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Abstract. We reconstruct a family of generalized translation operators from the
function which generates a given theory of generalization function.

1. Introduction

The biorthogonal approach to a construction of the theory of generalized func-
tions of an infinite number of variables was inspired by [3], proposed in [1] and
developed in [1-17] (the paper [11] contains a fairly complete bibliography). The
most general results obtained in [4-8], where characters of some family of general-
ized translation operators were used instead of exponents. Spaces of test function
in [4-8] were constructed by its characters.

In [9] the inverse problem is solved in a model one-dimensional case. Namely,
for a given function h(x, λ) which generate the theory of generalized functions (this
function must satisfy assumptions given in Section 2) it was constructed a family
of generalized translation operators for which the function h is a character.

This article is devoted to solving a corresponding problem in the infinite-dimensional
case. We claim that a generalized translation operator is the operator hx(∂)
(the so-called annihilation operator of infinite order) associated with the function
h(x, λ). Note than such operators were investigated in [13,14] for a special function
h(x, λ) = γ(λ)χ(〈x, α(λ)〉), where χ : C1 → C1 is an entire function, γ : NC → C1

and α : NC → NC is a function analytic at 0 ∈ NC.

2. The spaces of test functions

We use the following notation:

Np := {p, p + 1, . . . }, p ∈ Z,

where Z := {. . . ,−1, 0, 1, . . . }.
Let Q be a separable complete metric space of points x, y, . . . . We denote

by C(Q) the linear space of all complex-valued locally bounded (i.e. bounded on
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2 V. A. TESKO

every ball in Q) continuous functions on Q. We will understand C(Q) as a linear
topological space with convergence uniform on every ball from Q.

For any p ∈ N1 we consider a fixed chain of real separable Hilbert spaces,

N ′ := ind lim
p̃∈N1

N−p̃ ⊃ N−p ⊃ N0 ⊃ Np ⊃ pr lim
p̃∈N1

Np̃ =: N ,

where N−p is the space negative with respect to the positive space Np and the zero
space N0. We will suppose that the embedding Np+1 ↪→ Np, p ∈ N0 is quasinuclear
(i.e. the inclusion operator is of the Hilbert-Schmidt type) and, moreover, ‖ · ‖Np

≤
‖ · ‖Np+1 . Let us denote by 〈· , ·〉 the real pairing between N−p and Np, inducted by
the scalar product in N0. We will preserve these notations for tensor powers and
complexifications of spaces.

For any p ∈ Z and a weight γ = (γn)∞n=0, γn > 0, we can construct a symmetric
weighted Fock space

F(Np, γ) :=
∞⊕

n=0

Fn(Np)γn

=
{

f = (fn)∞n=0 | fn ∈ Fn(Np), ‖f‖2F(Np,γ) =
∞∑

n=0

‖fn‖2Fn(Np)γn < ∞
}

,

with the corresponding inner product. Here the n-particle subspace Fn(Np), p ∈ Z
is equal to the n-th symmetric tensor power ⊗̂ of the complexification Np,C of the
space Np, Fn(Np) := N ⊗̂n

p,C , N ⊗̂0
p,C := C1.

In what follows, we will consider the family (F(Np, γ(q)))p,q∈N1 of weighted Fock
spaces F(Np, γ(q)) with the weight

(1) γ(q) = (γn(q))∞n=0, γn(q) = (n!)2Kqn, K > 1.

Let B0 be some neighborhood of 0 in the space N1,C and

(2) Q×B0 3 {x, λ} 7→ h(x, λ) ∈ C1

be a given function. Suppose that for each x ∈ Q h(x, ·) is analytic at 0 ∈ N1,C,
and, for each λ ∈ B0 , h(·, λ) ∈ C(Q). Moreover, h(·, λ) is locally bounded uni-
formly with respect to λ from any closed ball inside of B0.

