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Abstract. For a discrete dynamical system given by a compact Hausdorff space X

and a continuous selfmap f of X the connection between minimality, invertibility
and openness of f is investigated.

It is shown that any minimal map is feebly open, i.e., sends open sets to sets with
nonempty interiors (and if it is even open then it is a homeomorphism). Further, it

is shown that if f is minimal and A ⊆ X then both f(A) and f−1(A) share those
topological properties with A which describe how large a set is. Using these results it
is proved that any minimal map in a compact metric space is almost one-to-one and,
moreover, when restricted to a suitable invariant residual set it becomes a minimal

homeomorphism.
Finally, two kinds of examples of noninvertible minimal maps on the torus are

given — these are obtained either as a factor or as an extension of an appropriate
minimal homeomorphism of the torus.

1. Introduction

We will be concerned with a discrete dynamical system (X; f) given by a Haus-
dorff topological space X and a continuous selfmap f of X (in written f ∈ C(X)).
Usually X will be compact or even compact metric.

Minimality and extensions of minimal systems belong to central topics in topo-
logical dynamics (see, e.g., [Au], [Br] and [deV]). In many important examples of
minimal maps, these are homeomorphisms. In the sixties J. Auslander [AG, p. 514]
formulated the problem whether a continuous map of a compact metric space onto
itself which is not one-to-one can be minimal. Today, of course, it is known (ow-
ing also to J. Auslander himself) that it can. A class of examples of noninvertible
minimal maps on some compact metric spaces can be found in [AY, p. 186].

Interesting examples of noninvertible minimal maps are known in interval dy-
namics when a suitable interval map is restricted to an invariant Cantor set. In
fact, it was proved in [BKNS] that unimodal Fibonacci maps have a wild attractor
(which is a Cantor set) provided that the order of the critical point is sufficiently
high. By [BL], the restriction of such a map to this Cantor set is minimal and by
[LM] the preimage of any point from this Cantor set is a singleton except of the
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critical point of the map whose preimage consists of two points. More generally,
there are unimodal maps whose restriction to a Cantor set (the ω-limit set ω(c)
of the critical point c) is minimal and fails to be invertible only at k points, each
of them lying in the backward orbit of c (one of them is c itself) and having two
preimages in ω(c) (all other points in ω(c) have only one preimage in ω(c)), see
[BKP].

Symbolic dynamics provides many examples of minimal noninvertible maps.
Consider AN endowed with the shift. It is easy to prove by a compactness ar-
gument that any transitive subshift (i.e., closed shift-invariant subset of AN) on
which the shift acts bijectively is reduced to a periodic orbit. On the other hand by
the Jewett-Krieger theorem there exist a variety of minimal subshifts, most of which
do not consist of a periodic orbit; among them, 0-entropy as well as positive-entropy
systems with various properties. Other examples are less abstract: one-sided Stur-
mian and Toeplitz systems are minimal subshifts, none of which is reduced to one
periodic orbit (as a general reference see [LMa]).

None of the above mentioned examples of noninvertible minimal maps is on a
manifold. On the interval there is no minimal map at all and it is well known that
the circle admits a minimal homeomorphism but does not admit any noninvertible
minimal map (see [AK]). In Section 3 we prove that in the case of tori of dimension
n ≥ 2 the situation is different — contrary to the case n = 1 they admit also minimal
noninvertible maps. We prove that any minimal skew product homeomorphism of
the torus having an asymptotic pair of points has an almost one-to-one factor which
is a minimal noninvertible map of the torus (see Theorem 3.2). Then we apply the
technique of factorization to the point distal homeomorphism of the torus of M. Rees
[R] to show the existence of a minimal point distal noninvertible map on the torus
such that both an extension of it and a factor of it are minimal homeomorphisms
of the torus (see Theorem 3.3). Finally, we show how to modify the M. Rees’
technique of an extension of an irrational rotation of the torus from [R] in order
to obtain a minimal noninvertible map of the torus (see Theorem 3.4 and, for all
details, Appendix).1

To summarize: There are compact spaces that do not admit any minimal map,
there are spaces that admit minimal homeomorphisms but do not admit any min-
imal noninvertible map and there are spaces that admit both minimal homeomor-
phisms and minimal noninvertible maps. The authors do not know whether there
are spaces that admit minimal noninvertible maps but do not admit any minimal
homeomorphism.

When we consider a continuous selfmap of a compact Hausdorff space, then it
turns out that there is a close connection between its minimality, invertibility and
openness. In fact, in Section 2 we prove that every minimal map is feebly open and
if it is even open then it is necessarily invertible and so, being a continuous bijective

1In the present paper we consider only compact spaces. Of course, the problem of the existence

of minimal maps in noncompact spaces has also been studying. For instance, by [LCY], on the
two dimensional sphere minus a finite set there are no homeomorphisms whose all full orbits are
dense, the nonexistence of minimal maps (i.e. maps whose all forward orbits are dense) being well
known in much more general spaces [G], [HK].



NONINVERTIBLE MINIMAL MAPS 3

selfmap of a compact Hausdorff space, it is a homeomorphism (see Theorem 2.4).
Further, it is shown that if f is minimal and A ⊆ X then both f(A) and f−1(A)

share those topological properties with A which describe how large a set is (see
Theorem 2.5).

In topological dynamics almost one-to-one maps (extensions) attract a consider-
able attention (cf. [FW]). In the present paper we prove that any minimal map in
a compact metric space is almost one-to-one and, moreover, when restricted to a
suitable invariant residual set it becomes a minimal homeomorphism (see Theorems
2.7 and 2.8).
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2. Minimality, invertibility and openness

Let X be a Hausdorff topological space and f : X → X continuous. The
dynamical system (X; f) is called (topologically) minimal if there is no proper
subset M ⊆ X which is non-empty, closed and f -invariant (i.e., f(M) ⊆ M). In
such a case we also say that the map f itself is minimal. Note that the system
(X, f) is minimal if and only if the (forward) orbit of every point from X is dense
in X. If Y ⊆ X is non-empty, closed and f -invariant then Y is called a minimal
set of the system (X, f) if the system (Y ; f |Y ) is minimal.2

Recall also that the system (X; f) or the map f itself is called (topologically)
transitive if for every pair of nonempty open sets U and V in X, there is a positive
integer n such that fn(U)∩ V 6= ∅. Clearly, minimality implies transitivity. Recall
also that if f is transitive then f(X) is obviously dense in X and if we additionally
assume X to be compact, then f(X) is also compact. Hence f(X) = X. If X
has an isolated point and f is transitive then X is just a periodic orbit of f . If
X is a compact metric space without isolated points, then the above definition of
transitivity is equivalent to the existence of a dense orbit (see [S]; for a survey of
results on transitivity see, e.g., [KS]).

Recall that a map is called open if it sends open sets to open sets and is called
closed if it sends closed sets to closed sets. A map f is called feebly open if for

2Thus in the present paper minimality of both a map and a homeomorphism means the density

of all (forward) orbits. Some authors when define minimal homeomorphisms require only the
density of all full orbits (see, e.g., [W]) and speak on semiminimality when have in mind the
density of all (forward) orbits (see, e.g., [G]). In compact metric spaces these two notions are
equivalent.
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every nonempty open subset U of X, there is a nonempty open subset V of X such
that V ⊆ f(U). It is easy to see that a map is feebly open if and only if the inverse
image of every dense subset is dense. Note that the terminology is not unified —
instead of feebly open some authors say semi-open, almost open or somewhat open.
It seems that the idea of a feebly open map was first introduced in [F].

We will also use the notion of an irreducible map which is very important in
general topology, mainly in the theory of absolutes, see e.g. [PW] or [Al]. A map
f : X → Y is called irreducible if the only closed set A ⊆ X for which f(A) = Y is
A = X. Note that if f is irreducible then it is surjective.

