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1. Introduction

The classical white noise analysis (Gaussian white noise analysis) it is possible
to understand as a theory of generalized functions of infinite many variables with
pairing between test and generalized functions provided by integration with respect
to the Gaussian measure. It is well known that there exist several approaches to the
construction of such theory of generalized functions: the Berezansky-Samoilenko
approach [19] and the Hida approach [24]. In the Berezansky-Samoilenko approach
spaces of test and generalized functions are constructed as infinite tensor products
of one-dimensional spaces. The Hida approach consists in the construction of some
rigging of a Fock space with subsequent application to the spaces of this rigging
the Wiener-Itô-Segal isomorphism.

After a number of years it became clear that the Hida approach is more
convenient and in most cases all investigations in white noise analysis and its
generalizations are based on this approach. There exist many works dedicated to
white noise analysis development:

• Works deal with the investigation of spaces of test and generalized functions
and operators acting in these spaces using the Wiener-Itô-Segal isomorphism
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and various riggings of the Fock space. For more information, see the books
[24, 12, 25, 39], surveys [40, 41] and the references therein.

• Works deal with the so-called Jacobi fields approach to a generalization of
white noise analysis. In these works the role of the Wiener-Itô-Segal isomor-
phism is played a unitary Fourier transform which is defined by the Jacobi
field, i.e., by some family of commuting selfadjoint operators that act in the
Fock space and have a Jacobi structure. The theory of Jacobi fields was cre-
ated by Berezansky under the influence of the works of M. G. Krein (see
e.g. [37, 38]) about Jacobi matrices. A detailed study of general commutative
Jacobi fields in the Fock space and a corresponding spectral measure was
carried out in the works by Berezansky and his collaborators, see e.g. [4],
[6]–[10], [15]–[18], [42]–[46]. Note that the Wiener-Itô-Segal isomorphism it is
possible to understand as the Fourier transform of a certain Jacobi field, so-
called free field. This result was obtained by Koshmanenko and Samoilenko
in [36], see also [12].

• Works are devoted the biorthogonal approach to a generalization of white
noise analysis. In this approach, one replaces the system of Hermite poly-
nomials, that are orthogonal with respect to the Gaussian measure, with a
certain biorthogonal system. The biorthogonal approach was inspired by [22],
proposed in [3] and developed in [51, 2, 13, 14, 29, 30, 20, 21] (see survey [20]
for the complete bibliography). Note that in [13, 14] was first observed that
the biorthogonal approach is deep connected with the theory of hypergroups.

There exists the deep analogy between the above mentioned works. In all
these works spaces of test function are constructed as image of positive spaces
from some rigging of the Fock space. But in the first series of works is used the
Wiener-Itô-Segal isomorphism, in the second series is used a Fourier transform and
in the third series is used a certain biunitary map.

This survey is devoted to the biorthogonal approach to a generalization of
classical white noise analysis. In the first part of the survey we recall the main
idea of Hida approach to the construction of classical white noise analysis. In the
second part we give the basic idea of the biorthogonal approach. In order to make
it more simple, at first we will consider the corresponding theory of generalized
functions for model one-dimensional case and than briefly for infinite-dimensional.
For the details and proofs we refer the reader to the surveys [20, 21].

2. Gaussian white noise analysis

Let us shortly recall some basic results of Gaussian white noise analysis, for details
see e.g. [12, 25]. We consider a rigging of the real Hilbert space L2(R) := L2(R, dt),

S
′
⊃ L2(R) ⊃ S,

where S is the Schwartz space of infinite differentiable, rapidly decreasing function
on R, S ′ is the Schwartz space of distributions dual of S with respect to the zero
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space L2(R). We denote by 〈· , ·〉 the dual pairing between elements of S ′ and S
inducted by the scalar product in L2(R), i.e., for any f ∈ L2(R) and any ϕ ∈ S

〈f, ϕ〉 := (f, ϕ)L2(R).

We will preserve this notation for tensor powers and complexifications of spaces.

Let ρG be a probability measure on the Borel σ-algebra B(S
′
) such that∫

S ′
ei〈x,ϕ〉dρG(x) = e

− 1
2‖ϕ‖

2
L2(R) , ϕ ∈ S. (2.1)

By Minlos theorem the measure ρG is completely characterized by (2.1). This
measure ρG is called the Gaussian measure.