It follows from the analyticity ([11], Subsections 2–3) that, for each point x ∈ Q,
there exists a neighborhood of zero

B(x) := {λ ∈ N2,C | ‖λ‖N2,C < R(x), R(x) > 0} ⊂ B0,

such that

(3) h(x, λ) =
∞∑

n=0

1
n!
〈λ⊗n, hn(x)〉, hn(x) ∈ Fn(N−2),

for all λ from B(x). Moreover, the last series converges uniformly on any closed
ball from B(x). Suppose that for all x ∈ Q there exists a general neighborhood of
zero

B := {λ ∈ N2,C | ‖λ‖N2,C < R, R > 0} ⊂ B0
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with this property.
In accordance with [11] the function

Q 3 x 7→ 〈fn, hn(x)〉 ∈ C1

belongs to C(Q) for all fn ∈ Fn(Np), n ∈ N0, p ∈ N3. Moreover ([11], Lemma
4.2), if K > 1 (here K from (1)) is sufficiently large, then the series

∞∑
n=0

〈fn, hn(·)〉, (fn)∞n=0 ∈ F(Np, γ(q)), p ∈ N3, q ∈ N1

converges in the topology of C(Q) to some function f ∈ C(Q).
In what follows, we take K > 1 sufficiently large. For such fixed K > 1 and

p ∈ N3, q ∈ N1 we can consider the mapping

(4) F(Np, γ(q)) 3 f = (fn)∞n=0 7→ (I(p, q)f)(·) :=
∞∑

n=0

〈fn, hn(·)〉 ∈ C(Q).

Suppose that for p = 3, q = 1 the mapping (4) is injective. Then it is obvious
that the mapping I(p, q) : F(Np, γ(q)) → C(Q) is injective for any p ∈ N3, q ∈ N1.

Applying the mapping I(p, q) we can define the family (H(p, q))p∈N3,q∈N1 of
Hilbert spaces

H(p, q) := I(p, q)(F(Np, γ(q)))

= {f ∈ C(Q) | ∃(fn)∞n=0 ∈ F(Np, γ(q)) : f(x) =
∞∑

n=0

〈fn, hn(x)〉, x ∈ Q}

with the Hilbert norm

‖f‖H(p,q) = ‖
∞∑

n=0

〈fn, hn(·)〉‖H(p,q) := ‖(fn)∞n=0‖F(Np,γ(q)).

Remark. We note that the spaces H(p, q) are the test functions spaces in a gener-
alization of the white noise analysis (see [11] for more details).

3. Annihilation operators

An annihilation operator a−(ξm) with a coefficient ξm ∈ Fm(N−p), m ∈ N0, is
defined in the Fock space F(Np, γ(q)), p ∈ N3, q ∈ N1 as linear continuous operator
acting by the rule (see [11]): for any f = (fn)∞n=0 ∈ F(Np, γ(q))

a−(ξm)f = a−(ξm)(f0, f1, . . . ) := (m!fξm
m , . . . ,

n!
(n−m)!

fξm
n , . . . ) ∈ F(Np, γ(q)),

where fξm
n ∈ Fn−m(Np), n ≥ m is defined by

〈fn, ξm⊗̂ηn−m〉 = 〈fξm
n , ηn−m〉

for all ηn−m ∈ Fn−m(N−p).
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Using the unitary operator

F(Np, γ(q)) 3 f = (fn)∞n=0 7→ (I(p, q)f)(·) =
∞∑

n=0

〈fn, hn(·)〉 ∈ H(p, q)

we transfer the annihilation operator a−(ξm) into the operator

∂(ξm) := I(p, q)a−(ξm)I−1(p, q) : H(p, q) → H(p, q).

A simple calculation gives its action on elementary functions 〈fn, hn(·)〉 ∈ H(p, q),
n ∈ N0: for all m ∈ N0 and x ∈ Q

(5) (∂(ξm)〈fn, hn(·)〉)(x) :=
{ n!

(n−m)! 〈fn, ξm⊗̂hn−m(x)〉 n ∈ Nm;

0 n = 0, . . . , m− 1.

Let ` : N1,C → C1 be an analytic function at 0 ∈ N1,C. Then in some neighbor-
hood of 0 ∈ N2,C there exists an expansion

`(λ) =
∞∑

n=0

1
n!
〈λ⊗n, αn〉, αn ∈ Fn(N−2).

In accordance with [17] the function ` generates a linear continuous operator (the
so-called annihilation operator of infinite order)

H(p, q) 3 f 7→ `(∂)f :=
∞∑

n=0

1
n!

∂(αn)f ∈ H(p, q), p, q ∈ N3.

Thus, the function h(x, λ) generates a family h(∂) = (hx(∂))x∈Q of linear continu-
ous operators

H(p, q) 3 f 7→ hx(∂)f :=
∞∑

n=0

1
n!

∂(hn(x))f ∈ H(p, q), p, q ∈ N3.