Lemma 2.1. Let X be a compact Hausdorff space and f ∈ C(X). Then the
following two conditions are equivalent and each of them is sufficient for f not to
be minimal:

(1) there is a closed set A 6= X in X with f(A) = f(X),
(2) there is an open set B 6= ∅ in X with f(B) ⊆ f(X \B).

Consequently, if f is minimal then it is irreducible.

Proof. From (1) we get (2) by taking B = X \A and from (2) we get (1) by taking
A = X \B. Suppose that (1) holds. If f(X) 6= X then f is obviously not minimal.
So let f(X) = X. Denote f |A by g and consider the set M :=

⋂∞
k=0 f

−k(A) =⋂∞
k=0 g

−k(A). We have X = g(A) ⊇ A. Hence the set M , being the intersection
of a nested sequence of nonempty compact sets, is nonempty. But the f -trajectory
of any point from M does not intersect the nonempty open set X \ A (M is even
f -invariant and compact). Hence f is not minimal.

Lemma 2.2. Let X be a compact Hausdorff space and let f ∈ C(X). Then the
following are equivalent:

(1) f is irreducible and open,
(2) f is a homeomorphism.

Proof. Only (1)=⇒(2) needs a proof. Since a continuous bijection from a compact
space to a Hausdorff space is a homeomorphism and f , being irreducible, is onto,
it is sufficient to prove that f is invertible. Suppose, on the contrary, that there
are a 6= b with f(a) = f(b) =: c. Take disjoint open neighbourhoods Ua of a and
Ub of b. Since f is open, f(Ua) is open and contains c. Since f is continuous, there
is an open neighbourhood Vb of b such that Vb ⊆ Ub and f(Vb) ⊆ f(Ua). Then
f(Vb) ⊆ f(X \ Vb). Hence, by Lemma 2.1 (2)=⇒(1), f is not irreducible.

Lemma 2.3. Let X be a compact Hausdorff space and let f ∈ C(X) be irreducible.
Then f is feebly open.

Proof. Since f is continuous, for any A ⊆ X we have f(A) ⊆ f(A). This inclusion
is in fact an equality, because X is compact and thus f is closed. Now let D ⊆ X
be dense in X. Since f is onto, we have f(f−1(D)) = D and so

f(f−1(D)) = f(f−1(D)) = D = X.

Since f is irreducible, this implies that f−1(D) = X.
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By Lemmas 2.1 and 2.3, if f ∈ C(X) is minimal then it is irreducible and if f
is irreducible then it is feebly open. Easy examples on the interval show that the
converse implications do not hold.

From Lemmas 2.1, 2.2 and 2.3 we immediately get

Theorem 2.4. Let X be a compact Hausdorff space and f ∈ C(X).

(1) If f is minimal then it is feebly open.
(2) If f is minimal and open then it is a homeomorphism.

Since we have seen that there are minimal maps which are not homeomorphisms,
in (1) we cannot replace feebly open by open and in (2) we cannot replace open by
feebly open.

Once we know that every minimal map is feebly open, we can ask whether this
result can be extended to topologically transitive maps. The answer is negative
— a topologically transitive map may not be feebly open [M] (nevertheless, every
transitive interval map is trivially feebly open).

To summarize: Any minimal map is of one of the following two kinds: either it
is a homeomorphism or it is a noninvertible and non-open (but feebly open) map.
(It cannot be invertible and non-open, since a continuous bijection from a compact
space to a Hausdorff space is a homeomorphism, hence open. Further, it cannot be
noninvertible and open by Theorem 2.4(2).)

Recall that a set is called residual if its complement is of first category. Further,
a set A has the Baire property (see [K1, p. 87] or [O, p. 19]) if it is the symmetric
difference of an open set and a first category set, i.e., if it is of the form A =
(G\B)∪C where G is open and B and C are first category sets or, equivalently , if
it is of the form A = (F \ P )∪Q where F is closed and P and Q are first category
sets.

Theorem 2.4(1) together with Lemma 2.1 enable us to show that if f is minimal
and A ⊆ X then both f(A) and f−1(A) share some topological properties with the
set A — namely the ones which describe how large a set is. For completeness, the
next theorem contains also some known results.

Theorem 2.5. Let X be a compact Hausdorff space and let f ∈ C(X) be a minimal
map. Let A ⊆ X.

(1) If A is dense then both f(A) and f−1(A) are dense.
(2) If A is nowhere dense then both f(A) and f−1(A) are nowhere dense.
(3) If A is a 1st category set then both f(A) and f−1(A) are 1st category sets.
(4) If A is a 2nd category set then both f(A) and f−1(A) are 2nd category sets.
(5) If A has the Baire property then both f(A) and f−1(A) have the Baire

property.
(6) If A is residual then both f(A) and f−1(A) are residual.
(7) If A has nonempty interior then both f(A) and f−1(A) have nonempty

interiors.
(8) If A is open then there is a positive integer r with the property

⋃r
k=0 f

−k(A) =⋃r
k=0 f

k(A) = X.
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(9) If A is open then there is an open set B ⊆ X such that B ⊆ f(A) ⊆ B (here
B may not be unique; the largest of such sets is always B = int f(A)).

Proof. (1) is an easy consequence of the fact that f is continuous, onto and feebly
open.

(2) Let A be nowhere dense. We are going to prove that both f(A) and f−1(A)
are nowhere dense. Since the closure of a nowhere dense set is nowhere dense, we
may assume that A is closed.

Since A is nowhere dense, X \A is dense. By feeble openness of f , f−1(X \A) =
X \f−1(A) is dense. Since f−1(A) is closed, we get the nowhere density of f−1(A).

Now suppose, on the contrary, that f(A) is dense in a nonempty open set G.
Since f(A) is closed, we have f(A) ⊇ G. For the set B = A ∩ f−1(G) we have
B ⊆ A and f(B) = G. Then f−1(G) is open and f−1(G) ⊇ B. Since B is nowhere
dense, there is a nonempty open set U such that U ⊆ f−1(G) and U ∩B = ∅. Then
f(X \ U) ⊇ f(B) = G ⊇ f(U). By Lemma 2.1 f is not minimal, a contradiction.

(3) This follows from (2).
(4) From (3) we trivially get that f(A) is of second category whenever A is of

second category. To prove that also f−1(A) is of second category realize that due
to the surjectivity of f , f(f−1(A)) = A.

(5) Let A have the Baire property, i.e., A = (F \ P ) ∪ Q where F is closed
and P , Q are of first category. Then f−1(A) = (f−1(F ) \ f−1(P )) ∪ f−1(Q) and
f(A) = (f(F ) \ P ∗) ∪ f(Q) where P ∗ ⊆ f(P ). Now use (3) and the fact that by
continuity both f(F ) and f−1(F ) are closed.

(6) follows from (3), (4) and the surjectivity of f .
(7) is a consequence of the continuity and the feeble openness of f .
(8) The existence of an r with

⋃r
k=0 f

−k(A) = X is folklore (for any x ∈ X

there is n(x) with fn(x)(x) ∈ A and so we have fn(x)(Ux) ⊆ A for some open
neighbourhood Ux of x; now use compactness to find a finite cover of X by such
neighbourhoods). Since f is surjective we have f(f−1(B)) = B for any set B. Thus
X = fr(X) = fr

(⋃r
k=0 f

−k(A)
)

=
⋃r
k=0 f

r−k(A) =
⋃r
j=0 f

j(A).
(9) Take B = int f(A) and suppose on the contrary that for some a ∈ A, f(a) /∈

B. Take an open neighbourhood V of f(a) disjoint with B. By continuity, there is
an open neighbourhood U of a such that U ⊆ A and f(U) ⊆ V . By feeble openness
of f , there is a nonempty open set W with W ⊆ f(U). Hence W is a subset of
f(A) and is disjoint with B = int f(A), a contradiction.