Note that elements x ∈ S ′ can be thought of as paths of the derivative of
Brownian motion, i.e., as white noise. More precisely, it follows from (2.1) that∫

S ′
〈x, ϕ〉2dρG(x) = ‖ϕ‖2L2(R), ϕ ∈ S.

Hence, extending the mapping

L2(R) ⊃ S 3 ϕ 7→ 〈·, ϕ〉 ∈ L2(S
′
, ρG)

by continuity, we obtain a random variable 〈·, f〉 ∈ L2(S ′ , ρG) for each f ∈ L2(R).
Thus, we can define the stochastic process {Bt}t∈R,

Bt(·) :=

{
〈·,κ[0,t]〉, t ≥ 0,

−〈·,κ[t,0]〉, t < 0

(κα is the indicator function of a set α). It is easily seen that {Bt}t∈R is a version
of Brownian motion, i.e., finite-dimensional distributions of the process {Bt}t∈R
coincide with those of Brownian motion. We now informally have, for all t ∈ R,

Bt(x) =

∫ t

0

x(s)ds, so that
d

dt
Bt(x) = x(t).

The main technical tool of the construction and study of spaces of test and
generalized functions in Gaussian white noise analysis is the Wiener-Itô-Segal iso-
morphism

IG : F (L2(R))→ L2(S
′
, ρG)

between the symmetric Fock space F (L2(R)) and the complex space L2(S ′ , ρG).
Let us recall that the symmetric Fock space F (L2(R)) over L2(R) is defined as

F (L2(R)) :=

∞⊕
n=0

Fn(L2(R))n!,

where the n-particle Fock space

Fn(L2(R)) := (L2
C(R))⊗̂n ((L2

C(R))⊗̂0 := C)
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is equal to the n-th symmetric tensor power ⊗̂ of the complexification L2
C(R) of

the real space L2(R) (here and subsequently, the lower index C denotes complex-
ification of a real space). Thus, for each f = (fn)∞n=0 ∈ F (L2(R)),

‖f‖2F (L2(R)) =

∞∑
n=0

‖fn‖2Fn(L2(R))n! <∞.

The isomorphism IG is completely characterized by its following properties:

1. IG : F (L2(R))→ L2(S ′ , ρG) is the unitary operator.
2. IG(f0, 0, 0, . . .) = f0 for all f0 ∈ C.
3. For each n ∈ N and any disjoint Borel sets α1, . . . , αn ∈ B(R) of finite

Lebesgue measure,(
IG(0, . . . , 0︸ ︷︷ ︸

n

,κα1
⊗̂ · · · ⊗̂ καn

, 0, 0, . . .)
)
(·) = 〈·,κα1

〉 . . . 〈·,καn
〉.

There are several equivalent ways of the construction of such isomorphism:

• Using multiple stochastic integrals. In this case IG is constructed by rep-
resentation of any function from L2(S ′ , ρG) as an infinite sum of pairwise
orthogonal multiple stochastic integrals with respect to the Brownian motion
{Bt}t∈R, see e.g. [24, 27, 25].

• Using Jacobi fields approach. Now IG is the Fourier transform of the free
field, i.e., a certain family of commuting selfadjoint operators that act in the
Fock space F (L2(R)) and have the Jacobi structure, see for instance [36, 12].

• Using the system of infinite-dimensional Hermite polynomials which are or-
thogonal (in terms of the Fock space F (L2(R)), see below) with respect to
the Gaussian measure ρG, see e.g. [12, 25].

Our investigation is connected with the third way of the construction of the
Wiener-Itô-Segal isomorphism IG. Let us look at this way more closely.

We consider the function

H(x, ϕ) := e
〈x,ϕ〉− 1

2‖ϕ‖
2

L2
C(R) , x ∈ S ′, ϕ ∈ SC.

