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Abstract. Let ∗P be a product on lfin (a space of all finite sequences) associated

with a fixed family (Pn)∞n=0 of real polynomials on R. In this article, using methods

from the theory of generalized eigenvector expansion, we investigate moment-type
properties of ∗P -positive functionals on lfin.

If (Pn)∞n=0 is a family of the Newton polynomials Pn(x) =
∏n−1

i=0 (x − i) then

the corresponding product ? = ∗P is an analog of the so-called Kondratiev–Kuna
convolution on a “Fock space”. We get an explicit expression for the product ? and

establish the connection between ?-positive functionals on lfin and a one-dimensional

analog of the Bogoliubov generating functionals (the classical Bogoliubov functionals
define correlation functions for statistical mechanics systems).

1. Introduction

It is well known that the classical moment problem can be viewed as a theory of
spectral representations of positive functionals on some classical commutative algebra
with involution. Namely, let lfin be a space of all finite sequences f = (f0, . . . , fn, 0, 0, . . .)
of complex numbers fn and ∗ denotes the Cauchy product on lfin, i.e.,

(f ∗ g)n :=
∑
i+j=n

figj =

n∑
k=0

fkgn−k (1.1)

for all f = (fn)∞n=0, g = (gn)∞n=0 ∈ lfin. The space lfin endowed with the product ∗ is a
commutative algebra with the involution f = (fn)∞n=0 7→ f̄ := (f̄n)∞n=0.

The classical moment problem is formulated as follows: for a given sequence (τn)∞n=0

of real numbers τn when does there exist a non-negative finite Borel measure µ on R such
that

τn =

∫
R
xn dµ(x), n ∈ N0 := {0, 1, . . .}? (1.2)

The answer is the following: integral representation (1.2) holds if and only if τ = (τn)∞n=0

is a ∗-positive functional (more exactly, non-negative) on lfin, i.e.,

τ(f ∗ f̄) =

∞∑
j,k=0

τj+kfj f̄k ≥ 0, f = (fn)∞n=0 ∈ lfin.

In this article an essential role will be played by Yu. M. Berezansky’s method [3] of
obtaining representation (1.2), which goes back to the works of M. G. Krein [19, 20].
This method is based on the theory of generalized eigenfunction expansion for selfadjoint
operators and, in its modern version [4], can be formulated as follows. Let (lfin, ∗) be
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an algebra as above and τ = (τn)∞n=0 be a given ∗-positive functional. This pair can be
associated, in a usual way, with a Hilbert space Hτ generated by a quasiscalar product

(f, g)Hτ := τ(f ∗ ḡ), f, g ∈ lfin.

In this space Hτ the translation operator

Jf := δ1 ∗ f = (0, f0, f1, . . .), f = (fn)∞n=0 ∈ lfin (1.3)

(here δ1 := (0, 1, 0, 0, . . .) ∈ lfin) is Hermitian with equal defect numbers. Therefore
it follows from the theory of generalized eigenfunction expansions that there exists a
non-negative finite Borel measure µ on R (spectral measure) such that (xn)∞n=0 is a
generalized eigenvector of the operator J (more exactly, to its selfadjoint extension) with
an eigenvalue x ∈ R and the mapping (Fourier transform)

Hτ ⊃ lfin 3 f 7→ (If)(x) :=

∞∑
n=0

fnx
n ∈ L2(R, µ)

is well-defined and isometric, i.e.,

(f, g)Hτ =

∫
R

(If)(x)(Ig)(x)dµ(x), f, g ∈ lfin.

As a consequence of this Parseval equality, we immediately get representation (1.2):

τn = (δn, δ0)Hτ =

∫
R
xn dµ(x),

where δn = (δnj)
∞
j=0 denotes a δ-sequence.

Among the advantages of Yu. M. Berezansky’s method is that this method admits
broad generalizations which give a possibility to investigate the following moment prob-
lems: strong Hamburger, trigonometric, complex, matrix and different many-dimensional
analogs of them, including infinite-dimensional cases (in many-dimensional situation
it is necessary to investigate the commuting families of Jacobi type operators), see
[3, 9, 10, 4, 5, 6, 7, 11, 8] for more detailed presentation.

By analogy with the above described way of obtaining representation (1.2), we can
get moment-type representations in the case when a family (xn)∞n=0 of the monomials is
replaced by a family (Pn)∞n=0 of polynomials Pn : R → R (each Pn has a degree n). In
this situation, instead of the Cauchy product ∗ (1.1), it is necessary to use the product

f ∗P g := I−1
P (IP f · IP g), (IP f)(x) :=

∞∑
n=0

fnPn(x), f, g ∈ lfin,

generated by the polynomials Pn(x) and, instead of (1.3), the operator

JP f := δ1 ∗P f, f = (fn)∞n=0 ∈ lfin

(clearly, if Pn(x) = xn then ∗ = ∗P and JP = J). Let Hτ = Hτ,P denotes a Hilbert space
associated with the quasiscalar product (f, g)Hτ := τ(f ∗P ḡ). It can be shown that for
a given ∗P -positive functional τ = (τn)∞n=0 on lfin there exists a non-negative finite Borel
measure µ on R such that (Pn)∞n=0 is a generalized eigenvector of the operator JP (JP
acts in Hτ ) with an eigenvalue x ∈ R and the mapping

Hτ ⊃ lfin 3 f 7→ (IP f)(x) :=

∞∑
n=0

fnPn(x) ∈ L2(R, µ)

is a Fourier transform. The corresponding Parseval equality gives the moment-type
representation

τn =

∫
R
Pn(x) dµ(x), n ∈ N0.
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The described way of proving the latter representation is given below in Section 4.
Let us mention that the idea of using the theory of generalized eigenvector expansion in
a similar context is not new, see [4] for details.

If (Pn)∞n=0 is a family of the so-called Newton polynomials Pn(x) = (x)n :=
∏n−1
i=0 (x−i)

then the corresponding product ? := ∗P on lfin is an analog of the so-called Kondratiev–
Kuna convolution on a “Fock space”. Formula (3.8) in Section 3 gives an explicit ex-
pression for the product ?. We refer to [15] for the definition and properties of the
Kondratiev–Kuna convolution on a “Fock space”, see also Subsection 7.2.

In this article we also study the following problem: for a given sequence (τn)∞n=0 of
real numbers τn when does there exist a non-negative finite Borel measure µ on R such
that a Laplace transform lµ(λ) :=

∫
R e

xλ dµ(x) is analytic in a neighborhood of zero in C
and τn =

∫
R Pn(x) dµ(x) for all n ∈ N0?

We give an answer on this problem in Section 6 for the case of the so-called Sheffer
polynomials (i.e., polynomials with generating function of exponential type). The mono-
mials and Newton polynomials are examples of the Sheffer polynomials. In the case of
the monomials this problem is closely related to the problem of integral representation
of exponentially convex functions (see Subsection 6.2), in the Newton polynomials’ case
this problem is connected with a one-dimensional analog of the Bogoliubov generating
functionals, i.e., with functions B : U → C (U is a neighborhood of 0 ∈ C) of such type

B(λ) =

∫
R

(1 + λ)xdµ(x) =

∫
R
ex log(1+λ)dµ(x), λ ∈ U ,

where µ is a certain non-negative finite Borel measure on R (see Subsection 6.3). Note
that ex log(1+λ) is a generating function for the Newton polynomials (x)n,

ex log(1+λ) =

∞∑
n=0

λn

n!
(x)n, |λ| < 1.

We stress that the classical Bogoliubov functionals were introduced by N. N. Bogoliubov
in [14] to define correlation functions for statistical mechanics systems.

The last part of this article (Section 7) is related, on the one hand, to the infinite-
dimensional generalization of the classical moment problem (1.2) and, on the other hand,
to some tasks of statistical physics. The main purpose of this section is to explain the
motivation of this work and present a few known examples of the results and some open
problems in the case of functions of infinite many variables.

2. Preliminaries

2.1. Projection spectral theorem. In this subsection we recall some results concern-
ing the projection spectral theorem and the quasianalytic criterion of selfadjointness of
operators (for a detailed explanation see e.g. books [3, 9, 12]).

Let H be a complex separable Hilbert space and

H− ⊃ H ⊃ H+ ⊃ D (2.1)

be a fixed rigging of H. We suppose that H+ is a Hilbert space which is topologi-
cally (i.e., densely and continuously) and quasinuclearly (i.e., the inclusion operator is of
Hilbert–Schmidt type) embedded into H, H− is the dual of H+ with respect to the zero
space H (with the pairing 〈· , ·〉H), and D is a linear, separable, topological space that is
topologically embedded into H+.

The following projection spectral theorem holds (see [3], Ch. 5; [9], Ch. 3; [12], Ch. 15).