3. Generalized translation operators

Let a family T = (Tx)x∈Q of linear operators Tx : C(Q) → C(Q) be given.
Such a family T is, by definition (see [8,9,11]), a family of generalized translation
operators if

(a) (Txf)(y) = (Tyf)(x) for any f ∈ C(Q) and x, y ∈ Q (commutativity);
(b) there exists a point e ∈ Q (basis unity) such that Te = id;
(c) for any x, y ∈ Q the mapping C(Q) 3 f 7→ (Txf)(y) ∈ C1 is continuous

(continuity).
Note, that axioms (a)–(c) are only some part of axioms for generalized translation

operators from theory of commutative hypercomplex systems and hypergroups, see
[10].

Because the embedding H(3, 3) ↪→ C(Q) is continuous (see [11], Theorem 4.1),
we can generalize the definition of T . In what follows, we will call T = (Tx)x∈Q

a family of generalized translation operators if the operators Tx act from the space
H(3, 3) into C(Q) and the following axioms are satisfied:

(a′) (Txf)(y) = (Tyf)(x) for any f ∈ H(3, 3) and x, y ∈ Q (commutativity);
(b′) there exists a point e ∈ Q (basis unity) such that Te = id;
(c′) for any x, y ∈ Q the mapping H(3, 3) 3 f 7→ (Txf)(y) ∈ C1 is continuous

(continuity).
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We say that a non-zero function χ ∈ H(3, 3)) is a character of the family T if

(Txχ)(y) = χ(x)χ(y), x, y ∈ Q.

Without loss of generality one can consider that

h(o, λ) = 1,

for some point o ∈ Q and all λ ∈ V := {λ ∈ N3,C | ‖λ‖N3,C < r, r > 0} (here r > 0
sufficiently small). In what follows, we fixed a such point o ∈ Q.

Theorem. The family h(∂) = (hx(∂))x∈Q of linear continuous operators

hx(∂) :=
∞∑

n=0

1
n!

∂(hn(x)) : H(3, 3) → C(Q)

is a family of generalized translation operators. For each fixed λ ∈ V the function
Q 3 x 7→ h(x, λ) ∈ C1 is a character of the family h(∂).

If h(·, λ) is a character of some family T = (Tx)x∈Q of generalized translation
operators for all λ ∈ V, then

Tx = hx(∂) : H(3, 3) → C(Q),

for all x ∈ Q.

Proof. Axioms (a′), (b′), (c′) are fulfilled for h(∂).
Indeed, since h(o, λ) = 1 for λ ∈ V we conclude that ho(∂) = id and axiom (b′)

is fulfilled. The embedding operator O : H(3, 3) ↪→ C(Q) and operator hx(∂) :
H(3, 3) → H(3, 3) are continuous. Therefore, the operator hx(∂) : H(3, 3) → C(Q)
is continuous and axiom (c′) is also fulfilled. The axiom (a′) follows from (6) (see
below) and axiom (c′).

We have to prove that h(·, λ) is a character of family (hx(∂))x∈Q for all λ ∈ V .
Due to (5), the action of the operator hx(∂) on 〈fn, hn(·)〉 ∈ H(3, 3), n ∈ N0 is

given by

(6)

(hx(∂)〈fn, hn(·)〉)(y) =
∞∑

m=0

1
m!

(∂(hm(x))〈fn, hn(·)〉)(y)

=
n∑

m=0

n!
m!(n−m)!

〈fn, hm(x)⊗̂hn−m(y)〉

= 〈fn,

n∑
m=0

n!
m!(n−m)!

hm(x)⊗̂hn−m(y)〉,

for all x, y ∈ Q.
The series h(·, λ) =

∑∞
n=0

1
n! 〈λ⊗n, hn(·)〉, λ ∈ V converges in the topology of

H(3, 3) ([11], Proposition 4.1) and operator hx(∂) : H(3, 3) → C(Q) is continuous,



6 V. A. TESKO

therefore, for any x, y ∈ Q, by (6)

(hx(∂)h(·, λ))(y) =
(

hx(∂)
( ∞∑

n=0

1
n!
〈λ⊗n, hn(·)〉

))
(y)

=
∞∑

n=0

1
n!

(hx(∂)〈λ⊗n, hn(·)〉)(y)

=
∞∑

n=0

1
n!
〈λ⊗n,

n∑
m=0

n!
m!(n−m)!

hm(x)⊗̂hn−m(y)〉

=
∞∑

n=0

n∑
m=0

1
m!(n−m)!

