A CONSTRUCTION OF GENERALIZED TRANSLATION OPERATORS

V. A. Tesko

Received: 02.06.2004

ABSTRACT. We reconstruct a family of generalized translation operators from the function which generates a given theory of generalization function.

1. INTRODUCTION

The biorthogonal approach to a construction of the theory of generalized functions of an infinite number of variables was inspired by [3], proposed in [1] and developed in [1-17] (the paper [11] contains a fairly complete bibliography). The most general results obtained in [4-8], where characters of some family of generalized translation operators were used instead of exponents. Spaces of test function in [4-8] were constructed by its characters.

In [9] the inverse problem is solved in a model one-dimensional case. Namely, for a given function $h(x, \lambda)$ which generate the theory of generalized functions (this function must satisfy assumptions given in Section 2) it was constructed a family of generalized translation operators for which the function h is a character.

This article is devoted to solving a corresponding problem in the infinite-dimensional case. We claim that a generalized translation operator is the operator $h_x(\partial)$ (the so-called annihilation operator of infinite order) associated with the function $h(x,\lambda)$. Note than such operators were investigated in [13,14] for a special function $h(x,\lambda) = \gamma(\lambda)\chi(\langle x, \alpha(\lambda) \rangle)$, where $\chi : \mathbb{C}^1 \to \mathbb{C}^1$ is an entire function, $\gamma : \mathcal{N}_{\mathbb{C}} \to \mathbb{C}^1$ and $\alpha : \mathcal{N}_{\mathbb{C}} \to \mathcal{N}_{\mathbb{C}}$ is a function analytic at $0 \in \mathcal{N}_{\mathbb{C}}$.

2. The spaces of test functions

We use the following notation:

 $\mathbb{N}_p := \{p, p+1, \dots\}, \quad p \in \mathbb{Z},$

where $\mathbb{Z} := \{ \dots, -1, 0, 1, \dots \}.$

Let Q be a separable complete metric space of points x, y, \ldots . We denote by C(Q) the linear space of all complex-valued locally bounded (i.e. bounded on

Typeset by \mathcal{AMS} -T_EX

¹⁹⁹¹ Mathematics Subject Classification. Primary: 47A70; Secondary: 46A11.

Key words and phrases. Chain of spaces, Fock space, annihilation operator, generalized translation operator, character.

V. A. TESKO

every ball in Q) continuous functions on Q. We will understand C(Q) as a linear topological space with convergence uniform on every ball from Q.

For any $p \in \mathbb{N}_1$ we consider a fixed chain of real separable Hilbert spaces,

$$\mathcal{N}' := \inf_{\tilde{p} \in \mathbb{N}_1} N_{-\tilde{p}} \supset N_{-p} \supset N_0 \supset N_p \supset \Pr_{\tilde{p} \in \mathbb{N}_1} N_{\tilde{p}} =: \mathcal{N},$$

where N_{-p} is the space negative with respect to the positive space N_p and the zero space N_0 . We will suppose that the embedding $N_{p+1} \hookrightarrow N_p$, $p \in \mathbb{N}_0$ is quasinuclear (i.e. the inclusion operator is of the Hilbert-Schmidt type) and, moreover, $\|\cdot\|_{N_p} \leq$ $\|\cdot\|_{N_{p+1}}$. Let us denote by $\langle \cdot, \cdot \rangle$ the real pairing between N_{-p} and N_p , inducted by the scalar product in N_0 . We will preserve these notations for tensor powers and complexifications of spaces.