Theorem 2.1. Let A be a self-adjoint operator defined on Dom(A) in H. Assume that

• A is standardly connected with chain (2.1), i.e., D ⊂ Dom(A) and the restriction
A � D of the operator A on D acts from D into H+ continuously.
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• A has a strong cyclic vector Ω, that is there exists a vector Ω ∈ H such that
Ω ∈ Dom(An) for all n ∈ N and a set {AnΩ |n ∈ N0} is total in H+ (i.e., a set
span{AnΩ |n ∈ N0} is dense in H+).

Then there exists a non-negative finite Borel measure µ on R (spectral measure, defined
on the Borel σ-algebra B(R)) such that

• For µ-almost every x ∈ R there is a unique vector ξ(x) ∈ H− (the so-called
generalized eigenvector of A with an eigenvalue x) such that

〈ξ(x), Af〉H = x〈ξ(x), f〉H, f ∈ D.

• The mapping

H ⊃ D 3 f 7→ (IAf)(·) := 〈f, ξ(·)〉H ∈ L2(R, µ) (2.2)

is well-defined and isometric, i.e.,

(f, g)H =

∫
R

(IAf)(x)(IAg)(x) dµ(x), f, g ∈ H. (2.3)

Extending the mapping IA by continuity to the whole space H we obtain an iso-
metric operator IA : H → L2(R, µ).

Remark 2.2. Let an operator A satisfies all assumptions of Theorem 2.1 and, moreover,
the closure of A � D in H coincides with A. Then by a well-known fact (see, e.g.,
[12], Ch. 15, § 3) the extension (by continuity) of mapping (2.2) is a unitary operator
IA : H → L2(R, µ) acting from the whole space H onto the whole space L2(R, µ). The
image of A under IA is the operator of multiplication by x in L2(R, µ).

Let us recall the quasianalytic criterion of self-adjointness. For a Hermitian operator
A defined on Dom(A) in H, a vector f ∈

⋂∞
n=1 Dom(An) is called quasianalytic if

∞∑
n=1

1
n
√
‖Anf‖H

=∞. (2.4)

Theorem 2.3. A Hermitian operator A in H is essentially self-adjoint if and only if the
space H contains a total set of quasianalytic vectors.

Versions of this theorem are published in [22, 23], see also [3], Ch. 8, § 5. For the given
form of it, see [12], Ch. 13, § 9.

2.2. Spaces and riggings. Denote by C∞ a linear space of all sequences f = (fn)∞n=0

of complex numbers fn ∈ C, and by lfin its linear subspace consisting of finite sequences
f = (f0, . . . , fn, 0, 0, . . .). Henceforth, we will denote by δn the δ-sequence,

δn = (δnj)
∞
j=0 = (0, . . . , 0︸ ︷︷ ︸

n times

, 1, 0, 0, . . .). (2.5)

Then each vector f from lfin can be interpreted as a finite sum
∑∞
n=0 fnδn.

For a fixed weight p = (pn)∞n=0, pn > 0, we denote by

l2(p) :=
{
f = (fn)∞n=0 ∈ C∞

∣∣∣ ‖f‖2l2(p) :=

∞∑
n=0

|fn|2pn <∞
}

the l2-type space with a corresponding scalar product (· , ·)l2(p). In the case of the weight

1 = (1, 1, . . .) we will use a standard notation l2 := l2(1).
Let p = (pn)∞n=0, pn ≥ 1. Then the space l2(p) is densely and continuously embedded

into the space l2 and therefore one can construct the chain (the rigging of l2)

l2(p−1) ⊃ l2 ⊃ l2(p) ⊃ lfin, (2.6)
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where p−1 := (p−1
n )∞n=0 and l2(p−1) = (l2(p))′ is the dual space of l2(p) with respect to

the zero space l2. Denote by 〈· , ·〉l2 the dual pairing between elements of l2(p−1) and
l2(p) inducted by the scalar product in l2, i.e.,

〈ξ, g〉l2 :=

∞∑
n=0

ξnḡn, ξ ∈ l2(p−1), g ∈ l2(p).

Together with (2.6), we consider a rigging of l2 connected with a special weight p.
Namely, for each q ∈ N, we set

γ(q) = ((n!)22qn)∞n=0

and introduce the so-called Kondratiev-type l2-spaces

l2(γ(q)) and l2+ := pr lim
q∈N

l2(γ(q)).

Then the dual spaces of l2(γ(q)) and l2+ with respect to the zero space l2 are

l2(γ−1(q)) and l2− := (l2+)′ = ind lim
q∈N

l2(γ−1(q))

respectively (here γ−1
n (q) = (n!)−22−qn). Thus, we get a rigging

C∞ = l′fin ⊃ l2− ⊃ l2(γ−1(q)) ⊃ l2 ⊃ l2(γ(q)) ⊃ l2+ ⊃ lfin.

Here we identify, in the usual way, the space C∞ with the space l′fin of all linear functionals
on lfin. In the sequel we won’t distinguish C∞ and l′fin.

Now we recall one important property of the space l2−. Denote by Hol0(C) a set
of all (germs of) functions φ : C → C that are holomorphic at 0 ∈ C and, for each
ξ = (ξn)∞n=0 ∈ l2−, define the so-called S-transform by the formula

(Sξ)(λ) :=

∞∑
n=0

λn

n!
ξn, λ ∈ U ,

where U is a (depending on ξ) neighborhood of 0 ∈ C.
The following result shows that each vector ξ from l2− is uniquely determined by its

S-transform (see [17] for the infinite dimensional analogue of this fact).

Theorem 2.4. The S-transform

S : l2− → Hol0(C), ξ = (ξn)∞n=0 7→ (Sξ)(λ) :=

∞∑
n=0

λn

n!
ξn,

is a one-to-one map between l2− and Hol0(C).

Proof. Let ξ = (ξn)∞n=0 ∈ l2−, i.e., there exists q ∈ N such that

ξ ∈ l2(γ−1(q)) or, equivalently,

∞∑
n=0

|ξn|22−qn(n!)−2 <∞.

Using the Cauchy-Bunyakovsky-Schwarz inequality, for |λ| < 2−
q
2 , we get

|(Sξ)(λ)| =
∣∣∣ ∞∑
n=0

λn

n!
ξn

∣∣∣ ≤ ∞∑
n=0

|λ|n

n!
|ξn|

≤
( ∞∑
n=0

|λ|2n2qn
) 1

2
( ∞∑
n=0

|ξn|22−qn(n!)−2
) 1

2

<∞.

Thus, Sξ ∈ Hol0(C).
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For the converse, suppose that φ ∈ Hol0(C), that is there exists r > 0 such that the
function φ admits the representation

φ(λ) =

∞∑
n=0

λn

n!
ξn <∞, |λ| < r,

with

ξn =
dnφ

dλn
(λ)
∣∣∣
λ=0

=
n!

2πi

∮
|ζ|=r0

φ(ζ)

ζn+1
dζ, 0 < r0 < r.

As a consequence of the latter integral representation, for some C > 0, we get

|ξn| ≤ n!Cn+1, n ∈ N0.

Choosing q ∈ N in such way that C22−q < 1, we obtain
∞∑
n=0

|ξn|22−qn(n!)−2 ≤ C2
∞∑
n=0

C2n

2qn
<∞.

So, ξ := (ξn)∞n=0 ∈ l2− and Sξ = φ.
The fact that Ker(S) := {ξ ∈ l2− |Sξ = 0} = {0} is obvious. �

Corollary 2.5. A sequences ξ = (ξn)∞n=0 ∈ C∞ belongs to the space l2− if and only if
there exists a constant C > 0 such that

|ξn| ≤ n!Cn+1, n ∈ N0.

3. Convolutions on the space of finite sequences

3.1. Definition and properties of convolutions. Let (Pn)∞n=0 be a fixed family of
real-valued polynomials Pn : R→ R such that each Pn has a degree n. Thus, (Pn)∞n=0 is
a linear basis in the space P := C[x] of all complex-valued polynomials F : R→ C.

Define a convolution (product) ∗P on the space lfin by setting

f ∗P g := I−1
P (IP f · IP g), f, g ∈ lfin, (3.1)

where

IP : lfin → C[x], f = (fn)∞n=0 7→ (IP f)(x) :=

∞∑
n=0

fnPn(x), (3.2)

is a natural bijection between lfin and C[x]. The space lfin with product ∗P becomes a
commutative algebra A with the unity δ0 = {1, 0, 0, . . .} and the involution

lfin 3 f = (fn)∞n=0 7→ f̄ := (f̄n)∞n=0 ∈ lfin, (3.3)

where f̄n denotes the complex conjugation. Clearly, choosing different bases in the space
C[x] we obtain different products in the space lfin.

In the space C[x] we introduce a scalar product by setting

(F,G)P := (I−1
P F, I−1

P G)l2 =

∞∑
n=0

fnḡn,

F (·) =

∞∑
n=0

fnPn(·), G(·) =

∞∑
n=0

gnPn(·) ∈ C[x].

The sequence (Pn)∞n=0 makes an orthonormal basis in C[x] and therefore each polynomial
F ∈ C[x] admits the representation

F (x) =

∞∑
n=0

(F, Pn)PPn(x), x ∈ R (3.4)

(note that (F, Pn)P = 0 for n greater than the degree of F ).
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The following result holds, see also [4].