〈λ⊗m, hm(x)〉〈λ⊗(n−m), hn−m(y)〉

=
( ∞∑

n=0

1
n!
〈λ⊗n, hn(x)〉

)( ∞∑
n=0

1
n!
〈λ⊗n, hn(y)〉

)
= h(x, λ)h(y, λ).

Now we prove that if the function h(·, λ) is a character of some family T =
(Tx)x∈Q of generalized translation operators for all λ ∈ V , that

Tx = hx(∂) : H(3, 3) → C(Q).

for all x ∈ Q.
The mappings

(7) H(3, 3) 3 f → (hx(∂)f)(y) ∈ C1, H(3, 3) 3 f → (Txf)(y) ∈ C1

are linear and continuous for all x, y ∈ Q. Therefore, it is enough to show that

(Tx〈fn, hn(·)〉)(y) = (hx(∂)〈fn, hn(·)〉)(y)

= 〈fn,

n∑
m=0

n!
m!(n−m)!

hm(x)⊗̂hn−m(y)〉,

for any 〈fn, hn(·)〉 ∈ H(3, 3), n ∈ N0 and all x, y ∈ Q.
Fix x, y ∈ Q. It follows from the continuoity of the second mapping in (7) that

there exists a constant c > 0 such that

|(Txf)(y)| ≤ c‖f‖H(3,3), f ∈ H(3, 3).

Therefore, for f(·) = 〈fn, hn(·)〉 ∈ H(3, 3), n ∈ N0 we have

|(Tx〈fn, hn(·)〉)(y)| ≤ c‖〈fn, hn(·)〉‖H(3,3) = c‖fn‖Fn(N3).

From this estimate we conclude that there exists a unique vector

kn(x, y) ∈ Fn(N−3)

such that
(Tx〈fn, hn(·)〉)(y) = 〈fn, kn(x, y)〉,

for all fn ∈ Fn(N3).
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Now it is sufficient to prove that

(8) kn(x, y) =
n∑

m=0

n!
m!(n−m)!

hm(x)⊗̂hn−m(y).

The series h(·, λ) =
∑∞

n=0
1
n! 〈λ⊗n, hn(·)〉 converges in the topology of H(3, 3)

for all λ ∈ V and second mapping in (7) is linear and continuous, therefore, for all
x, y ∈ Q and λ ∈ V we have

(9) (Txh(·, λ))(y) =
∞∑

n=0

1
n!

(Tx〈λ⊗n, hn(·)〉)(y) =
∞∑

n=0

1
n!
〈λ⊗n, kn(x, y)〉.

On the other hand, according to (3), for all x, y ∈ Q and λ ∈ V we have

(10)

(Txh(·λ))(y) = h(x, λ)h(y, λ) =
∞∑

n,m=0

1
n!m!

〈λ⊗n, hn(x)〉〈λ⊗m, hm(y)〉

=
∞∑

n,m=0

1
n!m!

〈λ⊗(n+m), hn(x)⊗̂hm(y)〉

=
∞∑

n=0

1
n!
〈λ⊗n,

n∑
m=0

n!
m!(n−m)!

hm(x)⊗̂hn−m(y)〉.

Let z ∈ C1 be sufficiently small and ϕ ∈ N3,C, ‖ϕ‖N3,C = 1. By substituting
λ = zϕ in (9), (10) and comparing the coefficients before zn, we get for x, y ∈ Q

〈ϕ⊗n, kn(x, y)〉 = 〈ϕ⊗n,

n∑
m=0

n!
m!(n−m)!

hm(x)⊗̂hn−m(y)〉.

The last equality, polarization identity and linearity with respect to ϕ⊗n give
(8). ¤
Remark. It is not difficult to prove that, for all x, y, z ∈ Q and f ∈ H(3, 3), the
following relation of associativity holds:

(hy
z(∂)(hy(∂)f))(x) = (hx

y(∂)(hz(∂)f))(x),

where the notation (hy
z(∂)(hy(∂)f))(x) means that the operator hz(∂) acts on the

function (hy(∂)f)(x) depending on two variables y and x with respect to the vari-
able y.

Remark. Let T = (Tx)x∈Q be a family of generalized translation operators. If
h(·, λ), λ ∈ V is a character of the family T , then for each p, q ∈ N3 the Hilbert
space H(p, q) is invariant with respect to the action of the operator Tx. Moreover,
the following equality of operators holds:

Tx = hx(∂) : H(p, q) → H(p, q).
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