular neighborhood embeddings using Fuler-like vector fields.
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1 Introduction

This note is concerned with singular foliations, understood as a module of vector fields as in [1],
following the work of Stefan and Sussman. A singular foliation F on a manifold M gives rise
to a decomposition of M into immersed submanifolds tangent to F, called leaves. For instance,
any action of a Lie group G on a manifold M gives rise to such a singular foliation, namely the
C2°(M)-span of the vector fields generating the action. The underlying decomposition of M is
by the orbits of the G-action, if G is connected.

Whenever L is an embedded leaf of a singular foliation F, by linearizing the vector fields
in F, one obtains a singular foliation Jj, on the normal bundle vL, called linearized folia-
tion. The linearization question asks when the singular foliations F and Fj;, are isomorphic,
in a neighborhood of L. When L is a point, sufficient criteria for linearization were given
by Cerveau [7].

Hausdorff Morita equivalence [14] is a notion of equivalence for singular foliations, weaker
than isomorphism, which among other things preserves the geometry transverse to the leaves,
and induces a homeomorphism of leaf spaces. Our main result is that it preserves linearizabil-

ity.

Theorem (Theorem 3.1). Let (M, F1) and (Ma, Fa) be Hausdorff Morita equivalent singular
foliations, and Ly C My, Lo C Ms corresponding embedded leaves. Then Fi is linearizable
around Ly if and only if Fo is linearizable around Lo.

We remark that the dimensions of L; and Lo are generally different, hence this theorem
allows to reduce the linearization question to leaves of smaller dimension, which in certain cases
are simply points.

By the very definition of Hausdorff Morita equivalence, the theorem follows immediately from
the following proposition.

This paper is a contribution to the Special Issue on Interactions of Poisson Geometry, Lie Theory and
Symmetry in honor of Rui Loja Fernandes for his 60th birthday. The full collection is available at https://sigma-
journal.com/Fernandes.html
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Proposition (Proposition 3.2). Let w: P — M be a surjective submersions with connected
fibers. Let F be a singular foliation on M and L C M an embedded leaf. Then F is linearizable
around L if and only if the pullback foliation w='F is linearizable around =—1(L).

The main tool we use to prove this result is the correspondence between tubular neighborhood
embeddings and Euler-like vector fields [5, 6, 15]. The precise relation between linearization
and Euler-like vector fields is given in Proposition 2.20, which extends a result of [7, Section 8]
for points. With this tool at hand, the direct implication in the proposition is easy to prove,
by lifting Euler-like vector fields. The converse implication requires more work, since a given
Euler-like vector field is not necessarily w-projectable.

In the last section of the paper, we present examples. Further, using the above theorem,
we obtain a condition under which the linearizability of a singular foliation F along a leaf is
implied by the linearizability of a simpler foliation, namely the restriction of F to a slice.

Corollary (Corollary 4.15). Let F be a singular foliation arising from a Hausdorff, source
connected, Lie groupoid G. Let L be an embedded leaf, N a slice. Suppose the restricted Lie
groupoid Gy =t (N)Ns™}(N) is source connected. Then, whenever (N, L&l}") is linearizable
around the point N N L, the singular foliation F is linearizable around L.

2 Singular foliations and their linearization

We present some facts about singular foliations, their linearization, and their Hausdorff Morita
equivalence. We also recall a theorem about tubular neighborhood embeddings.

2.1 Singular foliations

We recall the notion of singular foliation from [1], see also the comprehensive monograph [16].

Definition 2.1. A singular foliation on a manifold M is a C°°(M)-submodule F of the com-
pactly supported vector fields X.(M), involutive with respect to the Lie bracket and locally
finitely generated. A foliated manifold is a manifold with a singular foliation.

Remark 2.2. For any open set U C M, consider the following modules:

Flv =1 F:=={X|y : X € F and supp(X) C U},
W F = {X eX(U): fX €' F forall f € C(U)}.

Notice that if Z € F, its restriction Z |y is not compactly supported in general, and Z|y € L(_Jlf .
We say that F is locally finitely generated if for every point of M there is an open neighbor-
hood U and finitely many X1, ..., X, € ;' F such that L[_Jl./—" = Spange(;y{Yi}. In that case,
Lal}' = Spances 1y {Yi}, see [4, Example 3 (iii)]. When U = M, we obtain the global hull of F:

F:={XecX(M): fXe€F forall feC®M)}.

Remark 2.3. A singular foliation on a manifold M can be equivalently regarded as an involutive,
locally finitely generated subsheaf of the sheaf of C'"*°-modules on M given by the smooth vector
fields. We will not use this point of view in this paper.

By the Stefan—Sussmann theorem, a singular foliation induces a partition of the manifold into
immersed submanifolds, called leaves. For results on the structure of singular foliations nearby
a given leaf, see [10, 11, 17].
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Example 2.4. Any Lie algebroid A induces a singular foliation on its base manifold M, namely
p(T(A)), where p: A — T M denotes the anchor map. In particular, any Lie groupoid over M
induces a singular foliation (via its Lie algebroid).

Definition 2.5. Let (M, F) be a foliated manifold and 7: P — M a submersion. The pullback
foliation w1 F [1, Proposition 1.10] is the CS°(P)-span of the set of projectable vector fields
on P which project to elements of F.

In this definition, one needs to take the C2°(P)-span (rather than the C°°(P)-span) because
projectable vector fields are usually not compactly supported. In [1, Proposition 1.10], the
pullback foliation is defined for any map transverse to F. We will need the case of the inclusion
ts: S — M of a submanifold transverse to the foliation: in that case,

Lgl}“ = Spangee(g){X|s : X € F is tangent to S}.

We now consider flows. In [1, Proposition 1.6] (see also [13, Proposition 2.3]), it is shown
that for any singular foliation F and X € F, the time-1 flow of X preserves F. We need
an extension of that result to infinitesimal symmetries, i.e., vector fields X satisfying [X, F] C F.
For compactly supported X this appears in [12, Proposition 2.1.3], and in the form presented
here it appears in [16, Proposition 1.7.10] (see also [18, Proposition 1.3]).

Proposition 2.6. Let (M,F) be a foliated manifold and X a vector field on M such that
[X,F] C F. Then the time-t flow ¢ of X, where it exists, satisfies (¢r)«F C F.