Remark. From the proof of Theorem 2.5 one can see that the statements (1)–(7)
and (9) do not hold only for minimal maps but hold for larger subclasses of C(X).
For instance, if we consider surjective maps then

– the f -part of (1) and the f−1 part of (7) hold for all continuous maps,
– the f−1-parts of (1), (2), (3), (5) and (6) as well as the f -parts of (4) and (7)

hold for all feebly open maps,
– the f -parts of (2), (3), (5) and (6) as well as the f−1-part of (4) hold for all

irreducible maps,
– the statement (9) holds for all feebly open maps.
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Note that for topologically transitive maps the theorem does not hold even on the
interval (except of the parts holding for all surjective feebly open maps; note that
on the interval transitivity implies feeble openness). For instance, one can find a
transitive feebly open map f from a compact real interval I into itself and a nowhere
dense set A ⊂ I such that f(A) = I (take the Cantor set A and the corresponding
Cantor stairs map I → I and in each interval contiguous to A replace the constant
piece of the map by three linear pieces — increasing, decreasing, increasing; just
take care of having sufficiently big ‘peaks’ to ensure transitivity but not too big
‘peaks’ to ensure continuity).

For completeness let us remark that for continuous maps in compact topological
spaces minimality (even surjectivity) implies another form of openness, so called
bicontinuity. A map f : X → X is called bicontinuous (or a factor map or an
identification map) if it is onto and f−1(A) is open if and only if A is open. In fact,
if X is compact and f ∈ C(X) onto, then f , being a closed map, is bicontinuous
(see [K1], p. 119).

Recall that a set is called regular closed or canonical closed if it is the closure
of an open set (equivalently, if it is the closure of its interior). In the theory of
absolutes it is important that if X and Y are topological spaces, f : X → Y is
closed and irreducible and A ⊆ X and B ⊆ Y are regular closed sets, then f(A)
is regular closed and there is a unique regular closed set B∗ with f(B∗) = B (see
[Al], p. 345). By Lemma 2.1, if X is compact Hausdorff and f ∈ C(X) minimal
then it also has the described properties.

Having proved Theorem 2.5 we are prepared to attack the problem of to what
extent a minimal map may be noninvertible. We start with the following simple
observation.

Lemma 2.6. Let (X, %) be a compact metric space and f ∈ C(X) be onto. Then
the map ϕ : X → [0,diamX] defined by

ϕ(x) = diam f−1(x)

is upper semicontinuous.

Proof. Fix a point x0 ∈ X. To prove that lim supx→x0
ϕ(x) ≤ ϕ(x0) assume that

ϕ(zn) → d for some sequence zn → x0. We need to show that d ≤ ϕ(x0). For
any n take points pn and qn from the compact set f−1(zn) such that %(pn, qn) =
ϕ(zn). Since we are in a compact metric space, there are subsequences pkn and
qkn converging to some points p and q. Then %(p, q) = limn→∞ %(pkn , qkn) =
limn→∞ ϕ(zkn) = d. Further, f(p) = limn→∞ f(pkn) = limn→∞ zkn = x0 and
similarly f(q) = x0. Hence p, q ∈ f−1(x0) and so d ≤ ϕ(x0).

Recall that a map f : X → X is called almost one-to-one if for every x in a
Gδ-dense subset of X, card(f−1(x)) = 1. Equivalently, in this definition instead
of ‘Gδ-dense’ we can use ‘residual’, because any Gδ-dense set is residual and any
residual set (in a compact metric space) contains a Gδ-dense set. Thus, a map is
called almost one-to-one if generically the preimage of a point is a singleton.
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The following theorem sheds some light on the problem of to what extent a
minimal map may be noninvertible. It shows that for minimal maps the set of
points which have more than one preimage is of first category. In fact, we have

Theorem 2.7. Let (X, %) be a compact metric space and f ∈ C(X) be minimal.
Then the set A = {x ∈ X : card f−1(x) = 1} is a Gδ-dense set in X. Hence, f is
almost one-to-one.

Proof. Consider the map ϕ from Lemma 2.6. Notice that A =
⋂∞
k=1Ak, where

Ak = ϕ−1
(
[0, 1

k )
)
. Since ϕ is upper semicontinuous, Ak is open in X for every

k. By Baire theorem the intersection of countably many open dense sets in X
is Gδ-dense, therefore to finish the proof it is sufficient to prove that for every k
the set Ak is dense. Suppose, on the contrary, that for some k, the (closed) set
Dk = X \ Ak = {x ∈ X : diam f−1(x) ≥ 1

k} has nonempty interior. Then also
f−1(Dk) has nonempty interior. Take a nonempty open set B ⊆ f−1(Dk) such that
diamB < 1

k . The set B is covered by the preimages of some points from Dk. Each
of these preimages has the diameter ≥ 1/k and so cannot be placed entirely in B.
Hence f(B) ⊆ f(X \B). By Lemma 2.1, f is not minimal, a contradiction.

The above theorem enables to show that a ‘substantial’ part of a minimal map
is a minimal homeomorphism.

Theorem 2.8. Let (X, %) be a compact metric space and f ∈ C(X) be minimal.
Then there exists a residual set Y ⊆ X such that f(Y ) = Y and f |Y is a minimal
homeomorphism. Moreover, (f |Y )−1 is also a minimal homeomorphism and while
f |Y is uniformly continuous, (f |Y )−1 is uniformly continuous only in the case when
f is a homeomorphism (then one can take Y = X).

Proof. By Theorem 2.7, the set A = {x ∈ X : card f−1(x) = 1} is Gδ-dense and
so D = {x ∈ X : card f−1(x) > 1} is of first category. Using Theorem 2.5(6) and
the fact that the intersection of countably many residual sets is again residual we
get that also the set Y =

⋂∞
n=−∞ f

n(A) is residual. (One can also notice that
Y = X \

⋃∞
n=−∞ fn(D).)

It is not difficult to see that y0 ∈ Y if and only if the full orbit of y0, i.e. the set{
x ∈ X; ∃i, j ∈ N with f i(x) = f j(y0)

}
, is of the form {. . . , y−2, y−1, y0, y1, y2, . . . }

where f(yn) = yn+1 for every integer n. From this we immediately get that f(Y ) =
Y and f |Y is a bijection. Trivially, f |Y is continuous. We claim that also (f |Y )−1

is continuous. To see it, suppose that (f |Y )−1 is not continuous at a point y0 ∈ Y .
Then we can find a sequence zi in Y such that zi → y0 and f−1(zi) 6→ f−1(y0).
Considering now f−1(zi) in the compact metric space X, we can assume that
f−1(zi) → z 6= f−1(y0). Since both f(z) and f(f−1(y0)) equal y0, we get that
y0 ∈ D and so y0 /∈ Y , a contradiction. Thus f |Y is a homeomorphism. The
minimality of f |Y is obvious, since it is a restriction of a minimal map.

Now consider (f |Y )−1. Obviously, it is a homeomorphism Y → Y . We are going
to prove its minimality. Suppose, on the contrary, that for some point y0 ∈ Y its
(f |Y )−1-trajectory is not dense in Y . Denote by ω its ω-limit set (in X), i.e. the
set of all points in X which are the limit points of this trajectory. Trivially, ω is
nonempty and closed in X and from the said above ω 6= X. Taking a ∈ ω, using the
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continuity of f one can find b ∈ ω with f(a) = b. Hence f(ω) ⊆ ω, a contradiction
with the minimality of f .