Lemma 3.1. For all f, g ∈ lfin and n ∈ N0 := {0, 1, . . .} we have

(f ∗P g)n =

∞∑
j,k=0

fjgk(PjPk, Pn)P . (3.5)

Proof. Using formulas (3.1), (3.2) and (3.4), for all f, g ∈ lfin and x ∈ R, we get

(IP (f ∗P g))(x) = (IP f)(x) · (IP g)(x) =

∞∑
n=0

(IP f · IP g, Pn)PPn(x)

=

∞∑
n=0

( ∞∑
j,k=0

fjgk(PjPk, Pn)P

)
Pn(x) =

∞∑
n=0

(f ∗P g)nPn(x).

So, formula (3.5) takes place. �

3.2. Examples. In some special cases we can count a more explicit expression of prod-
uct (3.5). Let us consider two examples.

1) Let Pn(x) = xn be a monomial. Then ∗P = ∗ is an ordinary convolution (Cauchy
product) ∗ of two sequences f = (fn)∞n=0, g = (gn)∞n=0 ∈ lfin:

(f ∗P g)n = (f ∗ g)n =
∑
i+j=n

figj =

n∑
k=0

fkgn−k. (3.6)

This fact is a direct consequence of (3.5) and the following formula

(PjPk, Pn)P = (xjxk, xn)P = (xj+k, xn)P = δj+k,n.

2) Let Pn(x) = (x)n (here (x)n denotes the Pochhammer symbol) be the so-called
Newton (or binomial) polynomial. By definition

Pn(x) = (x)n :=

{
1, if n = 0,

x(x− 1) · · · (x− n+ 1), if n ∈ N.

In terms of Gamma function, we have

(x)n =
Γ(x+ 1)

Γ(x− n+ 1)
, n ∈ N.

Note that (x)n, n ∈ N0, is an example of Sheffer polynomials, see Section 5 for details.
The corresponding generating function of (x)n has the form

P (x, λ) := (1 + λ)x = ex log(1+λ) =

∞∑
n=0

λn

n!
(x)n, |λ| < 1. (3.7)

In the case Pn(x) = (x)n we will denote convolution (3.1) by ? := ∗P .

Theorem 3.2. For all f = (fn)∞n=0, g = (gn)∞n=0 ∈ lfin and n ∈ N0 we have

(f ∗P g)n = (f ? g)n =
∑

i+j+k=n

(i+ j)!(j + k)!

i!k!j!
fi+jgj+k. (3.8)

Proof. Due to (3.5) it suffices to show that

((x)j(x)k, (x)n)P =


j!k!

(n− j)!(n− k)!(j + k − n)!
, j, k ∈ {0, . . . , n}, j + k ≥ n,

0, otherwise.
(3.9)
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Using (3.7) and the multinomial formula

(a1 + a2 + · · ·+ am)n =
∑

k1+k2+···+km=n

n!

k1!k2! · · · km!

∏
1≤i≤m

akii ,

for all |λ|, |µ| < ε (ε > 0 is small enough), we get

ex log(1+λ)ex log(1+µ) = ex log(1+λ+µ+λµ) =

∞∑
n=0

(λ+ µ+ λµ)n

n!
(x)n

=

∞∑
n=0

∑
i+j+k=n

λi+jµk+j

i!j!k!
(x)n.

(3.10)

On the other hand, taking into account the formula

(x)j(x)k =

∞∑
n=0

((x)j(x)k, (x)n)P(x)n, x ∈ R,

for all |λ|, |µ| < ε, we obtain

ex log(1+λ)ex log(1+µ) =

∞∑
j,k=0

λj

j!

µk

k!
(x)j(x)k

=

∞∑
n=0

∞∑
j,k=0

λjµk

j!k!
((x)j(x)k, (x)n)P(x)n.

(3.11)

Comparing the coefficients at (x)n and then at λjµk in formulas (3.10) and (3.11) we
get equality (3.9). �

Remark 3.3. It should be noticed that the product ? is a one-dimensional analog of the so-
called Kondratiev–Kuna convolution on a “Fock space”, see e.g. [15] and Subsection 7.2
below for the definition and properties of the Kondratiev–Kuna convolution.

4. The moment problem

As above let (Pn)∞n=0 be a fixed family of real-valued polynomials Pn ∈ C[x] such that
each Pn has a degree n and A = lfin be a commutative algebra with the product ∗P (3.1).

Definition 4.1. A functional τ = (τn)∞n=0 ∈ C∞ is said to be a moment functional (or,
a moment sequences) on (A, ∗P ) if there exists a non-negative Borel measure µ on R
such that

τn =

∫
R
Pn(x) dµ(x), n ∈ N0. (4.1)

Obviously, if τ = (τn)∞n=0 ∈ C∞ is a moment functional on (A, ∗P ) then actually
τn ∈ R for all n ∈ N0 and the measure µ from representation (4.1) is finite. The moment
problem on A is to characterize those linear functionals τ ∈ C∞ which are moment
functionals. A solution of this problem is given in the next theorem.

Theorem 4.2. τ = (τn)∞n=0 ∈ C∞ is a moment functional on A = lfin if and only if τ
is ∗P -positive (more exactly, non-negative) on A, that is

τ(f ∗P f̄) =

∞∑
n=0

τn(f ∗P f̄)n =

∞∑
n=0

τn

( ∞∑
j,k=0

fj f̄k(PjPk, Pn)P

)
≥ 0 (4.2)

for all f = (fn)∞n=0 ∈ A.

A method of proving this result is similar to considerations of [4] and is based on
the theory of generalized eigenfunction expansion. In the case of the classical moment
problem this method was first proposed by Yu. M. Berezansky in [3], Ch. 8.
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Proof. The necessity of condition (4.2) is trivial. Indeed,

τ(f ∗P f̄) =

∞∑
n=0

τn(f ∗P f̄)n =

∞∑
n=0

τn

( ∞∑
j,k=0

fj f̄k(PjPk, Pn)P

)
=

∫
R

∞∑
j,k=0

fj f̄k

( ∞∑
n=0

(PjPk, Pn)PPn(x)
)
dµ(x)

=

∫
R

∣∣∣ ∞∑
j=0

fjPj(x)
∣∣∣2 dµ(x) ≥ 0, f = (fn)∞n=0 ∈ A.

For the proof of the sufficiency of condition (4.2), we will apply Theorem 2.1 to a
certain self-adjoint operator connected with our moment problem.

Let τ ∈ C∞ be a positive functional on A, that is (4.2) holds. Using this functional
and convolution ∗P we construct in a standard way a Hilbert space Hτ . Namely, we
define Hτ as a Hilbert space associated with the quasiscalar product

(f, g)Hτ := τ(f ∗P ḡ), f, g ∈ A. (4.3)

For the construction of Hτ , at first it is necessary to pass from A to the factor space
Ȧ := A/{f ∈ A | (f, f)Hτ = 0} and then to take the completion of Ȧ. For simplicity

we will suppose that Ȧ ≡ A, i.e., (f, f)Hτ = 0 if and only if f = 0. Note that an
investigation of the general case is possible but technically it is more complicated (for
the corresponding constructions in the case of the classical moment problem, see [3], Ch.
8, § 1, Subsect. 4 or in [9], Ch. 5, § 5, Subsect. 1-3).

For the sake of simplicity we will assume that P0(x) = 1 and P1(x) = x. Using (3.1)
and (3.2) we define an operator

JP : lfin → lfin, JP f := I−1
P JIP = δ1 ∗P f, f ∈ lfin, (4.4)

where δ1 = (0, 1, 0, 0, . . .), IP is defined by formula (3.2) and J is the operator of multi-
plication by x in the space C[x], i.e.,

(JF )(x) := P1(x)F (x) = xF (x), F ∈ C[x].

The operator J : lfin → lfin is Hermitian in the Hilbert space Hτ ,

(JP f, g)Hτ = τ(δ1 ∗P f ∗P ḡ) = τ(f ∗P δ1 ∗P g) = (f, JP g)Hτ , f, g ∈ lfin,

and, moreover, it is real with respect to involution (3.3), i.e., JP f = JP f̄ , f ∈ lfin.
Therefore, by a theorem of von Neumann JP has self-adjoint extensions.

Denote by A a certain self-adjoint extension of JP on Hτ . We will apply Theorem 2.1
to this operator. Now the role of chain (2.1) will play the rigging

(l2(p))′Hτ ⊃ Hτ ⊃ l2(p) ⊃ lfin, (4.5)

where (l2(p))′Hτ = H− is the negative space with respect to the positive space l2(p) and
the zero space Hτ = H. The space lfin = D is provided with uniformly finite coordinate-
wise convergence, i.e., the sequence {f (j), j ∈ N} ⊂ lfin converge to f ∈ lfin if and only if

there exists N ∈ N such that f
(j)
n = 0 for all n > N, j ∈ N and f

(j)
n → fn as j →∞ for

all n ∈ N0.