It is well known that H is the generating function for the infinite-dimensional

Hermite polynomials Hn(x) ∈ (S ′)⊗̂n which are defined from the decomposition

H(x, ϕ) =

∞∑
n=0

1

n!
〈ϕ⊗n, Hn(x)〉,

where symbol ⊗ denotes the tensor power. The polynomials Hn(x) are orthogonal

in the space L2(S ′ , ρG) in terms of the Fock space F (L2(R)),∫
S ′
〈ϕn, Hn(x)〉〈ψm, Hm(x)〉 dρG(x) = δn,mn!(ϕn, ψn)Fn(L2(R)), (2.2)

ϕn ∈ S⊗̂nC , ψm ∈ S⊗̂mC , n,m ∈ Z+,
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and the mapping

F (L2(R)) ⊃ Ffin (S) 3 ϕ = (ϕn)∞n=0 7→ (IGϕ)(·) :=

∞∑
n=0

〈ϕn, Hn(·)〉 ∈ L2(S
′
, ρG)

after being extended by continuity to the whole space F (L2(R)) is the Wiener-Itô-
Segal isomorphism. Here Ffin (S) denotes the set of all finite sequences (ϕn)∞n=0

such that each ϕn belongs to S⊗̂nC .
With the help of the Wiener–Itô–Segal isomorphism IG, spaces of test and

generalized functions are constructed and investigated. These spaces are obtained
as the IG-image of some rigging of the Fock space F (L2(R)):

F− ⊃ F (L2(R)) ⊃ F+

↓ IG ↓ IG

H− ⊃ L2(S ′ , ρG) ⊃ H+.

Here F+ is a certain Fock space densely and continuously embedded into F (L2(R)),
F− is the negative space with respect to the positive space F+ and the zero space
F (L2(R)). By definition the space of test functions H+ := IGF+ is the IG-image
of the Fock space F+ with topology inducted by the topology of F+, the space of

generalized functions H− := (H+)
′

is the dual of H+ with respect to L2(S ′ , ρG).

Note that we can extend the isomorphism IG : F (L2(R)) → L2(S ′ , ρG) to the
isomorphism between the negative Fock space F− and the space of generalized
functions H−.

3. Biorthogonal approach

In this section we give the basic idea of the biorthogonal approach. In order to
make it more simple, at first we will consider the corresponding theory of gen-
eralized functions for a model one-dimensional case and than briefly for infinite-
dimensional.

3.1. One-dimensional case

At first we consider one-dimensional analogue of the Gaussian white noise analysis.
Then we describe the biorthogonal approach to a generalization of such analysis.

3.1.1. Gaussian case. Let ρG be a Gaussian measure on on the Borel σ-algebra
B(R), its Fourier transform has the form∫

R
eixλdρG(x) = e−

1
2λ

2

, λ ∈ R.

In this case we have the well-known generating function

H(x, λ) := exλ−
1
2λ

2

=

∞∑
n=0

λn

n!
Hn(x), x ∈ R, λ ∈ C,



6 Yu. M. Berezansky and V. A. Tesko

for the Hermite polynomials Hn that are orthogonal with respect to ρG. More
precisely, we have, for all n,m ∈ Z+,∫

R
Hn(x)Hm(x) dρG(x) = δn,mn!.

Now the role of the Fock space F (L2(R)) plays the l2-space

l2 :=
{
f = (fn)∞n=0, fn ∈ C

∣∣∣ ‖f‖2l2 :=

∞∑
n=0

|fn|2n! <∞
}

and an analogue of the Wiener-Itô-Segal isomorphism has the form

l2 3 f = (fn)∞n=0 7→ (IGf)(·) =

∞∑
n=0

fnHn(·) ∈ L2(R, ρG).

By analogy with the infinite-dimensional situation using the space l2 instead
of the Fock space F (L2(R)) and the unitary map IG : l2 → L2(R, ρG) instead of the
Wiener-Itô-Segal isomorphism we obtain spaces of test and generalized functions
of variables x ∈ R as the IG-image of a rigging of the space l2.

Namely, for fixed K > 1 and q ∈ N we denote

l2+(q) :=
{
f = (fn)∞n=0, fn ∈ C

∣∣∣ ‖f‖2l2+(q) :=
∞∑
n=0

|fn|2(n!)2Kqn <∞
}
,

l2+ := pr lim
q∈N

l2+(q).

Then the dual spaces of l2+(q) and l2+ with respect to the zero space l2 are

l2−(q) := (l2+(q))
′

=
{
f = (fn)∞n=0, fn ∈ C

∣∣∣ ‖f‖2l2−(q) :=

∞∑
n=0

|fn|2K−qn <∞
}
,

l2− := (l2+)
′

= ind lim
q∈N

l2−(q),

respectively. Thus, for each q ∈ N, we get a rigging

l2− ⊃ l2−(q) ⊃ l2 ⊃ l2+(q) ⊃ l2+.
Using the unitary operator IG, one defines spaces of test functions

H+(q) := IGl
2
+(q), H+ := IGl

2
+ = pr lim

q∈N
H+(q),

and their dual (with respect to the space L2(R, ρG)) spaces of generalized functions

H−(q) := (H+(q))
′
, H− := (H+)

′
= ind lim

q∈N
H−(q).