Finally, let us go to the uniform continuity. Since f is uniformly continuous,
so is f |Y . If f is a homeomorphism (i.e., Y = X) then so is f−1 and due to the
compactness we get the uniform continuity of f−1|Y = (f |Y )−1. Conversely, let
(f |Y )−1 be uniformly continuous. Then it has a continuous extension g ∈ C(X)
and obviously g ◦ f |Y = f ◦ g|Y = id |Y . Since Y is dense in X, this implies
g ◦ f = f ◦ g = id on X. Hence f is a homeomorphism.

Remark. From the proof of Theorem 2.7 one can see that it holds under weaker
assumptions — it is sufficient to assume that f ∈ C(X) is irreducible. (One can
compare this result with that from [MW] where, though under weaker assumptions,
only the density of A is obtained.)

Similarly, if in Theorem 2.8 we assume only irreducibility of the map f ∈ C(X)
then the statement of the theorem remains valid except of the minimality of f |Y
and (f |Y )−1. One can only claim that these maps, being bijective, are irreducible.

Finally remark that if f in Theorem 2.8 is not a homeomorphism, i.e., we cannot
put Y = X, then the set Y has necessarily empty interior in X (use for instance
Theorem 2.5(8) and the fact that f(Y ) = Y ).

J. Auslander brought our attention to the fact that there is a valid converse to
Theorem 2.8. In fact, we have

Theorem 2.9. Let (Y, τ) be a metric space and h : Y → Y be a minimal homeo-
morphism such that

(a) h is uniformly continuous,
(b) h−1 is not uniformly continuous and
(c) for any ε > 0 there is a nonnegative N such that for every y ∈ Y , the set
{y, h(y), . . . , hN (y)} is ε-dense in Y .

Then (Y, τ) is not complete, its completion (X, %) is compact (hence a compactifi-
cation of (Y, τ)) and on X a minimal noninvertible map f can be defined, which
extends h.

Proof. Suppose that (Y, τ) is complete. By (c) it is also totally bounded and thus
compact. But then h−1 is uniformly continuous on Y , a contradiction.

Let (X, %) be the completion of (Y, τ). Since Y is totally bounded, so is X.
Hence X is compact.

The map h : Y → X is uniformly continuous and Y is dense in the compact
(hence complete) metric space X. Thus there is a (uniformly) continuous extension
f : X → X of the map h. Obviously, f is onto because f(X) ⊇ h(Y ) = Y , Y
is dense in X and f(X) is compact. The map f cannot be invertible on X since
otherwise h−1 would be uniformly continuous on Y .

Finally, from (c) we get, using uniform continuity of f , that for any ε > 0 there is
a nonnegative N such that for every x ∈ X, the set {x, h(x), . . . , hN (x)} is ε-dense
in X. The minimality of f trivially follows.

Remark. Notice that in Theorem 2.9, up to isometry there is no other compactifi-
cation (X̃, %̃) of (Y, τ) for which the metric %̃ induces the given metric τ on Y . In



10 S. KOLYADA, L’. SNOHA AND S. TROFIMCHUK

fact, any such compactification is automatically the completion of (Y, τ).

3. Noninvertible minimal maps on the torus

We are going to prove that the torus admits minimal noninvertible maps. Two
kinds of examples of such maps will be given — these will be obtained either as a
factor or as an extension of an appropriate minimal homeomorphism of the torus.

We start with some preliminaries.
Above we worked with almost one-to-one maps. Similar terminology is used

also for extensions and factors. Let f : X → X, g : Y → Y and ϕ : X → Y
be continuous, ϕ surjective. Let ϕ ◦ f = g ◦ ϕ, i.e., ϕ is semiconjugacy , f is an
extension of g and g is a factor of f . This extension of g (factor of f) is called
almost one-to-one if the semiconjugacy ϕ is an almost one-to-one map, i.e., if for
every y in a residual subset of Y , card(ϕ−1(y)) = 1.

Let (X, %) be a metric space and f : X → X be continuous. Then two differ-
ent points x, y ∈ X are called distal if lim infn→∞ %(fnx, fny) > 0, proximal if
lim infn→∞ %(fnx, fny) = 0 and asymptotic if limn→∞ %(fnx, fny) = 0. The map
f is called distal if every two different points from X are distal and is called point
distal if there is a point x0 ∈ X such that for every y ∈ X, y 6= x0, the points x0, y
are distal. If f is distal then it is point distal but, in general, not conversely. If a
misunderstanding can arise, we say f -distal instead of distal and similarly in case
of proximality and asymptoticity.

A decomposition D of a topological space X is upper semicontinuous (u.s.c.) if
for each element E in D and each open set U containing E there is an open set V
such that E ⊂ V ⊂ U and V is the union of members of D.

Further we need to recall Roberts-Steenrod theorem from [RS]. Let M be a
compact connected 2-dimensional manifold without boundary (it need not be ori-
entable) and G be an u.s.c. collection of continua filling M . Let R(g) denote the
mod 2 one-dimensional Betti number of the set g. Theorem 1 in [RS] says that
if G contains at least two elements and R(g) = 0 for each g ∈ G, then the quo-
tient space M/G is homeomorphic to M . (One can easily see that the topology
used by Roberts and Steenrod is really the quotient topology in the contemporary
terminology.)

A continuous map S from the 2-torus T2 into itself is called a skew product if it is
of the form S(x, y) = (f(x), g(x, y)). Obviously, if S is minimal then the circle map
f is minimal, too. But then f is topologically conjugate to an irrational rotation
x 7→ x + α [AK]. A set of the form {x0} × I ⊆ T2 where I is an interval on the
circle is said to be a vertical interval on the torus.

The following lemma admits generalizations but is sufficient for our purposes.

Lemma 3.1. Let Φ be a minimal skew product continuous selfmap of the 2-torus
T

2. Assume that one of the following holds:

(a) There are (possibly degenerate) compact vertical intervals Jn, n = 0, 1, 2, . . .
such that Φ(Jn) = Jn+1 for every n, and diamJn → 0 when n→ +∞.

(b) There are (possibly degenerate) compact vertical intervals Jn, n = 0,−1,−2, . . .
such that J0 is a singleton and Φ(Jn) = Jn+1 for n = −1,−2, . . . , and
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diamJn → 0 when n→ −∞.
Let D be the decomposition of T2 whose elements are the intervals Jn and the
individual points from the rest of the torus.

Then the quotient space T2/D is homeomorphic to T2 and there exists a natural
almost one-to-one factor Ψ : T2/D → T

2/D of the map Φ (the corresponding semi-
conjugacy is the natural projection p : T2 → T

2/D). Moreover, Ψ is a continuous
minimal map.

Proof. According to the discussion above the lemma, the intervals are pairwise
disjoint and so the decomposition is well defined. In either of the cases (a) and (b),
Φ maps an element of the decomposition D into an element of D. Hence there is
the only map Ψ : T2/D → T

2/D with Ψ◦p = p◦Φ. We prove that Ψ is continuous.
Since the map h = p ◦ Φ : T2 → T

2/D is continuous and h = Ψ ◦ p, for each open
set U ⊆ T2/D, h−1(U) = p−1(Ψ−1(U)) is open in T2. Then, since p is a quotient
map, the set Ψ−1(U) is open in T2/D. Thus Ψ is continuous and, being a factor of
a minimal map, also minimal. Obviously, it is an almost one-to-one factor of Φ.

Thus to finish the proof we need to show that T2/D is homeomorphic to T2.
To this end we apply the above mentioned Roberts-Steenrod theorem. Since the
mod 2 one-dimensional Betti number of every element of D is zero, the only thing
which remains to prove is that the partition D is u.s.c.