Lemma 4.3. There exists a weight p = (pn)∞n=0, pn ≥ 1, such that the embedding
l2(p) ↪→ Hτ is well-defined and quasinuclear.

Proof. Let us set

Kjk :=

∞∑
n=0

τn(PjPk, Pn)P , j, k ∈ N0 (4.6)
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(note that for any j, k ∈ N0 the sum in (4.6) is finite). Due to (4.2) the matrix K =
(Kjk)∞j,k=0 is nonnegative definite, i.e.,

∞∑
j,k=0

Kjkfj f̄k =

∞∑
j,k=0

( ∞∑
n=0

τn(PjPk, Pn)P

)
fj f̄k = τ(f ∗P f̄) ≥ 0, f ∈ lfin.

Hence,

|Kjk|2 ≤ KjjKkk, j, k ∈ N0. (4.7)

Let q = (qn)∞n=0, qn ≥ 1, be such that
∑∞
n=0Knnq

−1
n < ∞. Then from (4.3), (4.2) and

(4.7) it follows that, for all f ∈ lfin,

‖f‖2Hτ = τ(f ∗P f̄) =

∞∑
j,k=0

Kjkfj f̄k ≤
( ∞∑
j=0

Kjj

qj

)
‖f‖2l2(q).

Therefore, l2(q) ↪→ Hτ topologically. But if
∑∞
n=0 qnp

−1
n < ∞, then l2(p) ↪→ l2(q)

quasinuclearly. The composition of these two embeddings gives that l2(p) ↪→ Hτ is
quasinuclear. �

In what follows we fix a weight p = (pn)∞n=0, pn ≥ 1, such that the embedding
l2(p) ↪→ Hτ is quasinuclear. It is clear that the operator A is standardly connected with
chain (4.5). Let us show that the vector Ω = δ0 = (1, 0, 0, . . .) ∈ lfin is a strong cyclic
vector for A.

To this end, it suffices to show that span{AnΩ | n ∈ N0} = lfin. But this is evidently
true, since IP : lfin → C[x] is bijection, span{xn | n ∈ N0} = C[x] and by (4.4)

AnΩ = Jnδ0 = I−1
P (xn), n ∈ N0.

So, the operator A satisfies all assumptions of Theorem 2.1. Let µ be the corresponding
spectral measure of A and ξ(x) ∈ (l2(p))′Hτ be the generalized eigenvector of A with an
eigenvalue x ∈ R. According to Theorem 2.1 we have

〈ξ(x), Af〉Hτ = x〈ξ(x), f〉Hτ , f ∈ lfin,

and the mapping

Hτ ⊃ lfin 3 f 7→ (IAf)(·) := 〈f, ξ(·)〉Hτ ∈ L2(R, µ)

is isometric.
To prove (4.1), it suffices to check that

(IAf)(x) = (IP f)(x) =

∞∑
n=0

fnPn(x), f ∈ lfin, (4.8)

for µ-almost all x ∈ R.
Indeed, suppose that (4.8) takes place. Then by (2.3) we have

(f, g)Hτ =

∫
R

(IP f)(x)(IP g)(x) dµ(x), f, g ∈ lfin. (4.9)

Therefore, taking into account the equalities τn = τ(δn) = τ(δn ∗P δ0) = (δn, δ0)Hτ and
(IP δn)(x) = Pn(x), we get

τn = (δn, δ0)Hτ =

∫
R
Pn(x) dµ(x), n ∈ N0.

Let us check (4.8). According to [4], Lemma 2.2, there exists a unique determined
unitary operator U : (l2(p))′Hτ → l2(p−1) such that

〈Uη, g〉l2 = 〈η, g〉Hτ , η ∈ (l2(p))′Hτ , g ∈ l2(p).
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Therefore, it suffices to show that

(Uξ)(x) = P (x) := (Pn(x))∞n=0, x ∈ R,

or, equivalently,

〈P (x), Af〉l2 = x〈P (x), f〉l2 , x ∈ R, f ∈ lfin.

But the latter equality takes place, since on the one hand

x〈P (x), f〉l2 = x

∞∑
n=0

fnPn(x) = x · (IP f)(x).

On the other hand, taking into account that P1(x) = x, Af = δ1 ∗P f , f ∈ lfin, and

(δ1 ∗P f)n =

∞∑
k=0

fk(P1Pk, Pn)P , n ∈ N0,

we get

〈P (x), Af〉l2 = 〈P (x), δ1 ∗P f〉l2 =

∞∑
n=0

Pn(x)
( ∞∑
k=0

fk(P1Pk, Pn)P

)
=

∞∑
n=0

( ∞∑
k=0

fk(P1Pk, Pn)PPn(x)
)

=

∞∑
n=0

(P1IP f, Pn)PPn(x)

= P1(x) · (IP f)(x) = x · (IP f)(x).

Thus, Theorem 4.2 is proved . �

Remark 4.4. Let Pn(x) = xn, n ∈ N0. Then ∗P = ∗ is the Cauchy product (3.6) and the
corresponding moment problem is called the Hamburger moment problem.

From Theorem 4.2 and formula (3.6) we immediately get the following classical result:
τ = (τn)∞n=0 ∈ C∞ is a moment functional on (A, ∗) (moment sequences) if and only if

τ(f ∗ f̄) =

∞∑
j,k=0

τj+kfj f̄k ≥ 0, f ∈ lfin. (4.10)

Note that now the operator JP : lfin → lfin, JP f := δ1 ∗ f , is an ordinary right shift
(or, in another terminology, a creation operator), that is

JP f = J(f0, f1, . . .) = (0, f0, f1, . . .), f = (fn)∞n=0 ∈ lfin,

or in a matrix form

JP =


0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0 . . .
· · · · · . . .

 .

Remark 4.5. Let Pn(x) = (x)n = x(x − 1) · · · (x − n + 1). Then ∗P = ? has form (3.8)
and as a direct consequence of Theorem 4.2 we get: τ = (τn)∞n=0 ∈ C∞ is a moment
functional on (A, ?) if and only if

τ(f ? f̄) =

∞∑
i,j,k=0

(i+ j)!(j + k)!

i!k!j!
τi+j+kfi+j f̄j+k ≥ 0, f ∈ lfin. (4.11)

It easy to see that the Newton polynomials (x)n obey the recurrence relation

x(x)n = (x)n+1 + n(x)n. (4.12)
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Indeed, let a− : lfin → lfin be an annihilation operator, i.e.,

a−((fn)∞n=0) = (f1, 2f2, . . . , nfn, . . .).

Then on the one hand, the operator ∂ := IPa−I
−1
P : C[x]→ C[x] acts by the formula

∂(x)n = n(x)n−1, n ∈ N0.

On the other hand, it can be proved that, for any polynomial F ∈ C[x],

(∂F )(x) = F (x+ 1)− F (x) and, therefore, ∂(x)n = (x+ 1)n − (x)n.

Thus, n(x)n−1 = (x+ 1)n − (x)n and therefore (4.12) holds.
It follows from (4.12) that the operator JP : lfin → lfin, JP f := δ1?f , has the following

matrix representation

JP =


0 0 0 0 0 . . .
1 1 0 0 0 . . .
0 1 2 0 0 . . .
0 0 1 3 0 . . .
· · · · · . . .

 .

5. Sheffer polynomials and analytic measures

The Sheffer polynomials (Pn)∞n=0 are defined via their exponential generating function

P (x, λ) := γ(λ)eα(λ)x =

∞∑
n=0

λn

n!
Pn(x), x ∈ R, λ ∈ U , (5.1)

where U is a some neighborhood of zero in C, γ and α are analytic functions in U such
that α(0) = 0, α′(0) 6= 0 and γ(0) = 1. Using the classical Faa di Bruno formula it can
be showed that each Pn(x) is a polynomial of exact degree n ∈ N0.

We observe that many classical polynomial families are Sheffer — the monomials,
Newton, Bernoulli, Hermite, Poisson-Charlier polynomials and many others. Note also
that the Sheffer polynomials have remarkable applications in various fields, such as prob-
ability, numerical analysis, Rota’s umbral calculus and so on. We refer, e.g., to [28, 25, 24]
and [1] for more details.

For every x ∈ R the function P (x, ·) is an analytic in a neighborhood of 0 ∈ C.
Therefore,

Pn(x) =
dn

dλn
P (x, λ)

∣∣∣
λ=0

=
n!

2πi

∮
|ζ|=r

P (x, ζ)

ζn+1
dζ,

where r > 0, r ∈ U . As a consequence, for all ε > 0 there exists rε > 0 such that

|Pn(x)| ≤ n!

rnε
sup
|λ|=rε

|γ(λ)eα(λ)x| ≤ 2n!

rnε
eε|x|, x ∈ R, n ∈ N0, (5.2)

where rε ∈ U is chosen in such a way that |α(λ)| ≤ ε and γ(λ) ≤ 2 for |λ| = rε.
Let µ be a non-negative finite Borel measure on R such that a Laplace transform

lµ(λ) :=

∫
R
exλ dµ(x)

is well-defined in a neighborhood of zero in C. It is easy to check the following result.