For any $p \in \mathbb{Z}$ and a weight $\gamma = (\gamma_n)_{n=0}^{\infty}, \ \gamma_n > 0$, we can construct a symmetric weighted Fock space

$$\begin{aligned} \mathcal{F}(N_p,\gamma) &:= \bigoplus_{n=0}^{\infty} \mathcal{F}_n(N_p)\gamma_n \\ &= \bigg\{ f = (f_n)_{n=0}^{\infty} \mid f_n \in \mathcal{F}_n(N_p), \ \|f\|_{\mathcal{F}(N_p,\gamma)}^2 = \sum_{n=0}^{\infty} \|f_n\|_{\mathcal{F}_n(N_p)}^2 \gamma_n < \infty \bigg\}, \end{aligned}$$

with the corresponding inner product. Here the *n*-particle subspace $\mathcal{F}_n(N_p)$, $p \in \mathbb{Z}$ is equal to the *n*-th symmetric tensor power $\hat{\otimes}$ of the complexification $N_{p,\mathbb{C}}$ of the space N_p , $\mathcal{F}_n(N_p) := N_{p,\mathbb{C}}^{\hat{\otimes}n}$, $N_{p,\mathbb{C}}^{\hat{\otimes}0} := \mathbb{C}^1$.

In what follows, we will consider the family $(\mathcal{F}(N_p, \gamma(q)))_{p,q \in \mathbb{N}_1}$ of weighted Fock spaces $\mathcal{F}(N_p, \gamma(q))$ with the weight

(1)
$$\gamma(q) = (\gamma_n(q))_{n=0}^{\infty}, \quad \gamma_n(q) = (n!)^2 K^{qn}, \quad K > 1.$$

Let B_0 be some neighborhood of 0 in the space $N_{1,\mathbb{C}}$ and

(2)
$$Q \times B_0 \ni \{x, \lambda\} \mapsto h(x, \lambda) \in \mathbb{C}^1$$

be a given function. Suppose that for each $x \in Q$ $h(x, \cdot)$ is analytic at $0 \in N_{1,\mathbb{C}}$, and, for each $\lambda \in B_0$, $h(\cdot, \lambda) \in C(Q)$. Moreover, $h(\cdot, \lambda)$ is locally bounded uniformly with respect to λ from any closed ball inside of B_0 .

It follows from the analyticity ([11], Subsections 2–3) that, for each point $x \in Q$, there exists a neighborhood of zero

$$B(x) := \{ \lambda \in N_{2,\mathbb{C}} \mid \|\lambda\|_{N_{2,\mathbb{C}}} < R(x), \ R(x) > 0 \} \subset B_0,$$

such that

(3)
$$h(x,\lambda) = \sum_{n=0}^{\infty} \frac{1}{n!} \langle \lambda^{\otimes n}, h_n(x) \rangle, \quad h_n(x) \in \mathcal{F}_n(N_{-2}),$$

for all λ from B(x). Moreover, the last series converges uniformly on any closed ball from B(x). Suppose that for all $x \in Q$ there exists a general neighborhood of zero

$$B := \{\lambda \in N_{2,\mathbb{C}} \mid \|\lambda\|_{N_{2,\mathbb{C}}} < R, \ R > 0\} \subset B_0$$

with this property.

In accordance with [11] the function

$$Q \ni x \mapsto \langle f_n, h_n(x) \rangle \in \mathbb{C}^1$$

belongs to C(Q) for all $f_n \in \mathcal{F}_n(N_p)$, $n \in \mathbb{N}_0$, $p \in \mathbb{N}_3$. Moreover ([11], Lemma 4.2), if K > 1 (here K from (1)) is sufficiently large, then the series

$$\sum_{n=0}^{\infty} \langle f_n, h_n(\cdot) \rangle, \quad (f_n)_{n=0}^{\infty} \in \mathcal{F}(N_p, \gamma(q)), \quad p \in \mathbb{N}_3, \ q \in \mathbb{N}_1$$

converges in the topology of C(Q) to some function $f \in C(Q)$.

In what follows, we take K > 1 sufficiently large. For such fixed K > 1 and $p \in \mathbb{N}_3, q \in \mathbb{N}_1$ we can consider the mapping

(4)
$$\mathcal{F}(N_p, \gamma(q)) \ni f = (f_n)_{n=0}^{\infty} \mapsto (I(p,q)f)(\cdot) := \sum_{n=0}^{\infty} \langle f_n, h_n(\cdot) \rangle \in C(Q).$$

Suppose that for p = 3, q = 1 the mapping (4) is injective. Then it is obvious that the mapping $I(p,q) : \mathcal{F}(N_p,\gamma(q)) \to C(Q)$ is injective for any $p \in \mathbb{N}_3, q \in \mathbb{N}_1$.