Hence, for each q ∈ N, we have a rigging

H− ⊃ H−(q) ⊃ L2(R, ρG) ⊃ H+(q) ⊃ H+

with pairing between test and generalized functions provided by integration with
respect to the Gaussian measure ρG on R.

http://imath.kiev.ua/~tesko/


An approach to a generalization of white noise analysis 7

3.1.2. Biorthogonal case. Let ρ be a Borel probability measure on R, L2(R, ρ) be
the corresponding L2-space. Our purpose is to construct some class of test and
generalized functions on R with pairing provided by integration with respect to
ρ. We will try to construct these classes functions on R in a way parallel to the
Gaussian case, but using a certain biunitary mapping instead of the Wiener-Itô-
Segal isomorphism.

Let us consider instead of H(x, λ) a fixed function

R× C 3 {x, λ} 7→ h(x, λ) ∈ C

such that for each λ from some neighborhood B0 of zero in C the function R 3
x 7→ h(x, λ) ∈ C is continuous and for every x ∈ R

h(x, λ) =

∞∑
n=0

λn

n!
hn(x), λ ∈ B0.

We additionally assume that h(·, λ) is locally bounded uniformly with respect
to λ on any closed ball inside of B0, and that h(x, 0) = 1 for all x from R.
In our consideration the role of the function h(x, λ) will be same as the role of

the generating function H(x, λ) = exλ−
1
2λ

2

for the Hermite polynomials in the
Gaussian case.

We denote by C(R) the linear space of all complex-valued locally bounded
(i.e. bounded on every ball in R) continuous functions on R. It follows from the
properties of h that for every n ∈ Z+ the function R 3 x 7→ hn(x) ∈ C belongs to
the space C(R) and the mapping

l2+(q) 3 f = (fn)∞n=0 7→ (Ihf)(·) :=

∞∑
n=0

fnhn(·) ∈ C(R)

is well-defined for each q ∈ N and sufficiently large K > 1 (we recall that K is
used in the definition of the space l2+(q)). In what follows, we fix such K > 1.

From the general results, one has (see e.g. [20]).

Theorem 3.1. Let the above mentioned function h be such that

• ‖hn‖L2(R,ρ) ≤ Cnn! for some C > 0 and all n ∈ Z+.

• The linear span of the functions {hn}∞n=0 is dense in the space L2(R, ρ).
• ‖Ihf‖L2(R,ρ) = 0 if and only if f = 0 in l2+(q), q ∈ N.

Then the Ih-image

Hh+(q) := Ih(l2+(q)) =
{
f ∈ C(R)

∣∣∣∃(fn)∞n=0 ∈ l2+(q), f(x) =

∞∑
n=0

fnhn(x)
}

of the space l2+(q), q ∈ N, is a Hilbert space of continuous functions with topol-

ogy inducted by the topology of l2+(q). Moreover Hh+(q) densely and continuously
embedded in L2(R, ρ) and we can construct a rigging

Hh− ⊃ Hh−(q) ⊃ L2(R, ρ) ⊃ Hh+(q) ⊃ Hh+,
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Hh+ := Ihl2+ = pr lim
q∈N

Hh+(q), Hh− := (Hh+)
′

= ind lim
q∈N

Hh−(q).

Let all requirements of Theorem 3.1 be fulfilled. It follows from [5] that for
the unitary operator Ih : l2+(q)→ Hh+(q) there exists a unique determined unitary

operator Ih− : l2−(q)→ Hh−(q) such that

(Ih−ξ, I
hϕ)L2(R,ρ) = (ξ, ϕ)l2 , ξ ∈ l2−(q), ϕ ∈ l2+(q).

The pair {Ih−, Ih} is called a biunitary map. This biunitary map transfers the
rigging of the space l2 to a rigging of the space L2(R, ρ):

l2−(q) ⊃ l2 ⊃ l2+(q)

↓ Ih− ↓ Ih

Hh−(q) ⊃ L2(R, ρ) ⊃ Hh+(q).