Proposition 5.1. Let a measure µ on B(R) be such that exλ belongs to L1(R, µ) for
|λ| < ε (for some ε > 0). Then the Laplace transform lµ of µ admits the representation

lµ(λ) :=

∫
R
exλ dµ(x) =

∞∑
n=0

λn

n!

∫
R
xn dµ(x), |λ| < ε, (5.3)

and, as a consequences, lµ is analytic in a neighborhood of zero in C, i.e., lµ ∈ Hol0(C).
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Proof. Let us fix λ ∈ C such that |λ| < ε. Since exλ ∈ L1(R, µ) then cosh(x|λ|) ∈ L1(R, µ)
and by the monotone convergence theorem we have∫

R
cosh(x|λ|) dµ(x) =

∞∑
n=0

|λ|2n

(2n)!

∫
R
x2n dµ(x) <∞.

Therefore, x2n ∈ L1(R, µ). Using the Shwarz inequality we get∫
R
|x|n dµ(x) ≤

√
µ(R)

(∫
R
|x|2n dµ(x)

) 1
2

<∞,

i.e., xn ∈ L1(R, µ) for all n ∈ N. Since |
∑N
n=0

λn

n! x
n| ≤ 2 cosh(x|λ|), by the dominated

convergence theorem we obtain

lµ(λ) =

∫
R
exλ dµ(x) =

∞∑
n=0

λn

n!

∫
R
xn dµ(x) <∞, |λ| < ε.

�

Denote by Ma(R) the set of all non-negative finite analytic measures µ on B(R), i.e.,

Ma(R) :=
{
µ : B(R)→ [0,∞)

∣∣µ – measure, lµ ∈ Hol0(C)
}
.

Equivalent descriptions of analytic measures are given by the following lemma (see [18]
for the infinite dimensional analogue of this result).

Theorem 5.2. The following statement are equivalent

(1) µ ∈Ma(R).
(2) There exists a constant C > 0 such that∣∣∣ ∫

R
xn dµ(x)

∣∣∣ < n!Cn+1, n ∈ N0.

(3) There exists a constant r > 0 such that e|x|r ∈ L1(R, µ).
(4) There exists a constant ε > 0 such that P (x, λ) = γ(λ)eα(λ)x ∈ L1(R, µ) for
|λ| < ε, where P (x, λ) is a generating function of the Sheffer polynomials Pn(x).

Proof. Let us check the following chain 1)⇒ 2)⇒ 3)⇒ 4)⇒ 1).
1)⇒ 2). This fact immediately follows from representation (5.3).
2)⇒ 3). For the moments of even order we have∫

R
|x|2n dµ(x) =

∫
R
x2n dµ(x) ≤ (2n)!C2n+1, n ∈ N0.

The moments of arbitrary order can be estimated by the Cauchy-Bunyakovsky-Schwarz
inequality∫

R
|x|n dµ(x) ≤

√
µ(R)

(∫
R
|x|2n dµ(x)

) 1
2 ≤

√
µ(R)CCn

√
(2n)! ≤

√
µ(R)C(2C)nn!,

since (2n)! ≤ 4n(n!)2. Chose r < (2C)−1 then∫
R
e|x|r dµ(x) =

∞∑
n=0

rn

n!

∫
R
|x|n dµ(x) =

√
µ(R)C

∞∑
n=0

(r2C)n <∞.

3)⇒ 4). Let r > 0 be such as in statement (3) and ε > 0 be chosen in such way that
ε ∈ B0 and |α(λ)| ≤ r for |λ| < ε. Then for all x ∈ R and all λ ∈ C such that |λ| < ε we
have

|P (x, λ)| = |γ(λ)eα(λ)x| ≤ Cer|x|, C := sup
|λ|≤ε

|γ(λ)|.

So, P (x, λ) ∈ L1(R, µ) for |λ| < ε.
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4) ⇒ 1). Since α is the analytic function in U , α(0) = 0 and α′(0) 6= 0 then there
exists ε̃ > 0 such that {λ ∈ C | |λ| < ε̃} ⊂ Ran (α). Therefore, exλ ∈ L1(R, µ) for |λ| < ε̃,
i.e., µ ∈Ma(R). �

Corollary 5.3. Let µ ∈ Ma(R) and P (x, λ) := γ(λ)eα(λ)x be a generating function of
the Sheffer polynomials Pn(x). Then the following formula holds∫

R
P (x, λ) dµ(x) =

∞∑
n=0

λn

n!

∫
R
Pn(x) dµ(x) <∞, |λ| < ε,

for some ε > 0.

Proof. Clearly, P 2(x, λ) = γ2(λ)e2α(λ)x is a generating function of the Sheffer poly-
nomials. Therefore, by Theorem 5.2 we have P 2(·, λ) ∈ L1(R, µ) for |λ| < ε, i.e.,
P (·, λ) ∈ L2(R, µ) for |λ| < ε. Using the latter, (5.1) and the continuity property of
the inner product, we get∫

R
P (x, λ) dµ(x) = (P (·, λ), 1)L2(R,µ) =

∞∑
n=0

λn

n!
(Pn(·), 1)L2(R,µ)

=

∞∑
n=0

λn

n!

∫
R
Pn(x) dµ(x) <∞, |λ| < ε.

�

Remark 5.4. µ ∈Ma(R) if and only if there exists a constant C > 0 such that∫
R
|Pn(x)|2 dµ(x) ≤ (n!)2Cn+1, n ∈ N0, (5.4)

where (Pn)∞n=0 is a family of Sheffer polynomials on R.

Proof. Let µ ∈Ma(R). Using (5.2) for 2ε < r (r > 0 from Theorem 5.2) and Theorem 5.2
we get ∫

R
|Pn(x)|2 dµ(x) ≤ 4(n!)2

r2n
ε

∫
R
e2ε|x|dµ <∞, n ∈ N0.

Hence, (5.4) takes place.
Conversely, let (5.4) holds. Then∥∥∥ N∑

n=M

|λ|n

n!
Pn(·)

∥∥∥
L2(R,µ)

≤
N∑

n=M

|λ|n

n!
‖Pn(·)‖L2(R,µ) ≤

√
C

N∑
n=M

(λ
√
C)n.

So, P (·, λ) ∈ L2(R, µ) for |λ| < (
√
C)−1 and, therefore, from Theorem 5.2 follows that

µ ∈Ma(R). �

6. Analytic moment functionals

6.1. Definition and properties. As above let P (x, λ) := γ(λ)eα(λ)x be a generating
function of the Sheffer polynomials Pn(x) and A = lfin be an algebra with the product
∗P (3.1). In the sequel, we wil fix such family (Pn(x))∞n=0 of Sheffer polynomials and we
assume, in addition, that Pn(x), n ∈ N0, are real-valued polynomials.

Definition 6.1. A functional τ ∈ C∞ is said to be an analytic moment functional on
(A, ∗P ) if there exists an analytic measure µ ∈Ma(R) such that

τn =

∫
R
Pn(x) dµ(x), n ∈ N0. (6.1)

Clearly, τ ∈ C∞ is an analytic moment functional on A if and only if τ is a moment
functional on A and the measure µ in representation (6.1) belongs to Ma(R).
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Remark 6.2. Let τ = (τn)∞n=0 ∈ C∞ be an analytic moment functional on A and µ be
the corresponding measure on B(R) such that (6.1) holds. Then Corollary 5.3 shows that
the moments τn are the Taylor coefficients of the generalized Laplace transform

l(·) :=

∫
R
P (x, ·) dµ(x) ∈ Hol0(C).

That is, l is the generating function for the moments τn and

τn = l(n)(0) =
dn

dλn
l(λ)

∣∣∣
λ=0

, n ∈ N0.

By using the S-transform (see Theorem 2.4), this means that τ = S−1l.

The aim of this section is to find conditions on τ ∈ C∞ that would guarantee existence
of a measure µ on B(R) such that µ ∈Ma(R) and (6.1) takes place.

Theorem 6.3. Necessary conditions that τ = (τn)∞n=0 ∈ C∞ is an analytic moment
functional on A are the following: τ is ∗P -positive on A (i.e., (4.2) holds) and τ ∈ l2−.

Sufficient conditions that τ = (τn)∞n=0 ∈ C∞ is an analytic moment functional on A
are the following: τ is ∗P -positive on A and there is a constant C > 0 such that

τ(δn ∗P δn) =

2n∑
k=0

τk(δn ∗P δn)k ≤ (n!)2Cn+1, n ∈ N0, (6.2)

where the vector δn ∈ lfin is defined by (2.5).