Applying the mapping I(p,q) we can define the family $(H(p,q))_{p\in\mathbb{N}_3,q\in\mathbb{N}_1}$ of Hilbert spaces

$$H(p,q) := I(p,q)(\mathcal{F}(N_p,\gamma(q)))$$
$$= \{ f \in C(Q) \mid \exists (f_n)_{n=0}^{\infty} \in \mathcal{F}(N_p,\gamma(q)) : f(x) = \sum_{n=0}^{\infty} \langle f_n, h_n(x) \rangle, x \in Q \}$$

with the Hilbert norm

$$||f||_{H(p,q)} = ||\sum_{n=0}^{\infty} \langle f_n, h_n(\cdot) \rangle ||_{H(p,q)} := ||(f_n)_{n=0}^{\infty} ||_{\mathcal{F}(N_p,\gamma(q))}.$$

Remark. We note that the spaces H(p,q) are the test functions spaces in a generalization of the white noise analysis (see [11] for more details).

3. Annihilation operators

An annihilation operator $a_{-}(\xi_m)$ with a coefficient $\xi_m \in \mathcal{F}_m(N_{-p}), m \in \mathbb{N}_0$, is defined in the Fock space $\mathcal{F}(N_p, \gamma(q)), p \in \mathbb{N}_3, q \in \mathbb{N}_1$ as linear continuous operator acting by the rule (see [11]): for any $f = (f_n)_{n=0}^{\infty} \in \mathcal{F}(N_p, \gamma(q))$

$$a_{-}(\xi_{m})f = a_{-}(\xi_{m})(f_{0}, f_{1}, \dots) := (m!f_{m}^{\xi_{m}}, \dots, \frac{n!}{(n-m)!}f_{n}^{\xi_{m}}, \dots) \in \mathcal{F}(N_{p}, \gamma(q)),$$

where $f_n^{\xi_m} \in \mathcal{F}_{n-m}(N_p), \ n \ge m$ is defined by

$$\langle f_n, \xi_m \hat{\otimes} \eta_{n-m} \rangle = \langle f_n^{\xi_m}, \eta_{n-m} \rangle$$

for all $\eta_{n-m} \in \mathcal{F}_{n-m}(N_{-p})$.

Using the unitary operator

$$\mathcal{F}(N_p,\gamma(q)) \ni f = (f_n)_{n=0}^{\infty} \mapsto (I(p,q)f)(\cdot) = \sum_{n=0}^{\infty} \langle f_n, h_n(\cdot) \rangle \in H(p,q)$$

we transfer the annihilation operator $a_{-}(\xi_m)$ into the operator

$$\partial(\xi_m) := I(p,q)a_-(\xi_m)I^{-1}(p,q) : H(p,q) \to H(p,q).$$

A simple calculation gives its action on elementary functions $\langle f_n, h_n(\cdot) \rangle \in H(p,q)$, $n \in \mathbb{N}_0$: for all $m \in \mathbb{N}_0$ and $x \in Q$

(5)
$$(\partial(\xi_m)\langle f_n, h_n(\cdot)\rangle)(x) := \begin{cases} \frac{n!}{(n-m)!}\langle f_n, \xi_m \hat{\otimes} h_{n-m}(x)\rangle & n \in \mathbb{N}_m; \\ 0 & n = 0, \dots, m-1. \end{cases}$$

Let $\ell : N_{1,\mathbb{C}} \to \mathbb{C}^1$ be an analytic function at $0 \in N_{1,\mathbb{C}}$. Then in some neighborhood of $0 \in N_{2,\mathbb{C}}$ there exists an expansion

$$\ell(\lambda) = \sum_{n=0}^{\infty} \frac{1}{n!} \langle \lambda^{\otimes n}, \alpha_n \rangle, \quad \alpha_n \in \mathcal{F}_n(N_{-2}).$$