Thus, in biorthogonal case the spaces of test and generalized functions are
constructed in a way parallel to the Gaussian case (as the image of the rigging
of the space l2), but using the biunitary map {Ih−, Ih} instead of the Wiener-Itô-
Segal isomorphism. This give us a possible to develop the biorthogonal white noise
analysis by analogy to the Gaussian analysis. In particular, we can give an inner
description of the spaces of test and generalized functions, construct in general
situation an S-transform, Wick multiplication etc, see e.g. [20] for more details.

Note that there arises a natural question, — under which conditions on h the
biunitary map {Ih−, Ih} is the unitary map, i.e., the system of functions {hn}∞n=0

constitutes an orthogonal basis in the space L2(R, ρ)?
The answer is the following [21].

Theorem 3.2. The system of the functions {hn}∞n=0 with the generating function
h constitutes an orthogonal basis in the space L2(R, ρ) if and only if the following
conditions hold:

• ‖hn‖L2(R,ρ) ≤ Cnn! for some C > 0 and all n ∈ Z+.

• The linear span of the functions {hn}∞n=0 is dense in the space L2(R, ρ).
• For each λ, µ from some neighborhood of zero in C∫

R
h(x, λ)h(x, µ)dρ(x) = eλµ̄.

It is possible to prove that if all conditions of Theorem 3.2 take place then
all conditions of Theorem 3.1 also will take place (see [21]). In other words the
orthogonal situation is a particular case of the biorthogonal situation.

Consider more special situation.

Example. Let ρ be a Borel probability measure on R such that∫
R
eε|x|dρ(x) <∞ for some ε > 0,
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h(x, λ) be a generating function for the Schefer polynomials hn(x) (in another
terminology, the generalized Appel polynomials), that is,

h(x, λ) := γ(λ)eα(λ)x =

∞∑
n=0

λn

n!
hn(x), x ∈ R, λ ∈ C, (3.1)

where γ and α are fixed analytic functions in some neighborhood of 0 ∈ C such
that α(0) = 0, α

′
(0) = 1 and γ(0) = 1.

In this case the estimate

‖hn‖L2(R,ρ) ≤ Cnn! for some C > 0 and all n ∈ Z+

is automatically satisfied and the linear span of the functions {hn}∞n=0 is dense in
the space L2(R, ρ), see e.g. [33, 35]. Hence, if the mapping

l2+(q) 3 f = (fn)∞n=0 7→ (Ihf)(·) :=

∞∑
n=0

fnhn(·) ∈ L2(R, ρ)

is injective then all requirements of Theorem 3.1 are fulfilled and we can construct
the corresponding theory of generalized functions.

The next question is: Which of the Schefer polynomials are orthogonal?
The answer was given by Meixner [47] in 1934 (see also [43, 48] for more

details). There exist exactly five type of orthogonal Schefer polynomials: the Her-
mite, Charlier, Laguerre, Meixner and Meixner–Pollaczek polynomials, which are
orthogonal with respect to the Gaussian, Poissonian, Gamma, Pascal and Meixner
measures respectively.

3.1.3. Some useful tools in biorthogonal analysis. Let ρ be a Borel probability
measure on R and

h(x, λ) =

∞∑
n=0

λn

n!
hn(x), x ∈ R, λ ∈ C,

be a fixed function such that Theorem 3.1 takes place.
• Annihilation and creation operators. The annihilation operator ∂ acts con-

tinuously in the space of test functions Hh+ by the formula

∂hn := nhn−1, ∂h0 := 0.

The creation operator ∂+ is by definition the adjoint to ∂ with respect to the zero
space L2(R, ρG) and acts continuously in the space of generalized functions Hh−.

These operators play an essential role in our considerations. Using them we in-
vestigate the spaces of test and generalized functions, construct generalized trans-
lation operators, extended stochastic integral (in infinite-dimensional case) etc (see
e.g. [20, 21, 49, 50, 1] and references therein). Note that in the Gaussian case the
annihilation operator ∂ is the derivative and ∂ + ∂+ as operator in the space
L2(R, ρG) is the operator of multiplication by x.

• S-transform. For each ξ ∈ Hh−, the S-transform is defined by the formula

(Sξ)(λ) := 〈〈ξ, h(·, λ)〉〉,



10 Yu. M. Berezansky and V. A. Tesko

where λ belongs to a neighborhood of zero in C, 〈〈· , ·〉〉 is the dual pairing between
elements of Hh− and Hh+ generated by the scalar product in the space L2(R, ρ).