First realize that in either of the cases (a) and (b) the decomposition D consists
of individual points and a sequence of closed (possibly degenerate) one-dimensional
intervals Kn, n = 0, 1, 2, . . . with diamKn → 0 when n → ∞. Take any element
E of D and any open set U containing E. Since E is compact, without loss of
generality we may assume that U is a δ-neighbourhood of E for some δ > 0. Now
let Y be the union of all elements ofD which intersect the boundary of U . Obviously,
Y ⊇ bdU . To finish the proof that D is u.s.c. it is obviously sufficient to show that
Y is closed. To this end let (yn)∞n=1 be a converging sequence of points from Y and
y be its limit. Denote by Dn the element of D containing yn. If for infinitely many
n’s the point yn is contained in the same element Dr then y ∈ Dr ⊆ Y and we are
done. So let there be a subsequence (Dnk)∞k=1 of mutually different elements. From
the fact that diamKn → 0 it follows that also the diameters of Dnk tend to zero
whence limk→∞ ynk = y ∈ bdU and so again y ∈ Y .

Now we are ready to prove that the torus admits noninvertible minimal maps.
Since there are minimal skew product homeomorphisms of the torus having asymp-
totic pairs of points (an example of such a homeomorphism is that from [R]), to
this end it is sufficient to prove the following

Theorem 3.2. Any minimal skew product homeomorphism of the 2-torus T2 hav-
ing an asymptotic pair of points has an almost one-to-one factor which is a nonin-
vertible minimal map of T2.

Proof. Let S(x, y) = (f(x), g(x, y)) be a minimal skew product homeomorphism of
T

2. Further assume that S has an asymptotic pair of points {z1, z2}. Of course,
these points lie in one fibre, i.e., are of the form z1 = (x, y1), z2 = (x, y2).

Since S is a homeomorphism of the above form, the S-image of a vertical interval
is again a vertical interval whose endpoints are the S-images of the endpoints of
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the original interval. The points z1, z2 are the endpoints of two vertical compact
intervals. Since these points are asymptotic and S is uniformly continuous, one of
the mentioned two vertical intervals, denote it by I0, is such that for In := Sn(I0)
we have diam In → 0 when n→ +∞.

Let D be the decomposition of T2 whose elements are the (pairwise disjoint)
compact intervals In, n ≥ 0 and the individual points from T

2 \
⋃∞
n=0 In. Consider

the quotient space T2/D.
By identifying each of the intervals In, n ≥ 0 to a single point we get, by

Lemma 3.1, an almost one-to-one factor F : T2/D → T
2/D of the map Φ. The

map F is continuous, minimal and noninvertible at the point p(I0).
To finish the proof realize that, by Lemma 3.1, T2/D is homeomorphic to T2.

The technique from Lemma 3.1 applied to the map from [R] can be used to prove
the following

Theorem 3.3. There is a minimal point distal noninvertible map of the 2-torus
T

2 such that:

(1) an extension of it is a minimal point distal skew product homeomorphism
of T2 and

(2) a factor of it is a minimal distal homeomorphism of T2.

Proof. The three minimal maps will be denoted by S, F and H, F being non-
invertible and homeomorphisms S and H being an extension and a factor of F ,
respectively.

Let S be the minimal point distal but not distal skew product homeomorphism
from [R]. It is obtained as an extension of an irrational rotation of T2. We will use
its following properties. There is a vertical nondegenerate compact interval I0 such
that for In := Sn(I0) we have diam In → 0 when n→∞ as well as when n→ −∞.
There are no S-proximal pairs which are not S-asymptotic. Two different points
x, y ∈ T2 are S-asymptotic if x, y ∈ In for some integer n and are S-distal otherwise.

The identification of each of the intervals In, n ≥ 0 to a single point leads, in view
of Lemma 3.1, to a minimal continuous selfmap F of T2 – a factor of S. Obviously,
F is noninvertible (at the point which corresponds to the interval I0).

Quite analogously, the further identification of the intervals In, n < 0 to single-
tons leads to a minimal homeomorphism H of T2 – a factor of F .

Thus H : T2 → T
2 is a factor of S which is topologically conjugate to another

factor of S – to the map T2/D → T
2/D obtained from S by collapsing all the

elements of D to singletons, where D consists of the intervals (In)∞n=−∞ and the
individual points from the rest of the torus (we use the fact that, by Lemma 3.1,
T

2 and T2/D are homeomorphic). Hence there is a continuous surjective map
π : T2 → T

2 with π ◦ S = H ◦ π (the level sets of π are the elements of D). We are
going to show that H is distal.

Suppose, on the contrary, that two different points x, y ∈ T
2 would be H-

proximal. Since x 6= y, A = π−1(x) and B = π−1(y) are different elements of
D. Pick a ∈ A, b ∈ B. Then a, b are S-distal. Thus for some δ > 0 we have
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%(Sna, Snb) ≥ δ, n = 0, 1, 2, . . . and lim infn→∞ %(Hnx,Hny) = 0. By a compact-
ness argument there is a sequence nk →∞ and points c, d and z such that

Hnkx→ z, Hnky → z, Snka→ c, Snkb→ d .

The semiconjugacy gives π(c) = z as well as π(d) = z. Thus c, d lie in the same
interval In. Therefore they are S-asymptotic. Hence, for some m, %(Sma, Smb) < δ,
a contradiction.

To show the existence of noninvertible minimal maps on the torus we were using
the technique of factorization (see Theorems 3.2 and 3.3). Nevertheless, taking
an extension of a minimal homeomorphism can also yield a noninvertible minimal
map. In fact, we are going to show how to modify the construction of M. Rees
[R] to obtain a noninvertible minimal map of the torus. (In the first part of the
proof of Theorem 3.3 we showed that the map S from [R] has a factor F which is a
noninvertible minimal map of the torus. Now we want to find such a map without
use of factorization.)

Theorem 3.4. Any irrational rotation of the 2-torus T2 has an almost one-to-one
extension which is a noninvertible minimal map of T2.

Idea of the proof. Extend an irrational rotation of the torus analogously as in [R] but
in the doubly infinite sequence of squares . . . , A3, A1, A0, A2, A4, . . . let A2n, n =
1, 2, . . . be degenerate (i.e., points). (In [R] all the squares are nondegenerate.)

Just pointing out the differences between the proof of Theorem 3.4 and that from
[R] may not seem sufficient. In fact, the authors of the present paper find the paper
[R] very difficult to read — in particular, there are many misprints and gaps there.
On the other hand the map and the construction from [R] are very interesting and
exhibit nice properties. It seems that in spite of it they are being overlooked and
are not widely known. All things considered, we have decided to present a detailed
proof of Theorem 3.4 as an appendix.

4. Appendix - detailed proof of Theorem 3.4

Proof of Theorem 3.4. Let T : (x, y) 7→ (x+α, y+β) be a minimal homeomorphism
of the 2-torus T2 = R

2/Z2, where 1, α, β ∈ R are rationally independent and
+ : R/Z×R→ R/Z is defined in the obvious way. The circle R/Z will be denoted
by K. Let π : T2 → K be the projection (x, y) 7→ x. If z = (x, y) is a point from
the torus we will denote the set {x} ×K = {π(z)} ×K by Kx and sometimes also
by Kz (we hope that no confusion can arise since always it will be clear whether
the subscript is a point from the torus or only its first coordinate).

Let z0 = (x0, y0) ∈ T2 and for n ≥ 0 let z2n = (x2n, y2n) = Tn(x0, y0) and
z2n+1 = (x2n+1, y2n+1) = T−n−1(x0, y0). So, the trajectory of the point z0 is
. . . , z3, z1, z0, z2, z4, . . . . Set X = T

2 \
⋃+∞
n=−∞Kzn .

For x, y ∈ K, if x = Z+a, y = Z+b (a, b ∈ R), then let |x−y| = infp∈Z |a−b+p|.
If z1 = (x1, y1) ∈ T2, z2 = (x2, y2) ∈ T2, let |z1 − z2| = max{|x1 − x2|, |y1 − y2|}. If
f and g are continuous selfmaps of the torus, we define their distance by ‖f − g‖ =
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maxz∈T2 |f(z) − g(z)|. The identity map will be denoted by id. If A is a square,
|A| will denote the length of its side. Sometimes we will use the notation r, s for
the set of integers {r, r + 1, . . . , s}. In the sequel the symbol N will denote the set
of nonnegative integers.