In accordance with [17] the function ℓ generates a linear continuous operator (the so-called annihilation operator of infinite order)

$$H(p,q) \ni f \mapsto \ell(\partial)f := \sum_{n=0}^{\infty} \frac{1}{n!} \partial(\alpha_n) f \in H(p,q), \quad p,q \in \mathbb{N}_3.$$

Thus, the function $h(x, \lambda)$ generates a family $h(\partial) = (h_x(\partial))_{x \in Q}$ of linear continuous operators

$$H(p,q) \ni f \mapsto h_x(\partial)f := \sum_{n=0}^{\infty} \frac{1}{n!} \partial(h_n(x))f \in H(p,q), \quad p,q \in \mathbb{N}_3.$$

3. Generalized translation operators

Let a family $T = (T_x)_{x \in Q}$ of linear operators $T_x : C(Q) \to C(Q)$ be given. Such a family T is, by definition (see [8,9,11]), a family of generalized translation operators if

- (a) $(T_x f)(y) = (T_y f)(x)$ for any $f \in C(Q)$ and $x, y \in Q$ (commutativity);
- (b) there exists a point $e \in Q$ (basis unity) such that $T_e = id$;
- (c) for any $x, y \in Q$ the mapping $C(Q) \ni f \mapsto (T_x f)(y) \in \mathbb{C}^1$ is continuous (continuity).

Note, that axioms (a)–(c) are only some part of axioms for generalized translation operators from theory of commutative hypercomplex systems and hypergroups, see [10].

Because the embedding $H(3,3) \hookrightarrow C(Q)$ is continuous (see [11], Theorem 4.1), we can generalize the definition of T. In what follows, we will call $T = (T_x)_{x \in Q}$ a family of generalized translation operators if the operators T_x act from the space H(3,3) into C(Q) and the following axioms are satisfied:

- (a') $(T_x f)(y) = (T_y f)(x)$ for any $f \in H(3,3)$ and $x, y \in Q$ (commutativity);
- (b') there exists a point $e \in Q$ (basis unity) such that $T_e = id$;
- (c') for any $x, y \in Q$ the mapping $H(3,3) \ni f \mapsto (T_x f)(y) \in \mathbb{C}^1$ is continuous (continuity).

We say that a non-zero function $\chi \in H(3,3)$ is a character of the family T if

$$(T_x\chi)(y) = \chi(x)\chi(y), \quad x, y \in Q.$$

Without loss of generality one can consider that

$$h(o, \lambda) = 1,$$

for some point $o \in Q$ and all $\lambda \in V := \{\lambda \in N_{3,\mathbb{C}} \mid ||\lambda||_{N_{3,\mathbb{C}}} < r, r > 0\}$ (here r > 0 sufficiently small). In what follows, we fixed a such point $o \in Q$.

Theorem. The family $h(\partial) = (h_x(\partial))_{x \in Q}$ of linear continuous operators

$$h_x(\partial) := \sum_{n=0}^{\infty} \frac{1}{n!} \partial(h_n(x)) : H(3,3) \to C(Q)$$

is a family of generalized translation operators. For each fixed $\lambda \in V$ the function $Q \ni x \mapsto h(x, \lambda) \in \mathbb{C}^1$ is a character of the family $h(\partial)$.

If $h(\cdot, \lambda)$ is a character of some family $T = (T_x)_{x \in Q}$ of generalized translation operators for all $\lambda \in V$, then

$$T_x = h_x(\partial) : H(3,3) \to C(Q),$$

for all $x \in Q$.

Proof. Axioms (a'), (b'), (c') are fulfilled for $h(\partial)$.