Each generalized function ξ ∈ Hh− is uniquely determined by its S-transform.
More exactly, let Hol0(C) denotes the set of all (germs) of functions which are
holomorphic in a neighborhood of zero in C. According to [14] the S-transform is
a one-to-one map between Hh− and Hol0(C).

• Wick multiplication. Taking into account that Hol0(C) is an algebra of an-
alytic functions with ordinary algebraic operations, we can define a Wick product
ξ♦η of ξ, η ∈ Hh− through the formula

ξ♦η := S−1(Sξ · Sη)

and make Hh− an algebra with such multiplication.
Using this multiplication we can construct the elements of Wick calculus. In

Gaussian white noise analysis such calculus has found numerous applications, in
particular, in fluid mechanics and financial mathematics, see e.g. [23, 26] for more
details.

3.2. Infinite-dimensional case

Now we start with a fixed family (Hp)p∈Z+ of real separable Hilbert spaces Hp

such that for all p ∈ Z+ the space Hp+1 is densely embedded in Hp, and this
embedding is quasinuclear, i.e., the Hilbert-Schmidt type. So, one can construct
the rigging of the space H0,

Φ
′

:= ind lim
p∈Z+

H−p ⊃ H−p ⊃ H0 ⊃ Hp ⊃ pr lim
p∈Z+

Hp =: Φ, (3.2)

where H−p is the dual space to Hp with respect to the zero space H0. We denote
by 〈· , ·〉 the dual pairing between elements of H−p and Hp inducted by the scalar
product in H0. As earlier we will preserve this notation for tensor powers and
complexifications of spaces.

For each p ∈ Z we introduce a weighted symmetric Fock space F(Hp, τ) over
Hp with a fixed weight τ = (τn)∞n=0, τn > 0, by setting

F(Hp, τ) : =

∞⊕
n=0

Fn(Hp)τn

: =
{
f = (fn)∞n=0, fn ∈ Fn(Hp)

∣∣∣ ‖f‖2F(Hp,τ) =

∞∑
n=0

‖fn‖2Fn(Hp)τn <∞
}
,

where the n-particle Fock space

Fn(Hp) := H⊗̂np,C (H⊗̂0
p,C := C)

is equal to the n-th symmetric tensor power ⊗̂ of the complexification Hp,C of the
real space Hp. Using rigging (3.2) and the weight

τ(q) = ((n!)2Kqn)∞n=0, q ∈ N,
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with fixK > 1 we construct the rigging of the Fock space F (H0) := F(H0, (n!)∞n=0),

F(−p,−q) ⊃ F (H0) ⊃ F(p, q),

where

F(−p,−q) := F(H−p, (K
−qn)∞n=0), F(p, q) := F(Hp, ((n!)2Kqn)∞n=0)

are dual with respect to the zero space F (H0).

Let ρ be a fixed Borel probability measure on Φ
′
, L2(Φ

′
, ρ) be the corre-

sponding space of square integrable functions. Our goal is to construct some class
of test and generalized functions on Φ

′
with pairing generated by the scalar prod-

uct in L2(Φ
′
, ρ). We will try to construct this class functions on Φ

′
in a way

parallel to the Gaussian and above stated one-dimensional cases.
Let B0 be a neighborhood of zero in the space ΦC. Instead of the generating

function for the infinite-dimensional Hermite polynomials we will take a function

Φ
′
×B0 3 {x, ϕ} 7→ h(x, ϕ) ∈ C

such that for each ϕ ∈ B0 the function h(·, ϕ) is continuous and for each x ∈ Φ
′

the function h(x, ·) is analytic in B0, i.e., has the representation

h(x, ϕ) =
∞∑
n=0

1

n!
〈ϕ⊗n, hn(x)〉, hn(x) ∈ (Φ

′

C)⊗̂n,

for all ϕ from B0. We additionally assume that h(·, ϕ) is locally bounded uniformly
with respect to ϕ on any closed ball inside of B0, and that h(x, 0) = 1 for all x

from Φ
′

(see [20], Sections 2.3, for more details).