We will need a technical lemma.

Lemma 2.7. Let (M,F) be a foliated manifold, {Xt},e01) a smooth family of vector fields
lying in F. Assume that there exists a cover {Uy} of M by open subsets so that on each Uy, the
singular foliation F admits a finite number of generators Yi*, ..., Y* € X(Uy) with the following

property:
Xilu, = > f7°YE,
i

where the coefficients ff’o‘ € C*(U,) depend smoothly on t. Then the vector field

1
X 2:/ Xtdt
0

lies in the global hull F.

Proof. Take a cover {U,}, generators Y;* and functions ff "“ as above. Since

</1ff’”dt> € C™(U,),
0

we can write

1
Xl = ([ oae e

i
which lies in L(_]i]: by Remark 2.2.
Fix a partition of unity {p,} subordinate to the above cover of M. Take f € C2°(M). Notice

that {« : supp(ps) Nsupp(f) # @} is a finite set, as a consequence of the partition of unity
being locally finite (see [4, proof of Proposition 1]). We have

JX =3 fraX.
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—

This is a finite sum, and each summand lies in F because we showed that X|y, € L[_]al}" and
fpa € CZ(M) has support in U,. Hence fX € F. As this holds for all f € CZ°(M), we
conclude that X € F. |

Remark 2.8. The statement of Lemma 2.7 no longer holds if we omit the assumption on the
t,a
smooth dependence of the f, on t.

We now look at how the flow of an element of F acts on an infinitesimal symmetry of F.

Proposition 2.9. Let (M, F) be a foliated manifold, Y € X(M) such that [Y,F] C F. Fix
X € F, denote its time-1 flow by gi){( Then

(67).Y Y e F.
Proof. Notice that

1d
(@F).y =Y = [ o). a

we would like to apply Lemma 2.7 to conclude that lies in F.
To apply Lemma 2.7, notice that for all ¢ € [0,1] the integrand satisfies

d
S(0),Y = (6), 7. X] (21)

by a standard computation (see for instance [13, proof of Proposition 2.3]). This lies in F, since
[Y, X] € F by assumption and since ¢;* is an automorphism of (M, F) by [1, Proposition 1.6].

We now check that the smooth family of vector fields (2.1) satisfies the assumptions of
Lemma 2.7. Since supp(X) is compact, F is finitely generated on an open subset U of M
containing supp(X), as shown by the argument at the beginning of [13, proof of Proposition 2.3].
We denote a set of generators by Yi,...,Y, € X(U).

Since [Y, X] € F is supported on U, we can write [Y, X||y = >, ¢;¥; for g; € C°(U).
It is shown in [13, proof of Proposition 2.3] that (¢;) Y; = > f;(t)YJ for some f;(t) e C>®(U)
depending smoothly on ¢. Hence on U the right-hand side of (2.1) equals

S g0 0%) (61)-Yi = Y (910 6% Fi(1)Y;.

i 2]
As the coefficients (g; o ¢~,) fJZ (t) depend smoothly on ¢, and as the integrand (2.1) vanishes on
M \ Supp(X), the assumptions of Lemma 2.7 are satisfied. |

2.2 The linearized foliation

We recall the linearization of a singular foliation along an (embedded) leaf, following [3, Sec-
tions 4.1 and 4.3]. Consider a singular foliation (M, F) and an embedded leaf L. Denote by
vL :=TM)|/TL the normal bundle of L. Recall that there is a canonical identification

IL/I =T(*L) = CR(vL),  [f]= dflL,

where I, denotes the functions on M that vanish on L, C0(vL) the fiberwise linear functions
on the normal bundle, and [f] := (f mod I%) for f e Iy.
Every vector field Y on M tangent to L gives rise to a fiberwise linear vector field Y}, on vL,
which acts as follows on the fiberwise constant functions and on C£°(vL) 2 I, /1%
Yin(g9) := (Y[z)(g9)  for all g € C*(L),
Yi[f] :=[Y(f)]  forall felL.

Here, given a function on L, abusing notation we denote its pullback to vL with the same letter.
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We denote by x1in (L) the Lie algebra of fiberwise linear vector fields on v L, i.e., those which
preserve the fiberwise constant functions and the fiberwise linear functions. The above yields
a linear map

lin: F— X]in(l/L), Y — Yin
which preserves brackets. Notice that lin factors through a map of C°°(L)-modules
lin: .F/IL]: — Xlin(yL>- (22)

Definition 2.10. The linearization of F along L is the singular foliation Jj;, on v L generated
by the image of lin, i.e., the C°(vL)-span of {Yii, : Y € F}.

Definition 2.11. We say that F is linearizable about L if there exist neighborhoods V' C v L of
the zero section and U C M of L, and a tubular neighborhood embedding (see Definition 2.14)
V — U inducing an isomorphism between the singular foliations Fji, |y and F|y.

Not all singular foliations are linearizable. For instance, the singular foliation F on the real
line generated by 20, is not linearizable along the leaf L = {0}: the linearized foliation Fi;, is
the zero foliation, for which each point is a leaf.

Remark 2.12. We have F/IF = I'.(Ar) for a transitive Lie algebroid Ay over L (see [2,
Section 1.3]), whose anchor we will denote pg4,. Similarly, xun(vL) agrees with the sections
of CDO(vL), the transitive Lie algebroid whose sections are the covariant differential operators
on the vector bundle vL, and whose anchor ¢ is given by the symbol map. Hence the map lin
in (2.2) is the map of sections induced by a morphism of transitive Lie algebroids

A Arp — CDO(vL)

covering Idy. Any such morphism has constant rank by [19, Theorem 6.5.3]. Consequently,
{Yiin : Y € F} =T (E) for a wide Lie subalgebroid E C CDO(vL).

Let (M, F) be a foliated manifold and p € M. Consider
gp ={X e F:X(p) =0}/L,F,

where I, denotes the ideal of smooth functions on M vanishing at p. Then g, is a Lie algebra,
called isotropy Lie algebra, with Lie bracket induced by the one of vector fields. It is the isotropy
Lie algebra ker(pa, ), at p of the Lie algebroid Ay, where L denotes the leaf of F through p.