Indeed, since $h(o, \lambda) = 1$ for $\lambda \in V$ we conclude that $h_o(\partial) = id$ and axiom (b') is fulfilled. The embedding operator $O : H(3,3) \hookrightarrow C(Q)$ and operator $h_x(\partial) :$ $H(3,3) \to H(3,3)$ are continuous. Therefore, the operator $h_x(\partial) : H(3,3) \to C(Q)$ is continuous and axiom (c') is also fulfilled. The axiom (a') follows from (6) (see below) and axiom (c').

We have to prove that $h(\cdot, \lambda)$ is a character of family $(h_x(\partial))_{x \in Q}$ for all $\lambda \in V$. Due to (5), the action of the operator $h_x(\partial)$ on $\langle f_n, h_n(\cdot) \rangle \in H(3,3), n \in \mathbb{N}_0$ is given by

(6)

$$(h_{x}(\partial)\langle f_{n}, h_{n}(\cdot)\rangle)(y) = \sum_{m=0}^{\infty} \frac{1}{m!} (\partial(h_{m}(x))\langle f_{n}, h_{n}(\cdot)\rangle)(y)$$

$$= \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \langle f_{n}, h_{m}(x)\hat{\otimes}h_{n-m}(y)\rangle$$

$$= \langle f_{n}, \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} h_{m}(x)\hat{\otimes}h_{n-m}(y)\rangle,$$

for all $x, y \in Q$.

The series $h(\cdot, \lambda) = \sum_{n=0}^{\infty} \frac{1}{n!} \langle \lambda^{\otimes n}, h_n(\cdot) \rangle$, $\lambda \in V$ converges in the topology of H(3,3) ([11], Proposition 4.1) and operator $h_x(\partial) : H(3,3) \to C(Q)$ is continuous,

therefore, for any $x, y \in Q$, by (6)

$$\begin{aligned} (h_x(\partial)h(\cdot,\lambda))(y) &= \left(h_x(\partial)\left(\sum_{n=0}^{\infty} \frac{1}{n!}\langle\lambda^{\otimes n}, h_n(\cdot)\rangle\right)\right)(y) \\ &= \sum_{n=0}^{\infty} \frac{1}{n!}(h_x(\partial)\langle\lambda^{\otimes n}, h_n(\cdot)\rangle)(y) \\ &= \sum_{n=0}^{\infty} \frac{1}{n!}\langle\lambda^{\otimes n}, \sum_{m=0}^{n} \frac{n!}{m!(n-m)!}h_m(x)\hat{\otimes}h_{n-m}(y)\rangle \\ &= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{1}{m!(n-m)!}\langle\lambda^{\otimes m}, h_m(x)\rangle\langle\lambda^{\otimes(n-m)}, h_{n-m}(y)\rangle \\ &= \left(\sum_{n=0}^{\infty} \frac{1}{n!}\langle\lambda^{\otimes n}, h_n(x)\rangle\right)\left(\sum_{n=0}^{\infty} \frac{1}{n!}\langle\lambda^{\otimes n}, h_n(y)\rangle\right) = h(x,\lambda)h(y,\lambda). \end{aligned}$$

Now we prove that if the function $h(\cdot, \lambda)$ is a character of some family $T = (T_x)_{x \in Q}$ of generalized translation operators for all $\lambda \in V$, that

$$T_x = h_x(\partial) : H(3,3) \to C(Q)$$

for all $x \in Q$.

The mappings

(7)
$$H(3,3) \ni f \to (h_x(\partial)f)(y) \in \mathbb{C}^1, \quad H(3,3) \ni f \to (T_xf)(y) \in \mathbb{C}^1$$

are linear and continuous for all $x, y \in Q$. Therefore, it is enough to show that

$$\begin{aligned} (T_x \langle f_n, h_n(\cdot) \rangle)(y) &= (h_x(\partial) \langle f_n, h_n(\cdot) \rangle)(y) \\ &= \langle f_n, \sum_{m=0}^n \frac{n!}{m!(n-m)!} h_m(x) \hat{\otimes} h_{n-m}(y) \rangle, \end{aligned}$$

for any $\langle f_n, h_n(\cdot) \rangle \in H(3,3), n \in \mathbb{N}_0$ and all $x, y \in Q$.