Proof. Necessity. Let τ ∈ C∞ be an analytic moment functional on A. Then from
Theorem 4.2 it immediately follows that τ is ∗P -positive on A. Since by Remark 6.2 the
function l(λ) =

∑∞
n=0

λn

n! τn belongs to the space Hol0(C), the fact that τ ∈ l2− is a direct
consequence of Theorem 2.4.

Sufficiency. Suppose that τ is ∗P -positive on A and (6.2) holds. Then according to
Theorem 4.2 the ∗P -positiveness of τ insures that (6.1) holds. Next, using (4.9), (4.8))
and (6.2) we get

τ(δn ∗P δn) = (δn, δn)Hτ =

∫
R

(IP δn)2(x) dµ(x)

=

∫
R
P 2
n(x) dµ(x) ≤ (n!)2Cn+1, n ∈ N0.

So, from Remark 5.4 we conclude that µ ∈Ma(R). �

Theorem 6.4. If τ = (τn)∞n=0 ∈ C∞ is an analytic moment functional on (A, ∗P ) then
the measure µ in representation (6.1) is uniquely defined.

Proof. At first, we prove the statement for the case Pn(x) = xn. So, we need to show
that for an analytic moment functional τ = (τn)∞n=0 ∈ C∞ on (A, ∗) (∗ is defined by
(4.10)) the measure µ in the representation

τn =

∫
R
xn dµ(x), n ∈ N0, (6.3)

is unique.
It is well known (see, e.g., [3], Ch. 8, Theorem 1.1) that the measure µ in representation

(6.3) is unique if and only if the operator lfin 3 f 7→ Jf = δ1 ∗ f ∈ lfin is essentially
self-adjoint (i.e., has a unique self-adjoint extension) in the space Hτ (see the proof of
Theorem 4.2 for the definition of Hτ ). Since span{δn |n ∈ N0} = lfin and lfin is dense in
Hτ , then according to the quasianalytic criterion of self-adjointness (see Theorem 2.3)
it is sufficient to check that every vector δk, k ∈ N0, is quasianalytic, i.e., equality (2.4)
holds for every δk.
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It is easy to see that Jnδk = δk+n, ‖Jnδk‖2Hτ = ‖δk+n‖2Hτ = τ2k+2n. Since µ ∈Ma(R),

then there exists C > 0 such that |τn| ≤ n!Cn+1 for all n ∈ N0 and therefore

∞∑
n=1

1
n
√
‖Jnδk‖Hτ

=

∞∑
n=1

1
2n
√
τ2k+2n

=∞, k ∈ N0,

i.e., the measure µ in representation (6.3) is unique.
Let us prove the general case. Suppose that measures µ1, µ2 ∈ Ma(R) are such that

µ1 6= µ2 and ∫
R
Pn(x)dµ1(x) =

∫
R
Pn(x)dµ2(x), n ∈ N0.

Then it is easy to check by induction that∫
R
xndµ1(x) =

∫
R
xndµ2(x), n ∈ N0.

So, µ1 = µ2, due to the above proven, which leads to a contradiction. �

Remark 6.5. From the proof of Theorem 6.4 and Remark 2.2 it easily follows the next
well known result: If µ ∈ Ma(R) then the set of all polynomials C[x] is dense in the
space L2(R, µ).

6.2. Analytic moment functionals connected with the monomials. Let P (x, λ) =
exλ and A = lfin be an algebra with the Cauchy product ∗ (3.6).

Theorem 6.6. A functional τ ∈ C∞ is an analytic moment functional on (A, ∗), i.e.,
there exists a measure µ ∈Ma(R) such that

τ(δn) = τn =

∫
R
xn dµ(x), n ∈ N0, (6.4)

if and only if τ is ∗-positive on A (i.e., (4.10) holds) and τ ∈ l2−.
For an analytic moment functional τ ∈ C∞ on (A, ∗) the measure µ in representation

(6.4) is unique defined.

Proof. The necessity immediately follows from Theorem 6.3.
Let us prove the sufficiency. Assume that τ is ∗-positive and τ ∈ l2−. Then from

Remark 4.4 we conclude that τ is a moment functional on (A, ∗), i.e., there exists a
Borel measure µ on R such that (6.4) holds.

Let us check that µ ∈ Ma(R). Since τ = (τn)∞n=0 ∈ l2−, from Corollary 2.5 it follows
that there exists C > 0 such that

|τn| =
∣∣∣ ∫

R
xn dµ(x)

∣∣∣ ≤ n!Cn+1, n ∈ N0.

Hence, from Theorem 5.2 we conclude that µ ∈Ma(R).
The last assertion of the theorem directly follows from Theorem 6.4. �

Let us show that the class of analytic moment functionals on (A, ∗) is closely related
to the class of exponentially convex functions. Recall that a function k : (−2a, 2a)→ C,
where 0 < a ≤ ∞, is called exponentially convex if

∞∑
i,j=0

k(xi + xj)fif̄j ≥ 0

for all f = (fn)∞n=0 ∈ lfin and xi, xj ∈ (−a, a).
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The classical Bernstein’s theorem asserts (see, e.g., [2], Ch. 5, § 5; [3], Ch. 8, § 3): A
continuous function k : (−2a, 2a)→ C is exponentially convex if and only if there exists
a non-negative finite Borel measure µ on R such that

k(λ) = lµ(λ) =

∫
R
exλ dµ(x), λ ∈ (−2a, 2a).

The measure µ in the latter representation is unique. It follows from Theorem 5.2 that
in fact µ ∈ Ma(R) and therefore k : (−2a, 2a) → C is an analytic in a neighborhood of
zero in R.

From Bernstein’s theorem, Theorem 6.6 and Remark 6.2 (for P (x, λ) = exλ) we get
the following result.

Theorem 6.7. A functional τ = (τn)∞n=0 ∈ C∞ is an analytic moment functional on
(A, ∗) if and only if the function

k(λ) :=

∞∑
n=0

λn

n!
τn

is well defined and exponentially convex in some neighborhood of zero in R.
Vice versa, an analytic in a neighborhood U of zero in R function k : U → C is

exponentially convex if and only if the functional

τ = (τn)∞n=0 = (k(n)(0))∞n=0, τn := k(n)(0) =
dn

dλn
k(λ)

∣∣∣
λ=0

,

is an analytic moment functional on (A, ∗).

Corollary 6.8. An analytic in a neighborhood U of zero in R function k : U → C is
exponentially convex if and only if

∞∑
i,j=0

k(i+j)(0)fif̄j ≥ 0, f = (fn)∞n=0 ∈ lfin.

6.3. Analytic moment functionals connected with the Newton polynomials.
Let P (x, λ) be a generating function of the Newton polynomials (x)n =

∏n−1
i=0 (x − i),

that is

P (x, λ) := (1 + λ)x = ex log(1+λ) =

∞∑
n=0

λn

n!
(x)n, |λ| < 1,

and A = lfin be an algebra with the product ? (3.8).
Now an analogue of Theorem 6.6 holds.

Theorem 6.9. A functional τ ∈ C∞ is an analytic moment functional on (A, ?), i.e.,
there exists a measure µ ∈Ma(R) such that

τ(δn) = τn =

∫
R

(x)n dµ(x), n ∈ N0, (6.5)

if and only if τ is ?-positive on A (i.e., (4.11) holds) and τ ∈ l2−.
For an analytic moment functional τ ∈ C∞ on (A, ?) the measure µ in (6.5) is unique.

Proof. The necessity immediately follows from Theorem 6.3.
Let us prove the converse. Suppose that τ is ?-positive on A and τ ∈ l2−. Then due

to Theorem 6.3 it is sufficient to show that there exists C > 0 such that

τ(δn ? δn) =

∫
R
(x)2

n dµ(x) ≤ (n!)2Cn+1, n ∈ N0.
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Since τ = (τn)∞n=0 ∈ l2−, there exists C̃ > 0 such that |τn| ≤ n!C̃n+1 for all n ∈ N0.
Hence, taking into account that (see (3.8))

(δn ? δn)m =


(n!)2

((m− n)!)2(2n−m)!
, if m ∈ {n, . . . , 2n},

0, otherwise,

we get

τ(δn ? δn) =

2n∑
m=n

τm
(n!)2

((m− n)!)2(2n−m)!
≤

2n∑
m=n

C̃m+1 m!(n!)2

((m− n)!)2(2n−m)!
. (6.6)

Let us estimate the expression

m!(n!)2

((m− n)!)2(2n−m)!
.

Using the bound for the binomial coefficients

m!

n!(m− n)!
≤ 2m, m ∈ N0,

we get

m!(n!)2

((m− n)!)2(2n−m)!
=

(m!)2(n!)4

((m− n)!)2(n!)2m!(2n−m)!