Remark 2.13. The restriction of the map A to fibers over p is a Lie algebra morphism
Ap: 8p — Xiin(vpL) = End(vpL), Y mod I, F — Yhn\l,pL. (2.3)

This map is not injective in general, as can be seen from the example where M = R, F is
generated by x20,, and p = 0.

2.3 Interlude: Tubular neighborhood embeddings

Putting aside singular foliations for a moment, here we recall some material on tubular neigh-
borhood embeddings, following [15, Section 1].

Let N be a (embedded) submanifold of a manifold M, denote by vN = T'M|nx /TN its normal
bundle.
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Definition 2.14.

(i) A tubular neighborhood embedding is an embedding v¢: V' — M, where V is an open
neighborhood of the zero section in vN, such that ¢|xy = Idy and the induced map on
normal bundles is Id, y.

(i) A vector field! X on M is Euler-like for N if X|y = 0 and Xy, is the Euler vector field E
of YN.

Remark 2.15. The Euler vector field E of vN is fiberwise linear, and is the unique vector
field satisfying the following properties: E(g) = 0 for all g € C*°(N), E[f] = [f] for all f € Iy.
From this, one sees that the Euler vector field commutes with all fiberwise linear vector fields.

Clearly if ¢: V — M is a tubular neighborhood embedding, then pushing forward the Euler
vector field of ¥N one obtains a Euler-like vector field? for N, defined on (V).

The converse is also true (see [6, Proposition 2.6]). We paraphrase it in the version given
in [15, Theorem 5.1].

Theorem 2.16. Let X € X(M) be a Euler-like vector field for N. There exists a neighborhood V
of the zero section of YN and a tubular neighborhood embedding v: V. — M such that the Euler
vector field is mapped to X\w(v).

Remark 2.17. Given X, the germ of such a tubular neighborhood embedding is unique.

A geometric proof of this result is given in [15], see also [5, Sections 2.2 and 2.3]. We review
a few key-points following the latter reference.

e Given the submanifold N of M, the associated deformation space is the set
D(M,N) :=vN U (M X RX),

where R* =R\ {0}. This set is endowed with a certain manifold structure.

e Every function f € Iy vanishing on N induces a smooth function fon the deformation
space D(M, N), which agrees with (df)|x on vN and with t71f on M x R*, where ¢ is
the standard coordinate on R.

e Every Y € X(M) tangent to N induces a vector field D(Y) on the deformation space,
which reads Y}, on vN and Y x 0 on M x R*.

e An Euler-like vector field X gives rise not only to D(X) but also to another vector field W
on the deformation space D(M, N), which reads % +1X on M x R*.

If we assume that the Euler-like vector field X is complete, then the time 1 flow qbll/v of W is
defined on ¥ N, maps vN to M x{1} = M, and the resulting map is a tubular neighborhood
embedding. It maps the Euler vector field to X, since one can check that [IW,D(X)] = 0.

In the general case, since on N x R the vector field W is given by %, there the flow ¢, is
certainly defined for all times ¢ € R. Hence the time 1 flow qﬁ%/v is defined in a neighborhood
of N xR in D(M, N). In particular, it is defined on a neighborhood of N in v N, yielding
a tubular neighborhood embedding.

We also revisit briefly the construction of [15, Section 5], when X is not complete. Let C' be
an open subset of vN with compact closure. On C, the flow ¢y}, is defined for some s > 0.
A tubular neighborhood embedding defined on sC'is given by v +— ¢§;, (silv), which agrees
with ¢}, (v). The time 1 flow ¢j;, does not depend on the choice of s, so it is defined on
a neighborhood of the zero section of ¥ /N, and is a tubular neighborhood embedding there.

"We do not require X to be complete, just as in [15]. This is in contrast with [6], where the vector field is
assumed to be complete, and tubular neighborhood embeddings are defined on the whole of v N.
2This Euler-like vector field is not complete, unless V = vN.
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Remark 2.18 (functoriality). The construction in Theorem 2.16 is functorial, as explained in [6,
Sections 2.2 and 2.4], and as we now explain for Euler-like vector fields as in Definition 2.14.
Fix pairs (M, N) and (M N ) consisting of a manifold and a submanifold. Fix a smooth map
F: M — M such that F' (N ) C N, then by taking derivatives there is an induced morphism
vEF: vN — vN between the normal bundles. (It is an isomorphism on each fiber whenever F' is
transverse to N and F~1(N) = NN) N N

Fix an Euler-like vector field X for N, and an Euler-like vector field X for N, such that X
is F-related to X. Let ¢: V. — M be a tubular neighborhood embedding associated to X
as in Theorem 2.16, for some neighborhood V of the zero section of vN. Let : VM
a tubular neighborhood embedding associated to X, such that V C (vF)~1(V) (this can always
be arranged shrinking the domain). Then 1, ¢ intertwine vF and F', i.e., this diagram commutes:

50
(2.4)
1

We show that in certain cases a tubular neighborhood embedding can be “lifted”, by using
the above functoriality.

Lemma 2.19. Let F: M — M be surjective submersion, N C M a submanifold, andy: V — M
a tubular neighborhood embedding defined on V. C vN. Then there exists a tubular neighbor-
hood embedding ¥: V — M, where N := F~Y(N) and V C (vF)"X(V), such that diagram (2.4)

commutes.

Proof. Denote by X the Euler-like vector field oan(V) corresponding to 1. Take an Ehresmann
connection for the submersion F. Then the lift X is a vector field* on F~1(¢)(V)) which is F-
related to X and satisfies X |7 B

We show that th is the Euler vector field of vN. For all § g e C’OO( ), we have Xy, (9) =
(X\N)( ) =0. For all f € Iy, we have

Xin[F"f] = [X(F*f)] = [F*(X(f))] = WF)"[X(f)] = wF)"[f] = [F" f],
where we used that [F"*h] = (vF)*[h] for all h € Iy in the third and last equality, and [X(f)] =
Xinlf] = E[f] = [f] in the fourth one. Remark 2.15 then implies that Xy, is the Euler vector
field.
Hence X is an Euler-like vector field for N. Let J be a tubular neighborhood embedding
associated to it. To conclude the proof, we use the functoriality of the tubular neighborhood
embedding construction recalled in Remark 2.18. |

2.4 A linearization criterion

We present an equivalent characterization of the linearizability of a singular foliation around an
embedded leaf. When the leaf is just a point, the statement already appears in [7, Section §].