(A)–(H) Definition of a sequence of squares (An)∞n=0 and sequences of maps
(Λn)∞n=0 and (Φn)∞n=0.

The square An will have the centre zn. The lengths of the sides of the squares
will be chosen to satisfy several conditions (see below).

(A) Define a family ht, t ∈ [−1, 1] of continuous functions [−1, 1] → [−1, 1]
as follows. Let h0 be the piecewise linear map consisting of three pieces, whose
graph contains the points [−1,−1], [−1/2, 0], [1/2, 0], [1, 1]. For t 6= 0 let ht be the
piecewise linear map consisting of five pieces (of one piece if t = ±1) whose graph
contains the points [−1,−1], [h−1

0 (t), t], [−1/2,−|t|/2], [1/2, |t|/2], [h−1
0 (−t),−t],

[1, 1]. Note that h−1 = h1 = id, h−t = ht and only h0 is not a homeomorphism,
h−1

0 (0) = [−1/2, 1/2].

(B) Let A ⊆ T
2 be a square with |A| = 2δ > 0 and the centre zA. Define

ΛA = id outside A, and

(0) ΛA(zA + (t, s)) = zA + (t, ht ◦ h−1
δ (s))

for all (t, s) ∈ [−δ, δ]2. It is easy to check that ΛA is the identity on the boundary
of A, hence continuous. Notice also that ΛA does not change the first coordinate of
points of the torus. Since h−1

t (y) is a singleton except for the case when t = 0 and
y = 0, the inverse map Λ−1

A exists everywhere except of the point zA. Moreover,
one can see that Λ−1

A is continuous on T2 \ {zA}.
Further, if the square A is degenerate to a point, ΛA will denote the identity on

the torus. Then Λ−1
A = id on the whole torus.

Put IzA = Λ−1
A (zA)

(C) In the sequel, for any finite system of squares A0, ..., An we will denote
Φn = Λn ◦ · · · ◦ Λ1 ◦ Λ0, where Λi stands for ΛAi .

(D) Let |A2n| = 0 for n = 1, 2, . . . , i.e., A2n = {z2n} is a degenerate square.
(This is the only formal difference between our construction and that from [R]
where |An| is never zero.)

(E) For any n let |An| < (1/2) min{|xm − xp| : m 6= p, m, p ≤ n + 5}. Then,
for any n,An does not intersect Kxi , i ∈ 0, n− 1 ∪ n+ 1, n+ 5 and An ∩ Am = ∅
whenever |m−n| ≤ 5. Note that for such n,m we therefore have Λn◦Λm = Λm◦Λn,
which will be used later. Note also, that even the sets π(Ai) ×K, i = k, k + 5 are
pairwise disjoint, where Ai is the square with centre zA and the side equal the
largest of the sides of the squares Ak, . . . , Ak+5.

(F) Let |An| < 1/2n, n = 0, 1, 2, . . . .
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(G) Further, let |An| be so small that |Φ−1
r−1((ar +1)Ar)| < 1/r where (ar)∞r=1 is

a fixed sequence of integers with ar > 2 and
∏∞
r=1(1− (2/ar)) > 0, and (ar + 1)Ar

denotes the square with the same centre as, and sides (ar + 1)-times as long as, Ar.

(H) To formulate next condition for the sides of the squares An we need some
notation. First, fix a sequence of squares (A∗n)∞n=0 satisfying the conditions (A) –
(G). For s ≥ 0 let Ms be a closed subset of the torus which does not contain points
zi, i = 0, s, contains the squares A∗j , j = s+ 1, s+ 5 (this is possible by (E)) and
T (A∗s+3) ∪ T−1(A∗s+3) ⊆Ms (this is also possible by (E)).

The map Φ−1
s is defined and is continuous on T2 \ {z0, ..., zs}. The map Φ−1

s is
not uniformly continuous but Ms ⊆ T2 \{z0, ..., zs} is compact and therefore Φ−1

s is
uniformly continuous on Ms. Hence there is ηs > 0 such that |Φ−1

s (x)−Φ−1
s (y)| <

1/2s whenever x, y ∈Ms and |x− y| ≤ ηs.
Now we are ready to formulate the last conditions for the squares An. First of

all let An ⊆ A∗n (with the same centre as A∗n). Then we have

(1) T (As+3) ∪ T−1(As+3) ⊆Ms.

Finally let

(2) |An| < min{ηn−1, ..., ηn−5}.

We have finished the definition of the sequence (An)∞n=0.

(I) Definition of maps σ, τ : N→ N and Φσ,n,Φτ,n : T2 → T
2.

Let σ, τ : N → N be bijective maps such that T (zn) = zσ(n) and T−1(zn) =
zτ(n). So τ ◦ σ = σ ◦ τ = id on N. Then 0 < |σ(n)− n| ≤ 2 and 0 < |τ(n)− n| ≤ 2
for all n = 0, 1, 2, . . . .

Let Φσ,n = Λσ(n) ◦ ... ◦ Λσ(1) ◦ Λσ(0) and Φτ,n = Λτ(n) ◦ ... ◦ Λτ(1) ◦ Λτ(0). We
claim that for all n ≥ 2,

(3) Φσ,n = Λ2[n2 ]+2 ◦ Λ2[n2 ] ◦ Φn−2

and

(4) Φτ,n = Λ2[n−1
2 ]+3 ◦ Λ2[n−1

2 ]+1 ◦ Φn−2.

The formulas can be proved by induction, using the commutativity property
mentioned in (E) and distinguishing whether n is even or odd.

(J) Uniform convergence of Φn,Φσ,n and Φτ,n to the same limit Φ.

We have ‖Φn+1−Φn‖ = ‖Λn+1 ◦Φn− id ◦Φn‖ = ‖Λn+1− id ‖ < 1/2n+1 by (F).
Hence Φn uniformly converges on T2 to some continuous map Φ.

Further, ‖Φσ,n − Φ‖ ≤ ‖Φσ,n − Φn−2‖ + ‖Φn−2 − Φ‖. The second term on the
right-hand side tends to zero and by (3) the first term equals ‖Λ2[n2 ]+2◦Λ2[n2 ]−id ‖ ≤
max{|A2[n2 ]+2|, |A2[n2 ]|} which by (F) tends to zero.
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Similarly one can show that Φτ,n also converges to Φ.

(K) Bijectivity of Φ|X : X → X.

The map Φ|X is surjective, being the uniform limit of surjective maps Φn|X .
Suppose that Φ(x) = Φ(y) for some x, y ∈ X,x 6= y. Take n with |x − y| ≥ 1/n.
Then by (G), for m ≥ n at least one of the points Φm(x),Φm(y), say the point
Φm(y), does not belong to the square (am+1 + 1)Am+1. Now distinguish two cases.

Case 1. If Φm(x) ∈ Am+1, then Φm+1(x) ∈ Am+1 and so |Φm+1(x)− Φm(x)| ≤
|Am+1|. Further, |Φm(x) − Φm(y)| ≥ 1

2am+1|Am+1|. So, taking into account that
Φm+1(y) = Φm(y), we get

|Φm+1(x)− Φm+1(y)| ≥
≥ |Φm(x)− Φm(y)| − |Φm+1(x)− Φm(x)| ≥ |Φm(x)− Φm(y)|(1− 2/am+1).

Case 2. If Φm(x) 6∈ Am+1 then we have Φm+1(x) = Φm(x) and similarly for y,
hence

|Φm+1(x)− Φm+1(y)| = |Φm(x)− Φm(y)| > |Φm(x)− Φm(y)|(1− 2/am+1).