≤ 4m
(n!)4

m!(2n−m)!
≤ 4m(n!)2

(6.7)

for all m ∈ {n, . . . , 2n}.
From (6.6) and (6.7) we conclude that

τ(δn ? δn) =

∫
R

(x)2
n dµ(x) ≤ C̃2n+142n+1(n!)2 ≤ (n!)2Cn+1,

where C := max{8C̃2, 4C̃}. So, the sufficiency is proved.
The last assertion of the theorem directly follows from Theorem 6.4. �

Let us establish a relation between the analytic moment functional on (A, ?) and a
one-dimensional analog of the Bogoliubov generating functionals. We say that a function
B : U → C (U is a neighborhood of zero in C) is a Bogoliubov functional in U if B admits
the following integral representation

B(λ) =

∫
R

(1 + λ)xdµ(x) =

∫
R
ex log(1+λ)dµ(x), λ ∈ U , (6.8)

with some non-negative finite Borel measure µ on R. It follows from Theorem 5.2 that
the measure µ in representation (6.8) is actually analytical, i.e., µ ∈Ma(R).

It should be noticed that the classical Bogoliubov or generating functionals were intro-
duced by N. N. Bogoliubov in [14] to define correlation functions for statistical mechanics
systems (this functional is defined by analogue with (6.8) but for measures on the space
of finite configuration). We refer to, e.g., [21, 16] for details, historical remarks and
references therein.

An analogue of Theorem 6.7 holds.

Theorem 6.10. A functional τ = (τn)∞n=0 ∈ C∞ is an analytic moment functional on
(A, ?) if and only if the function

B(λ) :=

∞∑
n=0

λn

n!
τn

is the Bogoliubov functional in some neighborhood of zero in C.
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Vice versa, an analytic in a neighborhood U of zero in C function B : U → C is the
Bogoliubov functional in U if and only if the functional

τ = (τn)∞n=0 = (B(n)(0))∞n=0, τn := B(n)(0) =
dn

dλn
B(λ)

∣∣∣
λ=0

,

is an analytic moment functional on (A, ?).

Corollary 6.11. An analytic in a neighborhood U of zero in C function B : U → C is
the Bogoliubov functional in U if and only if

∞∑
i,j,k=0

(i+ j)!(j + k)!

i!k!j!
B(i+j+k)(0)fi+j f̄j+k ≥ 0, f = (fn)∞n=0 ∈ lfin.

7. Infinite dimensional case

The theory outlined in previous sections has an essential development to the case of
functions of infinite many variables, see e.g. [9, 10, 4, 5, 11] for details. Without going
into details we present here a few examples of the results and open problems.

7.1. Infinite dimensional power moment problem. Let F(H) be a symmetric Fock
space over a real separable Hilbert space H, that is

F(H) := C⊕
∞⊕
n=1

H�nC ,

where � stands for the symmetric tensor product (⊗ is the ordinary tensor product),
the subindex C denotes the complexification of a real space. Thus, F(H) is a complex
Hilbert space of sequences f = (fn)∞n=0 such that fn ∈ H�nC (H�0

C := C) and

‖f‖2F(H) = |f0|2 +

∞∑
n=1

‖fn‖2H�nC
<∞.

For simplicity, in the sequel we will suppose that H = L2(R) := L2(R, dt) and one will
always identify, in the usual way, the space L2

C(R)�n with the space L2
C, sym(Rn) of all

symmetric functions from L2
C(Rn).

Let us construct a convenient for us rigging of the Fock space F(L2(R)). To this end,
we start with the classical rigging

D′ ⊃ L2(R) ⊃ D, (7.1)

where D = D(R) is the Schwartz space of infinite differentiable functions on R with
compact supports, D′ = D′(R) is the Schwartz space of distributions dual of D with
respect to the zero space L2(R). We denote by 〈· , ·〉 the dual pairing between elements
of D′ and D. We preserve the notation 〈· , ·〉 for the dual pairings in tensor powers and
complexifications of chain (7.1).

Using (7.1) we construct the rigging

F ′fin(D) ⊃ F(L2(R)) ⊃ Ffin(D),

where Ffin(D) is a space of all finite sequences f = (fn)∞n=0, fn ∈ D�nC (i.e., fn = 0 for
all n ≥ some N ∈ N0), F ′fin(D) = ×∞n=0(D′C)�n is the dual of Ffin(D) with respect to
F(L2(R)) (it consists of all sequences of the form (ξn)∞n=0, ξn ∈ (D′C)�n). Note that in
our case the role of the spaces F ′fin(D), F(L2(R)) and Ffin(D) are the same as the role
of the spaces C∞, l2 and lfin in the one-dimensional case.

Denote by P(D′) the space of all continuous polynomials on D′,

P(D′) :=
{
F : D′ → C

∣∣∣∃(fn)∞n=0 ∈ Ffin(D) : F (x) =

∞∑
n=0

〈x⊗n, fn〉, x ∈ D′
}
.
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By analogy with the one-dimensional case (see (3.1)), using the bijection

I : Ffin(D)→ P(D′), f = (fn)∞n=0 7→ (If)(x) :=

∞∑
n=0

〈x⊗n, fn〉,

we introduce a product ∗ on Ffin(D) by setting

f ∗ g := I−1(If · Ig), f, g ∈ Ffin(D). (7.2)

It is easy to check that (cf. (3.6))

(f ∗ g)n =
∑
i+j=n

fi � gj =

n∑
k=0

fk � gn−k, f, g ∈ Ffin(D).

So, Ffin(D) becomes a commutative algebra A(D) with the product ∗, unity δ0 =
{1, 0, 0, . . .} and the natural involution f 7→ f̄ inducted by usual complex conjugation.

Let us pass to the infinite dimensional power moment problem.

Definition 7.1. We say that τ = (τn)∞n=0 ∈ F ′fin(D) = ×∞n=0(D′C)�n is a moment
functional on (A(D), ∗) if there exists a finite Borel measure µ on D′ such that

τn =

∫
D′
x⊗ndµ(x), i.e., 〈τn, ·〉 =

∫
D′
〈x⊗n, ·〉 dµ(x), n ∈ N0. (7.3)

Before stating the result note that the Schwartz space D can be interpreted as a
projective limit of some Sobolev spaces Dσ, σ ∈ Σ, i.e., D = pr limσ∈ΣDσ, where Σ
denotes some set of indexes, see e.g. [9, 12] for more details.

The following statement follows from [9] (see also [4]).

Theorem 7.2. Let τ = (τn)∞n=0 ∈ F ′fin(D) and the following two conditions are fulfilled:

(1) τ is ∗-positive (more exactly, non-negative) on A(D) = Ffin(D), that is

τ(f ∗ f̄) =

∞∑
j,k=0

〈τj+k, fj � f̄k〉 ≥ 0, f ∈ A(D). (7.4)

(2) there exists an index σ = σ(τ) ∈ Σ such that τn ∈ D�n−σ,C = (D�nσ,C)′ for all n ∈ N
and the class

C{sn}, sn =
√
‖τ2n‖D�2n

−σ,C
, (7.5)

is quasianalytic (for example, sn = n!).

Then τ is a moment functional on (A(D), ∗) and the measure µ in representation (7.3)
is uniquely defined.

Conversely, for every moment functional τ (A(D), ∗) conditions (7.4) is fulfilled.

The proof of this result is analogous to that of Theorem 4.2. Namely, just as in the
case of the one-dimensional moment problem, Theorem 7.2 is a result of the application
of the projection spectral theorem to the family (J(ϕ))ϕ∈D of “creation” operators

J(ϕ) : A(D) = Ffin(D)→ A(D), J(ϕ)f := (0, ϕ, 0, 0, . . .) ∗ f, (7.6)

acting in a Hilbert space Hτ associated with the quasiscalar product

(f, g)Hτ = τ(f ∗ ḡ), f, g ∈ Ffin(D). (7.7)

Note also that, unlike the one-dimensional case, only conditions (7.4) it is not sufficient
for existence of representation (7.3). This is connected with impossibility, in general, to
extend a family of commuting Hermitian operators to some family of strongly commuting
selfadjoint operators. Condition (7.5) implies that the corresponding Hermitian operators
are essential selfadjoint and strongly commuting (therefore, the measure µ in Theorem 7.2
is unique). It is possible to give a condition weaker than (7.5) which makes it possible
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to extend these Hermitian operators to selfadjoint commuting operators, in this case the
measure µ is not unique. For the corresponding result, see [9], Ch. 5, § 2.

Remark 7.3. Using results from [18], it can be shown that the infinite dimensional analog
of Theorem 6.6 holds. Namely, a functional τ ∈ F ′fin(D) admits representation (7.3) with
the analytic measure µ ∈ Ma(D′) (i.e.,

∫
D′ exp〈x, λ〉 dµ(x) < ∞ for all λ from some

neighborhood of 0 ∈ D′C) if and only if τ is ∗-positive on A(D′) (i.e., (7.4) holds) and τ
belongs to the space F−. Here F− is defined (similar to l2−) by the formula

F− := ind lim
σ∈Σ,q∈N

F(−σ,−q) ⊂ F ′fin(D),

where F(−σ,−q) is the so-called Kondratiev-type Fock space,

F(−σ,−q) :=
{
f = (fn)∞n=0 ∈ F ′fin(D)

∣∣∣ ‖f‖2F(−σ,−q) =

∞∑
n=0

‖fn‖2D�n−σ,C(n!)−22−qn <∞
}
.