Proposition 2.20. Let (M, F) be a foliated manifold, L an embedded leaf. Then F is lineariz-
able around L if and only if

(a) for some point p € L, the map of equation (2.3) is injective,
Ap: 8p = Xin(vpL) = End(v,L), Y mod I,F = Y|y, L,

(b) in a neighborhood of L there is Euler-like vector field X for L such that [X,F] C F.

3Even if X is complete, the lift X is not necessarily complete, as one sees considering the example M =
{(z,y) eR*:ay € (—1,1)}, M =R, F given by the first projection, N = {0}. This is also a reason why we do
not require completeness in Definition 2.14 (ii).



] M. Zambon

Remark 2.21. If condition (a) holds at a point of L, then it holds at all points of L, due to
the involutivity of F.

Remark 2.22. Proposition 2.20 is related to [17, Theorem 1.32], which holds when the singular
foliation F is locally real analytic, i.e., when nearby every point it admits real analytic generators.
Indeed, the second item of [17, Theorem 1.32] states that when condition (b) in the above
proposition is satisfied, near L the singular foliation F is generated by vector fields which are
homogeneous (with respect to the Euler-like vector field X). Proposition 2.20 states that when
in addition condition a) is satisfied, F is generated by vector fields which are homogeneous of
degree 1.

Proof. “=" Let 1: V — M be a tubular neighborhood embedding such that ¢ ~'F = F,,
where V' is a neighborhood of the zero section of vL. For any p € L, we obtain a submanifold
Sp = (Vp) transverse to L, where Vj, := V Ny,L. The restricted foliation F|g, := Lgpl]-" is
linearizable, by means of the restriction of i) to a map V,, — S,. Hence

Fls,/Tp(Fls,) = (Fls, )i/ T0(Fs,)

is an isomorphism.

This isomorphism is just the map A, in the statement, restricted to its image. Therefore, A,
is injective, yielding (a). To see that the maps agree, use Flg, /I, (f \Sp) = g, (by the splitting
theorem for singular foliations [7, Theorem 1.1] and [1, Section 1.3]) and (Fls, )., = (Fiin)|v,-

Denote X := 9. (F), an Euler-like vector field for L defined on (V). Since the pushforward
of vector fields preserves the Lie bracket, the condition [X,F] C F on ¢ (V) is equivalent to
[E, Fiin] C Fiin. The latter condition holds because Fyyy, is generated by fiberwise linear vector
fields, and the Euler vector field E' commutes with all fiberwise linear vector fields (as we saw
in Remark 2.15). This yields (b).

“<” We show that a tubular neighborhood embedding : V' — M, associated as in The-
orem 2.16 to the Euler-like vector field X, linearizes the singular foliation F. We proceed
analogously® to the proof of [5, Proposition 2.6].

Denote by D(F) the singular foliation on D(M, L) generated by {D(Y) : Y € F}. It is really
a singular foliation: involutivity follows from the relation [D(Y'), D(Z)] = DIY, Z], which clearly
holds on the dense subset M x R* and by continuity on the whole deformation space. The fact
that D(F) is locally finitely generated follows from the fact that F is.

Denote by W the vector field that X induces on D(M, L), as recalled at the beginning of
Section 2.3. We claim that

lin lin’ [Y] = Dflin]

(W, D(F)] € D(F). (2.5)

This claim and Proposition 2.6 imply that the flow of W preserves D(F). The restriction of D(F)
to vL and M x {s} (for any s > 0) yields Fy;, and F respectively. On any open subset C' of vL
with compact closure, the flow ¢f, is defined for some s > 0. The dilation sl vL = vl
preserves JFiy, because the Euler vector field does (a consequence of Remark 2.15). By the
description of the tubular neighborhood embedding 1 in Section 2.3, we infer that its restriction
to C' maps JFy, to F, proving the proposition.

We are left with proving the claim (2.5). Fix Y € F. We have

[W.D(Y)] =t"'DIX,Y] (2.6)

since this clearly holds on the dense subset M xR* of the deformation space. By assumption (b),
we have [X,Y] € F. We now show the stronger statement [X,Y] € IL,.F.

4The main difference is that we linearize along a leaf, rather then along a transversal, and that the Euler-like
vector field X does not belong to F.
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Consider the module map lin and the corresponding vector bundle map A, both introduced in
Section 2.2. Note that we have the following commutative diagram of vector bundles (actually,
Lie algebroids) over L with exact rows:

PAy

0 —— ker(pa,) Ap TL 0

]

0 —— End(vL) —— CDO(vL) —2— TL 0.

The left vertical map is injective, by assumption (a): to see this, use ker(pa, )|, = gp, together
with the fact that A has constant rank (see Remark 2.12) or alternatively with Remark 2.21.
Since the right vertical map is the identity, it follows that the middle vertical map A is injective,
which implies that lin in (2.2) is injective. Under lin, the class of [X,Y] is mapped to zero, as
[X, Yiin = [Xiin, Yiin] = 0 (the Euler vector field X);, commutes with all fiber-wise linear vector
fields). The injectivity of lin now implies that [X,Y] € I F.

So we can write [X,Y] =Y. f;¥; as a finite sum of functions f; € I, and elements Y; € F.
Therefore, D([X,Y]) = >, iD(Y;) on M x R*, and

ID(X, Y]) = Z FD(Y5),

where the functions ﬁ on the deformation space were introduced in Section 2.2. This vector
field lies in D(F), since the functions f; are smooth. Together with equation (2.6) this shows
that [W,D(Y)] € D(F), implying the claim (2.5). [ |

2.5 Hausdorff Morita equivalence

We recall some facts about Hausdorff Morita equivalence for singular foliations, which was
introduced in [14].

Definition 2.23 ([14, Definition 2.1]). Two foliated manifolds (M;, F1) and (My, F2) are Haus-
dorff Morita equivalent if there exist a manifold P and two surjective submersions with connected
fibers m1: P — My and my: P — My such that the pullback foliations agree: 711_1.7-"1 = 772_1]-"2.
In this case, we write (My, F1) ~yE (M, Fa),

P
(M, Fr) (Ma, F3).