Fix $x, y \in Q$. It follows from the continuoity of the second mapping in (7) that there exists a constant c > 0 such that

$$|(T_x f)(y)| \le c ||f||_{H(3,3)}, \quad f \in H(3,3).$$

Therefore, for $f(\cdot) = \langle f_n, h_n(\cdot) \rangle \in H(3,3), n \in \mathbb{N}_0$ we have

$$|(T_x \langle f_n, h_n(\cdot) \rangle)(y)| \le c ||\langle f_n, h_n(\cdot) \rangle||_{H(3,3)} = c ||f_n||_{\mathcal{F}_n(N_3)}$$

From this estimate we conclude that there exists a unique vector

$$k_n(x,y) \in \mathcal{F}_n(N_{-3})$$

such that

$$(T_x\langle f_n, h_n(\cdot)\rangle)(y) = \langle f_n, k_n(x, y)\rangle,$$

for all $f_n \in \mathcal{F}_n(N_3)$.

Now it is sufficient to prove that

(8)
$$k_n(x,y) = \sum_{m=0}^n \frac{n!}{m!(n-m)!} h_m(x) \hat{\otimes} h_{n-m}(y)$$

The series $h(\cdot, \lambda) = \sum_{n=0}^{\infty} \frac{1}{n!} \langle \lambda^{\otimes n}, h_n(\cdot) \rangle$ converges in the topology of H(3,3) for all $\lambda \in V$ and second mapping in (7) is linear and continuous, therefore, for all $x, y \in Q$ and $\lambda \in V$ we have

$$(9) \qquad (T_xh(\cdot,\lambda))(y) = \sum_{n=0}^{\infty} \frac{1}{n!} (T_x \langle \lambda^{\otimes n}, h_n(\cdot) \rangle)(y) = \sum_{n=0}^{\infty} \frac{1}{n!} \langle \lambda^{\otimes n}, k_n(x,y) \rangle.$$

On the other hand, according to (3), for all $x, y \in Q$ and $\lambda \in V$ we have

Let $z \in \mathbb{C}^1$ be sufficiently small and $\varphi \in N_{3,\mathbb{C}}$, $\|\varphi\|_{N_{3,\mathbb{C}}} = 1$. By substituting $\lambda = z\varphi$ in (9), (10) and comparing the coefficients before z^n , we get for $x, y \in Q$

$$\langle \varphi^{\otimes n}, k_n(x,y) \rangle = \langle \varphi^{\otimes n}, \sum_{m=0}^n \frac{n!}{m!(n-m)!} h_m(x) \hat{\otimes} h_{n-m}(y) \rangle.$$

The last equality, polarization identity and linearity with respect to $\varphi^{\otimes n}$ give (8).

Remark. It is not difficult to prove that, for all $x, y, z \in Q$ and $f \in H(3,3)$, the following relation of associativity holds:

$$(h_z^y(\partial)(h_y(\partial)f))(x) = (h_y^x(\partial)(h_z(\partial)f))(x),$$

where the notation $(h_z^y(\partial)(h_y(\partial)f))(x)$ means that the operator $h_z(\partial)$ acts on the function $(h_y(\partial)f)(x)$ depending on two variables y and x with respect to the variable y.

Remark. Let $T = (T_x)_{x \in Q}$ be a family of generalized translation operators. If $h(\cdot, \lambda), \ \lambda \in V$ is a character of the family T, then for each $p, q \in \mathbb{N}_3$ the Hilbert space H(p,q) is invariant with respect to the action of the operator T_x . Moreover, the following equality of operators holds:

$$T_x = h_x(\partial) : H(p,q) \to H(p,q).$$

Acknowledgments. I would like to thank my scientific advisor Prof. Yu. M. Berezansky for attention of this paper and also Dr. M. O. Kachanovsky for helpful remarks.