In any case,

0 = |Φ(x)− Φ(y)| = lim
m→∞

|Φm(x)− Φm(y)| ≥
∞∏

r=n+1

(1− (2/ar))|Φn(x)− Φn(y)|

whence Φn(x) = Φn(y), which is a contradiction with the fact that Φn|X is a
bijection.

Below in (L), (M) and (N), A and B will be squares with the centres zA, zB and
we will assume that T (zA) = zB .

(L) Uniform continuity of LAB = Λ−1
B ◦ T ◦ ΛA, where A is a nondegenerate

square, on T2 \KzA (even on T2 \ IzA).

On T2 \ IzA , LAB is obviously defined and continuous.
To prove the uniform continuity of LAB on T2 \ IzA it is sufficient to prove that

LAB can be continuously extended to the whole torus. The set M = A ∩ (T ◦
ΛA)−1(B) contains an open neighbourhood of IzA and if zA+ (t, s) ∈M \ IzA , then
by (0) we have

(5) LAB(zA + (t, s)) = zB + (t, hη ◦ h−1
δ (s))

where |A| = 2δ, |B| = 2η. If we define LAB on the whole set M (including IzA) by
the formula (5), then it is obviously continuous on M . Thus LAB , being continuous
both on T2 \ IzA and on a neighbourhood of IzA is continuous on T2 and the result
follows.

(M) Uniform continuity of LAB on T2 if both A and B are degenerate squares.
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This is obvious, since in this case LAB = T .

(N) Non-uniform continuity of LAB on T2 \ {zA} if A is a degenerate and B a
nondegenerate square.

In this case we have LAB = Λ−1
B ◦ T ◦ id and the result follows from the non-

uniform continuity of Λ−1
B .

(O)Uniform continuity of the map Sn = Φ−1
σ,n ◦ T ◦ Φn defined on the set X.

Since in this part we work onX, all the sets should be considered to be intersected
with X even if we do not state it explicitly.

We prove this by induction. We have S0 = Λ−1
2 ◦ T ◦ Λ0 and since A0 is a

nondegenerate square and A2 degenerate, it suffices to use (L).
Assume inductively that Sn is uniformly continuous on X. Since Sn = Φ−1

σ,n ◦T ◦
Φn and Sn+1 = Φ−1

σ,n ◦ Ln+1,σ(n+1) ◦ Φn where Ln+1,σ(n+1) = Λ−1
σ(n+1) ◦ T ◦ Λn+1,

we have

{z : Sn+1(z) 6= Sn(z)} ⊆ {z : Φn(z) ∈ An+1} ∪ {z : T ◦ Λn+1 ◦ Φn(z) ∈ Aσ(n+1)}.

The maps Λi,Φi do not change the first coordinates of the points and so

{z : Sn+1(z) 6= Sn(z)} ⊆

⊆ π(An+1)×K ∪ [xn+1 −
1
2
|Aσ(n+1)|, xn+1 +

1
2
|Aσ(n+1)|]×K

= [xn+1 −
1
2
αn+1, xn+1 +

1
2
αn+1]×K = Dn+1

where αn+1 = max{|An+1|, |Aσ(n+1)|}.
The set Dn+1 is invariant under all Λm and is mapped to

[xσ(n+1) −
1
2
αn+1, xσ(n+1) +

1
2
αn+1]×K = T (Dn+1)

by Ln+1,σ(n+1) and T (Dn+1) is invariant under all Λm.
Since Sn+1 = Sn on (at least) X \ Dn+1 and Sn is uniformly continuous on

X, to finish the proof it suffices to show that Sn+1 is uniformly continuous on
Dn+1 \ Kzn+1 . The map Φn is uniformly continuous on Dn+1. The compact set
T (Dn+1) does not intersect Kxi for i ∈ {σ(0), σ(1), ..., σ(n)}, therefore Φ−1

σ,n is
uniformly continuous on T (Dn+1).

We are going to show that Ln+1,σ(n+1) on the set Dn+1 \ Kzn+1 is uniformly
continuous An+1 is a point and Aσ(n+1) is a nondegenerate square. Since this map
equals T outside An+1, its uniform continuity depends only on its restriction to
Dn+1 \Kzn+1 . But this restriction is uniformly continuous if An+1 is nondegenerate
(by (L)) or Aσ(n+1) is degenerate and is not uniformly continuous if An+1 is degen-
erate but Aσ(n+1) nondegenerate. Since by the definition of the sequence (Ai)∞i=0

we cannot have this last case, Ln+1,σ(n+1) is uniformly continuous on Dn+1\Kzn+1 .
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Now the uniform continuity of

Sn+1 = Φ−1
σ,n ◦ Ln+1,σ(n+1) ◦ Φn

on the set Dn+1 \ Kzn+1 follows from the facts that Φn is uniformly continuous
on Dn+1 \ Kzn+1 , Φn(Dn+1 \ Kzn+1) = Dn+1 \ Kzn+1 , Ln+1,σ(n+1) is uniformly
continuous on Dn+1 \ Kzn+1 , Ln+1,σ(n+1)(Dn+1 \ Kzn+1) ⊆ T (Dn+1) and Φ−1

σ,n is
uniformly continuous on T (Dn+1).

(P) Non-uniform continuity of the map S∗n = Φ−1
τ,n ◦ T−1 ◦Φn defined on the set

X for n ≥ 2.

Finally as in the previous part, all the sets should be considered to be intersected
with X.

First notice that S∗0 and S∗1 are uniformly continuous on X by the same argument
as Sn, n ∈ N. Roughly speaking, the reason why S∗n, n ≥ 2 are not uniformly
continuous on X is the fact that the map L∗2,0 = Λ−1

0 ◦T−1 ◦Λ2 = Λ−1
0 ◦T−1 ◦ id is

not uniformly continuous (this map is defined on T2 \{z2}, it sends the points close
to z2 to points close to z0 and is not uniformly continuous on any neighbourhood of
z2). We show that this fact really implies the non-uniform continuity of S∗n, n ≥ 2.

Quite analogously as in the case of maps Sn (just replace T by T−1 and σ by τ)
we get

{z : S∗n+1(z) 6= S∗n(z)} ⊆ [xn+1 −
1
2
α∗n+1, xn+1 +

1
2
α∗n+1]×K = D∗n+1

where α∗n+1 = max{|An+1|, |Aτ(n+1)|}. The set D∗n+1 is invariant under all Λm and
is mapped to [xτ(n+1)− 1

2α
∗
n+1, xτ(n+1)+ 1

2α
∗
n+1]×K = T−1(D∗n+1) by L∗n+1,τ(n+1) =

Λ−1
τ,n+1 ◦ T−1 ◦ Λn+1 and T−1(D∗n+1) is invariant under all Λm.
The map S∗1 is uniformly continuous on X and S∗2 = S∗1 holds on (at least)

X \ D∗2 , so S∗2 is uniformly continuous on X \ D∗2 . But S∗2 = Φ−1
τ,1 ◦ L∗2,0 ◦ Φ1 is

not uniformly continuous on D∗2 because Φ1 = id on D∗2 , L
∗
2,0 is not uniformly

continuous on D∗2 , L
∗
2,0(D∗2) = T−1(D∗2) and Φ−1

τ,1 = id on T−1(D∗2). Thus we have
proved that S∗2 is not uniformly continuous on X ⊇ X \D∗3 ⊇ D∗2 .

Assume that S∗n is not uniformly continuous on X \D∗n+1. The map S∗n+1 = S∗n
on X \D∗n+1, therefore S∗n+1 is not uniformly continuous on X ⊇ X \D∗n+1.

(Q) The sequences (Sn)∞n=0 and (S∗n)∞n=0 are Cauchy sequences on X.