Remark 2.24. When two foliated manifolds are Hausdorff Morita equivalent, they share the
same “global transverse geometry”. For instance, their leaf spaces are homeomorphic, in a way
that preserves the property of being an embedded leaf, and the codimension of leaves; the
isotropy Lie algebras® at corresponding leaves are isomorphic; their normal representations are
isomorphic [14, Proposition 2.5 and Theorem 3.44].

In particular, let (P, 71, 72) be a Hausdorff Morita equivalence between the foliated manifolds
(M, F1) and (My, Fa). Let Ly C M be a leaf of F;. Then the corresponding leaf Ly of F3 is
determined by the property 7 '(Ly) = 75 ' (La).

Remark 2.25. Let GG; be a source-connected, Hausdorff Lie groupoid over a manifold M;,
for ¢ = 1,2. Denote by F; the induced singular foliations on M; as in Section 2.1.

5As well as the isotropy Lie groups of the holonomy groupoids associated to the singular foliations.
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Assume that G and G9 are Morita equivalent as Lie groupoids. Then

(a) The singular foliations F; and F» are Hausdorff Morita equivalent [14, Proposition 2.29).

(b) The Lie groupoid G is linearizable around an embedded leaf L; C M; if and only if the
Lie groupoid Gy is linearizable around the corresponding leaf Ly in Ms [8, Proposition 3.7].

In that case, it follows that both F; and JF, are linearizable along these leaves; indeed, the
singular foliation on vL; induced by the linearization of G; is (F;)in, ¢ = 1,2 [3, Lemma 4.15].
(The converse is not true: a singular foliation can be linearizable, even when it arises from a Lie
groupoid which is not linearizable.)

These two facts combine into a hint toward the main statement of this note, namely Theo-
rem 3.1 in the next section.

3 The main theorem

The following is the main result of this note. This section is dedicated to its proof.

Theorem 3.1. Let (M1, F1) and (Ma, F2) be Hausdorff Morita equivalent singular foliations,
and L1 C My, Lo C My corresponding embedded leaves. Then Fi is linearizable around Ly if
and only if Fo is linearizable around L.

The theorem follows immediately from the following proposition.

Proposition 3.2. Let m: P — M be a surjective submersion with connected fibers. Let F be
a singular foliation on M and L C M an embedded leaf. Then F is linearizable around L if and
only if n=1F is linearizable around m—*(L).

To prove Proposition 3.2, we first need a lemma, for which the connectedness of fibers is not
used, and for which it might be useful to keep in mind this diagram

P
M.

Lemma 3.3. Assume the set-up of Proposition 3.2.

v(rm (L)) —= 7 1(L) —

Wi g

vL C

(i) If Z € X(P) is tangent to 7~ 1(L) and m-projectable to X € X(M), then Zy, is vr-
projectable to Xiy.

(1) We have (771 F), = (vm)"(Fim).

lin

Proof. For item (i), we first have to check that Zy,((v7)*(g9)) = (vm)*(Xun(g)) for all g €

C>°(L) (viewed as fiberwise constant functions on vL). This holds by a direct computation,

using that Z ],r_l( 1) 1s projectable to X |z. We also have to check the same equation replacing g

by the fiberwise linear function [f] for all f € Ij, (here we adopt the notation of Section 2.2).

This is done similarly, using that (v7)*[f] = [7*f] € Ciin (v(77'L)), as in proof of Lemma 2.19.
Item (ii) is an equality of modules of vector fields on v(7~!(L)). Recall that

. (7?‘1]-' ) i 18 generated by Zj, for vector fields Z which 7-project to elements of F.

e (vm)~(Fum) is generated by vector fields Y which vm-project to elements of Fiy,.

We see that item (i) immediately implies “C” in item (ii).
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For the inclusion “D”, take a vector field Y on v(7m~!(L)) which vr-projects to an element
of Fiin; the latter is necessarily a finite sum ), h;(X;)in for some h; € CX(vL) and X; € F.
Since 7 is a surjective submersion, there are Z; € 7~ 1F which m-project to the X;; by item (i),

S:=Y (vm)*hi)(Zi)im
i

is vm-projectable to ), h;(X;)in. Therefore, the difference Y — S is tangent to the fibers of vr.
AsY =(Y —S)+ S and S € (771 F)jn, to finish the proof we just need to show that

Le(ker((vm)y)) C (Tr_l]:)hn.
Notice that ker((v7),) is a regular distribution, since v is a surjective submersion. It suffices
to show that locally there are frames for ker((v7),) consisting of elements of (7~ 'F) lipe Such
frames can be constructed as follows. Take a local frame {W;} of ker(m,) on P and notice that
these vector fields lie in 7~ 'F. We know that the (W), lie in ker((v7),), by item (i), and they
form a local frame for the latter. [

Remark 3.4. Most of Lemma 3.3 can also be proven using the deformation spaces recalled in
Section 2.3 and their functoriality [6, Section 2.2]: there is a natural smooth map

D(r): D(P,7Y(L)) = D(M, L),

which on the fiber over zero restricts to vm: v(7~1(L)) — n~!(L). For item (i), the fact that Z is
m-projectable to X immediately implies that D(Z) is D(r)-projectable to D(X) on an open dense
subset of D(P,7~1(L)), hence everywhere, in particular also on the fiber over zero. As D(r) is
a surjective submersion, this implies D (7' F) C (D(x))"}(D(F)), and restricting to the fiber
over zero we obtain the inclusion “C” in item (ii).

The following remark follows from Lemma 3.3, and obviously it is consistent with Theo-
rem 3.1.

Remark 3.5 (Hausdorff Morita equivalence of the linearized foliations). Let (M;, ;) and
(Ms, F2) be Hausdorff Morita equivalent singular foliations, and L;, Ly be corresponding em-
bedded leaves. Then (vLy, (Fi)in) and (vLa, (F2)in) are Hausdorff Morita equivalent.

This follows immediately from Lemma 3.3 (ii): if P is a manifold with surjective submer-
sions with connected fibers m; to M; such that Ly S Ty 1]—"2, then the manifold vL and the
maps vm; provide the desired Hausdorfl Morita equivalence (in particular, (vmy) ™ (Fi)in =
(V?Tg)fl(fg)lin). Here L := 7T1_1(L1) = 7r2_1(L2).