Due to such properties of h one can show that for each ϕn ∈ Φ⊗̂nC the functions

Φ
′
3 x 7→ 〈ϕn, hn(x)〉 ∈ C

belong to the space C(Φ
′
) of all complex-valued locally bounded continuous func-

tions on Φ
′
. Moreover, there exist p, q ∈ N and K > 1 (we recall that K is used

in the definition of space F(p, q)) such that the mapping

F(p, q) 3 f = (fn)∞n=0 7→ (Ihf)(·) :=

∞∑
n=0

〈fn, hn(·)〉 ∈ C(Φ
′
)

is well-defined. In what follows, we fix such p, q ∈ N and K > 1.
According to [20] we have.

Theorem 3.3. Let the above mentioned function h be such that

• ‖ ‖hn(·)‖Fn(H−p)‖L2(Φ′ ,ρ) ≤ Cnn! for some C > 0 and all n ∈ Z+.

• The linear span of the set of functions

{〈ϕn, hn(·)〉 ∈ L2(Φ
′
, ρ) |ϕn ∈ Φ⊗̂nC , n ∈ Z+}

is dense in the space L2(Φ
′
, ρ).

• ‖Ihf‖L2(Φ ′ ,ρ) = 0 if and only if f = 0 in F(p, q).
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Then the Ih-image

Hh(p, q) : = Ih(F(p, q))

=
{
f ∈ C(Φ

′
)
∣∣∣∃(fn)∞n=0 ∈ F(p, q), f(x) =

∞∑
n=0

〈fn, hn(x)〉
}

of the space F(p, q) is a Hilbert space of continuous functions with topology inducted
by the topology of F(p, q). Moreover Hh(p, q) densely and continuously embedded

in L2(Φ
′
, ρ) and we can construct a rigging

Hh(−p,−q) ⊃ L2(Φ
′
, ρ) ⊃ Hh(p, q)

with pairing between elements of Hh(−p,−q) := (Hh(p, q))
′

and Hh(p, q) provided
by integration with respect to the measure ρ.

Under the conditions of Theorem 3.3, for the unitary operator

Ih : F(p, q)→ Hh(p, q)

there exists a unique determined unitary operator

Ih− : F(−p,−q)→ Hh(−p,−q)

such that

(Ih−ξ, I
hϕ)L2(Φ ′ ,ρ) = (ξ, ϕ)F (H0), ξ ∈ F(−p,−q), ϕ ∈ F(p, q).

So, we have a biunitary map {Ih−, Ih}. This map transfers the rigging of the space

F (H0) to a rigging of the space L2(Φ
′
, ρ):

F(−p.− q) ⊃ F (H0) ⊃ F(p, q)

↓ Ih− ↓ Ih

Hh(−p,−q) ⊃ L2(Φ
′
, ρ) ⊃ Hh(p, q).

Thus, in biorthogonal case the spaces of test and generalized functions are
constructed in a way parallel to the Gaussian case (as the image of the rigging
of the Fock space F (H0)), but using the biunitary map {Ih−, Ih} instead of the
Wiener-Itô-Segal isomorphism IG.

The infinite-dimensional analogue of Theorem 3.2 holds, see [20, 21].

Theorem 3.4. The mapping

F (H0) 3 f = (fn)∞n=0 7→ (Ihf)(·) :=

∞∑
n=0

〈fn, hn(·)〉 ∈ L2(Φ
′
, ρ) (3.3)

is well-defined and unitary if and only if the following three conditions hold:

• ‖ ‖hn(·)‖Fn(H−p)‖L2(Φ′ ,ρ) ≤ Cnn! for some C > 0 and all n ∈ Z+.

http://imath.kiev.ua/~tesko/
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• The linear span of the set of functions

{〈ϕn, hn(·)〉 ∈ L2(Φ
′
, ρ) |ϕn ∈ Φ⊗̂nC , n ∈ Z+}

is dense in the space L2(Φ
′
, ρ).

• For each ϕ,ψ from some neighborhood of zero in ΦC∫
Φ ′
h(x, ϕ)h(x, ψ)dρ(x) = e(ϕ,ψ)H0,C .

Note that under the assumptions of Theorem 3.4 the functions

Φ
′
3 x 7→ 〈ϕn, hn(x)〉 ∈ C, Φ

′
3 x 7→ 〈ψm, hm(x)〉 ∈ C,

ϕn ∈ Φ⊗̂nC , ψm ∈ Φ⊗̂mC , n,m ∈ Z+,

are orthogonal in the space L2(Φ
′
, ρ) in terms of the Fock space F (H0),∫

Φ ′
〈ϕn, hn(x)〉〈ψm, hm(x)〉dρ(x) = δn,mn!(ϕn, ψn)Fn(H0),

and all requirements of Theorem 3.3 are fulfilled.