V. A. TESKO

References

- Albeverio, S., Kondratiev, Yu. G., and Streit, L., How to generalize white noise analysis to non-Gaussian spaces, in Dynamics of Complex and Irregular Systems (Ph. Blanchard et al., eds.), World Scientific, Singapore, 1993, pp. 48–60.
- Albeverio, S., Daletsky, Yu. L., Kondratiev, Yu. G., Streit, L., Non-Gaussian infinite-dimensional analysis, J. Funct. Anal. 138 (1996), 311–350.
- Daletskiĭ, Yu. L., A biorthogonal analogue of Hermite polynomials and the inversion of the Fourier transform with respect to a non-Gaussian measure, Funktsional. Anal. i Prilozhen.
 25 (1991), no. 2, 68–70 (Russian); English transl. in Funct. Anal. Appl. 25 (1991), no. 2, 138–140.
- Berezansky, Yu. M., A connection between the theory of hypergroups and white noise analysis, Proceedings of the XXVII Symposium on Mathematical Physics (Toruń, 1994). Rep. Math. Phys. 36 (1995), no. 2-3, 215–234.
- Berezansky, Yu. M., Kondratiev, Yu. G., Biorthogonal systems in hypergroups: an extension of non-Gaussian analysis, Methods Funct. Anal. Topology 2 (1996), no. 2, 1–50.
- Berezansky, Yu. M., Infinite-dimensional non-Gaussian analysis and generalized translation operators, Funct. Anal. Appl. 30 (1996), no. 4, 269–272.
- Berezansky, Yu. M., Generalized functions, connected with differential hypergroups, in Differential Equations, Asymptotic Analysis and Mathematical Physics (Potsdam, 1996) (M. Demuth, B. W. Schulze, eds.), Academie Verlag, Berlin, 1997, pp. 32–39.
- Berezansky, Yu. M., Infinite-dimensional analysis related to generalized translation operators, Ukr. Math. J. 49 (1997), no. 3, 403–450.
- 9. Berezansky, Yu. M., Construction of generalized translation operators from the system of Appell characters, Amer. Math. Soc. Transl. 184 (1998), no. 2, 7–21.
- Berezansky, Yu. M. and Kalyuzhnyi, A. A., *Harmonic Analysis in Hypercomplex Systems*, Kluwer Acad. Publ., Dordrecht—Boston—London, 1998, p. X+483. (Russian edition: Naukova Dumka, Kiev, 1992).
- 11. Berezansky, Yu. M., Tesko, V. A., The spaces of test and generalized functions related to generalized translation operators, Ukr. Math. J. 55 (2003), no. 12, 1587–1657.
- Kachanovsky, N. A., Biorthogonal Appell-like systems in a Hilbert space, Methods Funct. Anal. Topology 2 (1996), no. 3-4, 36–52.
- Kachanovsky, N. A., Us, G. F., Biorthogonal Appell systems in an analysis on co-nuclear spaces, Funct. Anal. Appl. 32 (1998), no. 1, 69–72.
- Kachanovsky, N. A., Pseudodifferential equations and generalized translation operator in non-Gaussian infinite-dimensional analysis, Ukr. Math. J. 51 (1999), no. 10, 1334–1341.
- Kondratiev, Yu. G., Silva, J. L., and Streit, L., *Generalized Appell systems*, Methods Funct. Anal. Topology 3 (1997), no. 3, 28–61.
- Kondratiev, Yu. G., Streit, L., Westerkamp, W., Yan, J., Generalized functions in infinite dimensional analysis, Hiroshima Math. J. 28 (1998), no. 2, 213–260.
- Tesko, V. A., On spaces appearing in the construction of infinite-dimensional analysis according to biorthogonal scheme, Ukr. Math. J. 56 (2004), no. 7, 977–990.

INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, 3 TERESH-CHENKIVS'KA, KYIV, 01601, UKRAINE

E-mail address: tesko@imath.kiev.ua