Proof of “=-" in Proposition 3.2. Suppose F is linearizable around L. Take a tubular
neighborhood embedding 1: V' — M so that ¥ ~'F = Fji,, where V is a neighborhood of
the zero section of vL. One can “lift” ¢ to a tubular neighborhood embedding 1; VP
around 71 (L) such that diagram (2.4) commutes, by Lemma 2.19.

The commutativity of the diagram, together with the functoriality of the pullback [1, Propo-
sition 1.11 (b)], implies that t identifies 7' F with (v7) ! (Fin). The latter equals (7~ 1F)
by Lemma 3.3 (ii). ~

An alternative argument is as follows. Let X be the push-forward by v of the Euler vector
field of v(7~(L)). One can show® that [)?, 7 1F] C n~'F, using the fact that the Euler-like
vector field X associated to v satisfies [ X, F] C F by the proof of Proposition 2.20. Then one can
apply Proposition 2.20 to (P, ' F ), to conclude again that 7~ F is linearizable around 7~ 1(L).
(Notice that hypothesis a) of Proposition 2.20 is satisfied, since slices in P transverse to 7~ !(L)
map diffeomorphically, as foliated manifolds, to slices in M transverse to L). |

lin’

SIf Y € X(P) is w-projectable to Y € F, then [)A(:, SN’} m-projects to [X,Y] € F, by the naturality of the Lie
bracket. This implies the statement, thanks to Definition 2.5 and the Leibniz rule.
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Proof of “<=” in Pr0p051t10n 3.2. Suppose 71 F is linearizable around 7~!(L). We denote
.7-" =7 1Fand L:=n" Y(L). By assumption, there exists a tubular neighborhood embedding
1/1 VP such that (”(Z)_l}- = (]:)1 , where Visa neighborhood of the zero section of vL.
Denote by X the Euler-like vector field on the image of 1, obtained as the push-forward by 11)
of the Euler vector field of v/L. By Proposition 2.20 (and its proof),

(A) for some point p € L, the map

Mot 8 = Xin(pl), Y mod LF = Yil, 7

is injective, where g, is the isotropy Lie algebra of F at P,
(B) [X,F] c F.

We want to show that the foliated manifold (M, F) satisfies the two conditions of Propo-
sition 2.20. For the foliated manifold (M, F), condition (a) of Proposition 2.20 is satisfied
at the point w(p) € L, for the same reason outlined in the previous proof for any slice S
through p transverse to L the restricted foliations (S L~1.7-") and (S Lg .7-") are isomorphic
via 7w, where § := W(S)

To check that (M, F) satisfies condition (b) of Proposition 2.20, in the remainder of this proof
we will construct an Euler-like vector field X for L such that [X, F] C F. Proposition 2.20 will
then assure the linearizability of F around L.

Construction of X: Notice that X might not be m-projectable. To circumvent this difficulty
we proceed as follows. Since 7] 7+ L — L is a surjective submersion, we can choose an open
cover {L;} of L admitting sections s;: L; — L. Then

Uj = (Vv|1m(sJ )

is a submanifold of P with dlm(ﬁ ]) = dim(M), since L and L have the same codimension. Notice
that at any point ¢ € im(s;), the derivative of m maps T U @ZJ*( ) ® T,(im(s;)) injectively
(and thus isomorphically) into Ty M. Therefore, U; is transverse to fibers of 7 along im(s;).
Shrinking U; if necessary, by the inverse function theorem we have that U; := W(Uj) is an open
neighborhood of L; in M and
T ’ fjj U j U j

is a diffeomorphism. Further this diffeomorphism matches the singular foliations L[ijlj-v' and L(}jl]: )
by the functoriality of the pullback. ! '

Define X; € X(Uj) so that it corresponds to X |U under the diffeomorphism 7T|UJ; this
is possible since X is tangent to U], by the construction "of the latter. Using item (B) above, for
all 7 we have that

e X, is a Euler-like vector field for L;,
° [Xj,L(}jl]:] C L(}jl]:.

Let {p;} be a (smooth and locally finite) partition of unity on the open subset U;U; C M,
subordinate to the covering {U;}; we may assume that each p; has compact support. We define

X:=) pX
J

This is an Euler-like vector field for L, as remarked in [5, Section 2.4]: one checks that
(Z PiX5) = > (p)|L(Xj)in is the Euler vector field.
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im(s;)

im(s;)

Figure 1. The images of two local sections s; and s; of 7|;: L— L.

Checking the condition [X,F] C F: The failure of )Z' to be m-projectable is controlled,
as follows. All vertical vector fields V' € T'c(ker m,) lie in F, so by Proposition 2.9 — which we
can apply since X is an infinitesimal symmetry of F by item (B) above — the time-1 flow ¢V
satisfies

(¢Y),X - X € 7 (3.1)

We claim that the difference X;|v,nu, — Xjlu,nu; lies in j':’UmUj, for all 4, j such that
U;NU; # @. Indeed, since the m-fibers are connected, for every sufficiently small open sub-
set W c Uin (7~ 1(Uj)) there is a vertical vector field V € T'c(ker m.) whose time-1 flow maps
W into U N (7~ 1(U;)). Let us assume for simplicity that W =0U;n (7=1(U;)); then this dia-
gram of dlffeomorphisms commutes:

~ of -

U, N (ﬁfl(Uj))

and the claim then follows’ from (3.1).
Let p € L, fix an index jg such that p € Uj,. Consider the neighborhood U? := NUj of p,
where the intersection is over all indices j satisfying p € U;. Then on this neighborhood we have

X = ijXj = Xjo + ij(Xj = Xjo);
J J

"Without the simplifying assumption, the above argument first yields a local version of the claim, namely:
there is an open cover {W,} of U; N U; satisfying Y|w, € .7-A'|Wa for all o, where Y := X¢|U1.mU]. — Xj\UimUj.
Let f € C°(U; NUj), and take a finite subcover of its support. Take a subordinate partition of unity {pa}.
As paf € C°(Wa), we see that fY = 37 pafY is a finite sum of elements of F, hence lies in F. This shows
that Y € Flu,nu;, as claimed.
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where the last sum lies in F lu» by the above claim. Since [Xj,, ty, .7:] C LU F, we conclude that
[X,F] C Fon UP. Since the Lie bracket is local, we therefore have (X, F] C'Fina neighborhood
of L'in M. |

4 Examples and an application

We start presenting examples of Hausdorff Morita equivalent and of linearizable singular foli-
ations. Then, using Theorem 3.1, in Section 4.2-4.3 we obtain a condition under which the
linearizability of a singular foliation JF can be reduced to the one of a simpler foliation, namely
its restriction to a slice.