By (3) for n ≥ 2 we have

Sn = Φ−1
σ,n ◦ T ◦ Φn = Φ−1

n−2 ◦ Λ−1
2[n2 ] ◦ Λ−1

2[n2 ]+2 ◦ T ◦ Λn ◦ Λn−1 ◦ Φn−2

and

Sn+1 = Φ−1
σ,n ◦ Λ−1

σ(n+1) ◦ T ◦ Λn+1 ◦ Φn

= Φ−1
n−2 ◦ Λ−1

2[n2 ] ◦ Λ−1
2[n2 ]+2 ◦ Λ−1

σ(n+1) ◦ T ◦ Λn+1 ◦ Λn ◦ Λn−1 ◦ Φn−2.
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Since Sn = Sn+1 on X \Dn+1, we need only estimate ‖Sn+1 − Sn‖ on Dn+1.
First notice that n+ 1 6∈ {n− 1, n} and so An−1 and An are disjoint with Dn+1.

Further, both for even and odd n (note that n ≥ 2), σ(n + 1) 6∈ {2[n2 ], 2[n2 ] + 2}
and so A2[n2 ] and A2[n2 ]+2 are disjoint with T (Dn+1). Finally, recall that Φn−2 as
well as all Λi do not change the first coordinates of the points. As a result of all
mentioned facts we get that

Sn = Φ−1
n−2 ◦ T ◦ Φn−2 on Dn+1

and
Sn+1 = Φ−1

n−2 ◦ Λ−1
σ(n+1) ◦ T ◦ Λn+1 ◦ Φn−2 on Dn+1.

Hence, on X we have

‖Sn+1−Sn‖ =

= ‖Φ−1
n−2 ◦ Λ−1

σ(n+1) ◦ T ◦ Λn+1 ◦ Φn−2 − Φ−1
n−2 ◦ T ◦ Λn+1 ◦ Φn−2

+ Φ−1
n−2 ◦ T ◦ Λn+1 ◦ Φn−2 − Φ−1

n−2 ◦ T ◦ Φn−2‖
≤ ‖Φ−1

n−2 ◦ Λ−1
σ(n+1) − Φ−1

n−2‖+ ‖Φ−1
n−2 ◦ T ◦ Λn+1 − Φ−1

n−2 ◦ T‖

≤ max
n−1≤r≤n+3

‖Φ−1
n−2 ◦ Λ−1

r − Φ−1
n−2‖+ ‖Φ−1

n−2 ◦ T ◦ Λn+1 − Φ−1
n−2 ◦ T‖

(in the last inequality we used the fact that |σ(n) − n| ≤ 2 and so σ(n + 1) ∈
n− 1, n+ 3).

By (E), if n − 1 ≤ r ≤ n + 3, x ∈ X and Λ−1
r (x) 6= x (hence, x ∈ Ar), then

x,Λ−1
r (x) ∈ Ar ∩Mn−2 (we used the fact that by (H) for any k, Mk contains the

squares Ak+1, ..., Ak+5).
By (2), |Λ−1

r (x)− x| < |Ar| < ηn−2. It follows that

(10) max
n−1≤r≤n+3

‖Φ−1
n−2 ◦ Λ−1

r − Φ−1
n−2‖ <

1
2n−2

.

If T ◦Λn+1(x) 6= T (x) then Λn+1(x) 6= x and so x,Λn+1(x) ∈ An+1. Then by (2)
|T ◦ Λn+1(x)− T (x)| = |Λn+1(x)− x| ≤ |An+1| < ηn−2. By (1), T (An+1) ⊆Mn−2

whence T (x), T ◦ Λn+1(x) ∈ Mn−2 and taking into account the above inequality,
we get

(11) ‖Φ−1
n−2 ◦ T ◦ Λn+1 − Φ−1

n−2 ◦ T‖ <
1

2n−2
.

From (10) and (11) we have ‖Sn+1 − Sn‖ < 1/2n−3 and so (Sn)∞n=0 is a Cauchy
sequence. Denote its uniform limit on X by S.

The proof for (S∗n)∞n=0 is analogous, the difference being that one has τ and T−1

instead of σ and T , respectively. Denote the uniform limit of S∗n on X by S∗.

(R) Definition of the continuous surjective map S̃ on T2.
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Since the map Sn is uniformly continuous on the dense subset X of T2, there is
a unique continuous extension S̃n of Sn to T2. Since (Sn)∞n=0 is a Cauchy sequence,
obviously (S̃n)∞n=0 is also Cauchy and so has a uniform limit S̃. Clearly, S̃|X = S.
Since Sn(X) = X for any n, we have S(X) = X and so S̃(T2) = T

2.

(S) Noninvertibility of S̃.

Recall that, by the definition, Φσ,n ◦ Sn = T ◦ Φn and Φτ,n ◦ S∗n = T−1 ◦ Φn
on the set X. Further, Φσ,n,Φτ,n and Φn uniformly converge to Φ on the torus,
and the map Φ as well as all the maps Φσ,n,Φτ,n,Φn, n = 1, 2, ... are uniformly
continuous. It follows Φ ◦S = T ◦Φ and Φ ◦S∗ = T−1 ◦Φ on X. (We used the fact
that fn ◦ gn uniformly converge to f ◦ g whenever gn uniformly converge to g, fn
uniformly converge to f and the maps fn, n = 1, 2, ... are equicontinuous (which
is the case when fn, n = 1, 2, ... and f are uniformly continuous and fn uniformly
converge to f).)

Since Φ is bijective (see (K)), we get S = Φ−1 ◦T ◦Φ and S∗ = Φ−1 ◦T−1 ◦Φ on
X. Hence S∗ = S−1 on X. Since S̃|X = S and S̃(X) = X we have (S̃|X)−1 = S∗.
But S∗ is not uniformly continuous on X (by (P)), therefore S̃ does not have the
inverse on T2.

(T) Minimality of S̃.

Take any nonempty closed set M ⊆ T2 with S̃(M) ⊆ M (we need to show that
M = T

2). Since S̃ is an extension of T , we have T (Φ(M)) = Φ(S̃(M)) ⊆ Φ(M)
and by minimality of T we get Φ(M) = T

2. Recall that Φ = limn→∞ Φn and the
maps Φn do not change the first coordinate of the points. Therefore also Φ has this
property, i.e., Φ(x, y) = (x, ϕ(x, y)). Hence Φ(X) = X and Φ(T2 \ X) = T

2 \ X.
It follows that Φ(M ∩ X) = X. Since Φ|X : X → X is a bijection (see (K)),
M ∩X = X. Now use the density of X and the closedness of M in T2 to get that
M = T

2
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[M] P. Maličký, Backward orbits of transitive maps, preprint.
[MW] J. van Mill and R. G. Woods, Perfect images of zero-dimensional separable metric spaces,

Canad. Math. Bull. 25 (1982), 41–47.
[O] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
[PW] J. R. Porter and R. G. Woods, Extensions and absolutes of Hausdorff spaces, Springer -

Verlag, New York, 1988.

[R] M. Rees, A point distal transformation of the torus, Israel J. Math. 32 (1979), 201–208.
[RS] J. H. Roberts and N. E. Steenrod, Monotone transformations of the 2-dimensional man-

ifolds, Ann. Math. 39 (1938), 851–862.

[S] S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mountain
Jour. Math. 22 (1992), 353–375.

[deV] J. de Vries, Elements of topological dynamics, Mathematics and its Applications, Vol.
257, Kluwer Academic Publishers, Dordrecht - Boston - London, 1993.

[W] P. Walters, An introduction to ergodic theory, Graduate Texts in Math. Vol. 79, Springer,
Berlin, 1982.

Institute of Mathematics, Ukrainian Academy of Sciences, Tereshchenkivs’ka 3,

252601 Kiev, Ukraine

E-mail address: skolyada@imath.kiev.ua

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University,
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