Let us consider the special case when Φ = S, H0 = L2(R) and as a conse-

quence Φ
′

= S ′ . Let the function h satisfies all conditions of Theorem 3.4 and

∂nh(x, z1ϕ1 + · · ·+ znϕn)

∂z1 . . . ∂zn

∣∣∣∣
z1=...=zn=0∈C

=
∂

∂z1
h(x, z1ϕ1)

∣∣∣∣
z1=0∈C

. . .
∂

∂zn
h(x, znϕn)

∣∣∣∣
zn=0∈C

(3.4)

for all x ∈ S ′ and all ϕ1, . . . , ϕn ∈ S such that suppϕi ∩ suppϕj = ∅ if j 6= i,
i, j ∈ {1, . . . , n}, n ∈ N. Then according to [1] the mapping (3.3) is completely
characterized by the following properties:

1. Ih : F (L2(R))→ L2(S ′ , ρ) is the unitary operator.
2. Ih(f0, 0, 0, . . .) = f0 for all f0 ∈ C.
3. For each n ∈ N and any disjoint sets α1, . . . , αn ∈ B(R) of finite Lebesgue

measure,(
Ih(0, . . . , 0︸ ︷︷ ︸

n

,κα1
⊗̂ · · · ⊗̂ καn

, 0, 0, . . .)
)
(·) = 〈h1(·),κα1

〉 . . . 〈h1(·),καn
〉.

Note that in the case of the Gaussian measure ρ := ρG on B(S ′) the function

h(x, ϕ) := H(x, ϕ) = e
〈x,ϕ〉− 1

2‖ϕ‖
2

L2
C(R) , x ∈ S ′, ϕ ∈ SC,

satisfies all conditions of Theorem 3.4 and equality (3.4).

Now we have an analog of the Example from Subsection 3.1.
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Example. Let ρ be a Borel probability measure on Φ
′

such that∫
Φ ′
eε‖x‖H−pdρ(x) <∞ for some ε > 0 and p ∈ N.

Schefer polynomials (3.1) have the corresponding infinite-dimensional counterpart
and are defined by the Taylor expansion of the generating function

h(x, ϕ) := γ(ϕ)e〈α(ϕ),x〉 =

∞∑
n=0

1

n!
〈ϕ⊗n, hn(x)〉,

where γ and α are fixed analytic functions in some neighborhood of zero in ΦC
such that α(0) = 0, γ(0) = 1 and α is invertible in a neighborhood of zero.

In this case the estimate

‖ ‖hn(·)‖Fn(H−p)‖L2(Φ′ ,ρ) ≤ C
nn! for some C > 0 and all n ∈ Z+

is automatically satisfied and the linear span of the functions

{〈ϕn, hn(·)〉 ∈ L2(Φ
′
, ρ) |ϕn ∈ Φ⊗̂nC , n ∈ Z+}

is dense in the space L2(R, ρ), see e.g. [33, 35]. Hence, if the mapping

F(p, q) 3 f = (fn)∞n=0 7→ (Ihf)(·) :=

∞∑
n=0

〈fn, hn(·)〉 ∈ L2(Φ
′
, ρ)

is injective then all requirements of Theorem 3.3 are fulfilled and we can construct
the corresponding theory of generalized functions (see [3, 51, 2, 46, 33, 34, 32, 11,
31, 48, 45] for more detailed acount).

For the infinite-dimensional counterpart of the Hermite, Charlier, Laguerre,
Meixner and Meixner–Pollaczek polynomials the orthogonality preserves in the
following sense:

• In the Gaussian and Poisson cases the orthogonality of the Hermite and
Charlier polynomials respectively is given in terms of the Fock space (relation
type (2.2)), see e.g. the books [24, 12, 25] and articles [28, 51, 34, 10, 31, 21].
Note that the study of Poisson white noise analysis was initiated by Y. Ito
and I. Kubo [28] in 1988. They were the first to construct spaces of test
and generalized functions of Poisson white noise, to study them and some
operators acting in these spaces.

• In the Gamma, Pascal and Meixner cases the orthogonality of the correspond-
ing polynomials is more complicated and is given in terms of the so-called
“extended Fock space”, see for instance [34, 32, 17, 11, 16, 18, 43, 44, 48, 45].
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