4.1 Examples

Examples of Hausdorff Morita equivalent singular foliations are given in [14, Sections 2.3-2.5].
Here we just mention one, namely [14, Corollary 2.17].

Example 4.1. Let two connected Lie groups G, G2 act freely and properly on a manifold P
with commuting actions. Then the following singular foliations are Hausdorff Morita equivalent:

e the singular foliation on P/G; given by the induced G2 action,
e the singular foliation on P/G3 given by the induced G action.

We now present some examples of linearizable foliations.

Example 4.2 (Log tangent bundle). Let L be a codimension one submanifold of M. Let Fiog
consists of all compactly supported vector fields® on M which are tangent to L. Then Flog 1s
linearizable around L. Indeed, take any tubular neighborhood embedding to identify a neigh-
borhood of L in M with a neighborhood of L in the line bundle v L. The log-foliation of vector
fields on vL tangent to the zero section is linear, as it is generated by all linear vector fields
on vy,.

Example 4.3 (elliptic tangent bundle). Similarly, let f: M — R be a Morse-Bott function,
i.e., the critical set L of f is a submanifold such that the normal Hessian of f is non-degenerate.
Assume that L has codimension 2, and that f|; = 0. Let F) consist of all compactly supported
vector fields? which preserve the ideal generated by f. Then F,y is linearizable around L. Indeed,
by the Morse-Bott lemma as in [20, Section 4.2], there is a tubular neighborhood embedding
that identifies f in a neighborhood of L C M with the normal Hessian of f (viewed as a degree 2
polynomial) in a neighborhood of L C vL. The elliptic foliation associated to this polynomial
is linear. This can be seen trivializing L by means of a local orthonormal frame, and using the
fact that the elliptic foliation on R? associated to the function x? +y? is generated by the Euler
vector field and the rotation vector field, see, e.g., [22, Section 1].

Remark 4.4. The following simple remark is used in the next example. Let V' — L be a vector
bundle and Fy a singular foliation on V' generated by linear vector fields. Let G be a discrete
group acting freely and properly on the vector bundle V' — L by vector bundle automorphisms,
preserving the singular foliation Fy,. Then V/G is a vector bundle over L/G, and the projection
m:V — V/G is a vector bundle morphism and a covering map. The singular foliation Fy
induces a singular foliation F on V/G, which is also generated by linear vector fields.

8These are the compactly supported sections of the log tangent bundle associated to L.
9These are the compactly supported sections of the elliptic tangent bundle associated to f.



The Linearizability of Singular Foliations Is a Morita Invariant 15

Example 4.5 (mapping tori). Consider a linear singular foliation Fg on R™ (i.e., one induced by
the action of a Lie subalgebra of gl(n,R)), the full foliation on R, and their product foliation Fy,
on V =R" x R. For any ¢ € GL(n,R) preserving Fg, the group Z acts on V, with 1 € Z acting
by (p,t) — (¢(p),t + 1). On the mapping torus

V/Z = (Rn X [07 1])/N7 where (p, 0) ~ (¢(p)7 1)7

we obtain a foliation F, again generated by linear vector fields. Here are some low-dimensional
examples.

(i) If Fg is the foliation by points of R, and ¢ = —Id, we obtain the Mébius strip V/Z with
a foliation by circles. Most circles wind twice around the Mobius strip, while the “middle
circle” winds only once and has holonomy group Zs.

(ii) If Fg is the foliation generated by ya% on R, on the Mdbius strip, we obtain a foliation
with precisely two leaves: a circle, and a 2-dimensional open leaf.

(iii) If Fg is the foliation generated by the rotation vector field :ca% - ya% of R, and ¢(z,y) =
(z,—y) on V/Z, we obtain a singular foliation whose leaves are a circle and many copies
of the Klein bottle.

Remark 4.6. Notice that in both in (i) and (ii) above, the foliation on the Mébius strip and
the foliation restricted to a slice R are not Hausdorff Morita equivalent. For instance, in (ii),
F has two leaves but the restricted foliation has three.

4.2 Restrictions of singular foliations to slices
Let (M, F) be a foliated manifold, L an embedded leaf.

Definition 4.7. A slice at a point p € L is a submanifold N of M such that N N L = {p}, we
have a direct sum T, N & T,L = T,M, and N is transverse to the leaves of F it meets.

In that case, F|y := L]_Vl]-" is a singular foliation on N, with the point {p} being a leaf.
If we take another slice N’ through p, upon shrinking the slices we obtain isomorphic foliated
manifolds [3, Appendix A.2].

Lemma 4.8. If F is linearizable along L, then F|x is linearizable at p.

Proof. Take a tubular neighborhood embedding ¢: V' — M linearizing F, where V is open
in vL. Restrict ¢ to a tubular neighborhood embedding from (V,, Finlv,) to (N', F|y7), where
Vo =V Nyl and N := ¢(V,). Then use (F|n')in = Flinlv,, which holds by the splitting
theorem for singular foliations [7, Theorem 1.1] and [1, Section 1.3]. |

The converse of Lemma 4.8 does not hold. That is, given a singular foliation F and a slice N
to an embedded leaf L at p: if F|y is linearizable at p, then in general it does not follow that F
is linearizable along L. This is well-known and already apparent in the case of regular foliations,
as we recall in this example.

Example 4.9. On the cylinder S' x R with coordinates # and y, consider the (involutive)
distribution D spanned by the vector field % + g(y)a%, where g: R — R is a smooth function
which is identically zero for y < 0 and which is > 0 for y > 0. It gives rise to a foliation
F =T.(D), with L = S' x {0} as a leaf. Take the slice N = {p} x R through a point p € S;
the restricted foliation is the zero foliation, which is certainly linearizable. But F itself is not
linearizable along L: the linearized foliation Fj, on vL = S! x R is spanned by %, since
¢'(0) = 0, and thus has no holonomy around the zero section, while F does have holonomy
around L, since g is positive on {y > 0}.
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We mention that by a version of the Reeb stability theorem for regular foliations, if a regular
foliation has a (not necessarily compact) embedded leaf L with finite holonomy group, then the
foliation is linearizable around L, see, e.g., [21, Theorem 3.2.1]. If L is compact, the classical
Reeb stability theorem assures that L is linearizable by a tubular neighborhood embedding with
image a saturated neighborhood of L, i.e., one given by a union of leaves.

4.3 Hausdorff Morita equivalence and restrictions to slices

We determine a condition under which the converse of Lemma 4.8 holds, using Theorem 3.1. This
is desirable because in that case the linearizability of F becomes equivalent to the linearizability
of its restriction to a slice; for the latter — which vanishes at a point — some linearization criteria
are given by Cerveau in [7].

In general, in a neighborhood of a leaf, a singular foliation is not Hausdorff Morita equivalent
to its restriction to a slice, as we saw in Remark 4.6. Below we determine conditions under
which they are.

Remark 4.10. If in a neighborhood of a leaf L, a singular foliation F is Hausdorff Morita
equivalent to its restriction L]_Vlf to a slice N, then the holonomy group of F at the point
{p} = NN L is connected.

Indeed, F and L]_Vl]: being Hausdorff Morita equivalent implies that their holonomy groups
at p are isomorphic as Lie groups [14, Theorem 3.44 (i)]. The holonomy group of L]_Vl./r at p is
connected because it is the whole source fiber of the holonomy groupoid [1] of L]_Vl]: , since the
latter has {p} as a leaf, and holonomy groupoids are always source-connected.

Recall that given a singular foliation on M and a slice N, the saturation of N is the union
of all leaves intersecting IV; it is an open subset of M.

Proposition 4.11. Let F be a singular foliation arising (in the sense of Section 2.1) from
a Hausdorff, source connected, Lie groupoid G. Let L be an embedded leaf, N a slice. Suppose
the restricted Lie groupoid Gy = t~*(N) Ns™'(N) is source connected. Then (N, L]_Vl}—) and
(U, Ll}l}") are Hausdorff Morita equivalent singular foliations, where U is the saturation of N.

Proof. Notice that N :=s~'(N) is a smooth Hausdorff manifold. Consider the two maps

N
U N

where U = t(ﬁ ) agrees with the saturation of V.

Clearly, s| is a surjective submersion with connected fibers.

The map t| 51 N — U is a submersion, as a consequence of the fact that N is transverse to
the leaves it meets (see, e.g., [9, Example 4.2.1 and Proposition 5.2.4]).

We show that t|5 has connected fibers. Let u € U. The corresponding fiber of t|5 is
t~(u) N N. There exists p € N lying in the same leaf as u; take any g € G with t(g ) = p and
s(g) = u. Then the left composition with g gives a diffeomorphism t~*(u) " N — t~ Lp)n N.
The latter is the target fiber of Gy at p, so it is connected by assumption.

Finally, we show that

—1 -1, 1
(tly) F=(slg) (en'F)-
Since G is a Lie groupoid giving rise to F, it is also a bisubmersion [1, Proposition 2.2], i.e.,
t~!F = s~ ! F. By the functoriality of pullback, we have

(s\ﬁ) LNl}"— Ly ( 1.7-") =5 (tfl}") = (tOLN)_l

F. |
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Remark 4.12. Proposition 4.11 can be also deduced as follows. The inclusion Gy — Gy is
a weak equivalence of Lie groupoids, yielding that these two Lie groupoids are Morita equivalent.
Hence, when both are source connected (and Gy automatically is), their singular foliations are
Hausdorff Morita equivalent, by [14, Proposition 2.29].

Remark 4.13. Assume the set-up of Proposition 4.11. The assumption that Gy is source
connected is quite strong and has the following consequences.

(i) Denote by p the unique point such that NNL = {p}. Then the isotropy group G5 of G at p
is connected. Indeed, it equals (Gn)h = tg}i (p) and Gy is source (and target) connected
by assumption. It follows that the isotropy group of the holonomy groupoid of F at p is
connected, since the holonomy groupoid is a quotient of G [1, Example 3.4 (4)]. This is
consistent with Remark 4.10.

(ii) The intersections of the leaves of F with N are connected. Indeed, they agree with the
leaves of Gy, and the latter is source connected by assumption.

Example 4.14. Let

e V — M be a vector bundle,

e (G be a connected Lie group acting equivariantly on V' (not necessarily by vector bundle
automorphisms) such that the action preserves the zero section M and is transitive there.

Denote by F the singular foliation on V' given by the infinitesimal generators of the action
(hence M is a leaf). Let p € M, so the fiber N := V, is a slice of the singular foliation
through p. If the isotropy group G, at p is connected, then (N , L]_Vl./_" ) and (V, F) are Hausdorff
Morita equivalent singular foliations.

Indeed, a source connected Lie groupoid giving rise to F is the transformation groupoid
G = G x V. The restricted Lie groupoid Gy is G, x N, the transformation groupoid of the G,
action on N; by assumption it is source connected, so we can apply Proposition 4.11.

A special case (where all the foliations involved are linear) is obtained starting with a Lie
group G and a connected closed Lie subgroup H. The action of G on M := G/H lifts to
an equivariant linear action of G' on the tangent bundle of M (and on any associated bundle).
This example was inspired by [10, Example 3.9], which corresponds to the case G = SO(3) and
H = SO(2) (so F is a singular foliation on the tangent bundle of M = S$?, arising from the SO(3)
action by rotations).

Theorem 3.1 and Proposition 4.11 imply the following.

Corollary 4.15. Let F be a singular foliation arising from a Hausdorff, source connected,
Lie groupoid G. Let L be an embedded leaf, N a slice. Suppose the restricted Lie groupoid
Gn =t Y(N)Ns~Y(N) is source connected. Then, whenever (N, L]_Vl]:) is linearizable around
the point N N L, the singular foliation F is linearizable around L.
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