7.2. Moment problem associated with correlation functions. Let F (L2(R)) de-
notes a Fock space

F (L2(R)) := C⊕
∞⊕
n=1

L2
C(R)�nn!

with a weight (n!)∞n=0. It is convenient for us to interpret this space as the space of
functions on the space of finite configurations on R. Namely, denote by Γ(n) the space
of n-point configuration, i.e.,

Γ(n) := {η ⊂ R | |η| = n},

where | · | means cardinality of a set. As a set, Γ(n) coincides with the symmetrization of

R̂n := {(t1, . . . , tn) ∈ Rn | tn 6= tj if k 6= j}.

Hence, Γ(n) inherits the topology of Rn. Denote by B(Γ(n)) the corresponding Borel
σ-algebra on Γ(n) and introduce a measure m(n) on B(Γ(n)) as the image of product m⊗n

of Lebesque measures dm(t) = dt on B(R). It is clear that

L2(Γ(n),m(n)) = L2
C, sym(Rn,m⊗n).

The space Γ0 of (all) finite configuration is defined as the topological disjoint union

Γ0 =

∞⊔
n=0

Γ(n).

Denote by ν the Lebesque-Poisson measure on the Borel σ-algebra B(Γ0),

ν :=

∞∑
n=0

1

n!
m(n), m(0)(∅) := 1,

and by L2(Γ0, ν) the corresponding L2-space. Clearly, the Fock space F (L2(R)) can be
identified with the space L2(Γ0, ν) via

F (L2(R)) 3 (fn)∞n=0 ∼
∞∑
n=0

Fn(·) ∈ L2(Γ0, ν),

where F0(∅) := f0 and

Fn(η) :=

{
n!fn(t1, . . . , tn), if η = {t1, . . . , tn} ∈ Γ(n)

0, otherwise
,
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for all n ∈ N. So,

F (L2(R)) ∼= L2(Γ0, ν) =

∞⊕
n=0

L2(Γ(n),m(n))
1

n!
.

In what follows we won’t distinguish between a vector (fn)∞n=0 from the Fock space
F (L2(R)) (and from Ffin(D)) and the corresponding function f(η), η ∈ Γ0, i.e.,

F (L2(R)) 3 (fn)∞n=0
∼= f(η), n!fn = f � Γ(n).

We will need also the space Γ of infinite configurations on R, i.e., the space of all
locally finite subsets in R:

Γ := {γ ⊂ R | |γ ∩ Λ| <∞ for all compact Λ ⊂ R}.

We consider the σ-algebra B(Γ) as the smallest σ-algebra for which all the mappings
NΛ : Γ → N0, NΛ(γ) := |γ ∩ Λ|, are measurable for all bounded Borel set Λ ⊂ R. Note
that each element γ ∈ Γ can be identified with a generalized function:

Γ 3 γ 7→
∑
t∈γ

δt ∈ D′,

where δt denotes the delta function (Dirac measure) at t. In this way, the space Γ is
embedded in the Schwartz space of distributions D′.

Let us pass to a definition of the so-called Kondratiev–Kuna convolution ?. This
convolution acts in Ffin(D) and we define it by analogy with (7.2) but using instead of
the monomials 〈x⊗n, fn〉 an infinite dimensional analog of the Newton polynomials.

Recall that infinite dimensional Newton polynomials χn(x) ∈ (D′)�n are defined as
coefficients of the following expansion (cf. (3.7))

e〈x,log(1+λ)〉 =

∞∑
n=0

1

n!
〈χn(x), λ⊗n〉, x ∈ D′, λ ∈ DC.

It is well known that (see e.g. [13])

〈χn(x), λ⊗n〉 =

n−1∑
m=0

(−1)n−m−1 (n− 1)!

m!
〈λn−m, x〉〈χm(x), λ⊗m〉, n ∈ N0,

and the mapping

Iχ : Ffin(D)→ P(D′), f = (fn)∞n=0 7→ (Iχf)(x) :=

∞∑
n=0

〈χn(x), fn〉 (7.8)

is bijection. Therefore, we can introduce the convolution ? on Ffin(D) by setting

f ? g := I−1
χ (Iχf · Iχg), f, g ∈ Ffin(D).

It follows from e.g. [15, 11] that

(f ? g)(η) =
∑

η1tη2tη3=η

f(η1 ∪ η2)g(η2 ∪ η3), η ∈ Γ0, f, g ∈ Ffin(D),

where the summation is taken over all partitions of η in three parts (parts may be empty).
Note that (3.8) is a one-dimensional analog of the latter formula.

So, the space Ffin(D) endowed with the product ? becomes a commutative algebra
A(D) with unity δ0 = {1, 0, 0, . . .} and the natural involution f 7→ f̄ inducted by usual
complex conjugation.

Let us pass to the corresponding infinite dimensional moment problem.
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Definition 7.4. We say that τ = (τn)∞n=0 ∈ F ′fin(D) = ×∞n=0(D′C)�n is a moment
functional on (A(D), ?) if there exists a finite Borel measure µ on D′ such that

τn =

∫
D′
χn(x) dµ(x), i.e., 〈τn, ·〉 =

∫
D′
〈χn(x), ·〉 dµ(x), n ∈ N0. (7.9)

From [11] (see also [10, 5]) follows the following result.

Theorem 7.5. Let τ = (τn)∞n=0 ∈ F ′fin(D) and the following three conditions are fulfilled:

(1) there exists a σ-finite measure ρ on B(Γ0) such that

τ(f) =

∫
Γ0

f(η) dρ(η), f ∈ A(D) = Ffin(D). (7.10)

(2) τ is ?-positive on A(D), that is

τ(f ? f̄) =

∫
Γ0

(f ? f̄)(η) dρ(η) ≥ 0, f ∈ A(D).

(3) for every compact Λ ⊂ R there exists a constant CΛ > 0 such that

ρ(Γ
(n)
Λ ) ≤ CnΛ, n ∈ N, (7.11)

where Γ
(n)
Λ := {η ⊂ Λ | |η| = n}.

Then τ is a moment functional on (A(D), ?) and the measure µ in representation (7.9)
is uniquely defined.

Conversely, every moment functional τ ∈ F ′fin(D) is ?-positive on A(D).

A way of proving this result is similar to that of Theorem 7.2 but in this case instead
of (7.6) and (7.7) it is necessary to use the operators

J(ϕ) : A(D) = Ffin(D)→ A(D), J(ϕ)f := (0, ϕ, 0, 0, . . .) ? f,

and the quasiscalar product

(f, g)Hτ = τ(f ? ḡ), f, g ∈ Ffin(D).

Remark 7.6. It is possible to give a condition on ρ weaker than (7.11) which guarantee
the existence of the measure µ on D′ such that (7.9) holds, see [11] for details.

Remark 7.7. Let us explain the connection of the moment problem on (A(D), ?) with
some essential objects of statistical mechanics.

At first we recall the definitions of these objects, see e.g. [15, 16] for a detailed
explanation. The so-called K-transform maps the functions defined on Γ0 into functions
defined on Γ by the formula

K : Ffin(D)→ P(Γ), f 7→ (Kf)(γ) :=
∑
ηbγ

f(η),

where the summation is taken over all finite subconfigurations of γ (for short η b γ) and
P(Γ) denotes the space of all continuous polynomials on Γ ⊂ D′. Note here that the
K-transform coincides with mapping Iχ from (7.8). More exactly,

(Iχf)(γ) = (Kf)(γ), f ∈ Ffin(D), γ ∈ Γ. (7.12)

For a probability measure µ on Γ, the so-called correlation measure ρµ corresponding
to µ is a σ-finite measure on Γ0 defined by∫

Γ0

f(η) dρµ(η) =

∫
Γ

(Kf)(γ) dµ(γ), f ∈ Ffin(D).
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If the measure ρµ is absolutely continuous with respect to the Lebesgue–Poisson measure

ν then the corresponding Radon–Nikodym derivative kµ(η) =
dρµ
dν (η), η ∈ Γ0, is called a

correlation functional of a measure µ. Note that in this case the functions

kµ,n(t1, . . . , tn) :=

{
kµ({t1, . . . , tn}), if (t1, . . . , tn) ∈ R̂n
0, otherwise

,

are well-known correlation functions of statistical physics, see e.g. [26, 27].
In several applications, a σ-finite measure ρ on Γ0 appears as a given object and the

problem is to show that this ρ can be seen as a correlation measure for a probability
measure on Γ. Due to (7.12) it is easy to see that this problem is a particular case of
the moment problem on (A(D), ?). Namely, a given measure ρ on Γ0 is a correlation
measure for a probability measure µ on Γ if and only if the corresponding functional τ
defined by (7.10) admits representation (7.9) with this µ (i.e., τ is a moment functional
on the algebra (A, ?)).

It should be noticed that Theorem 7.5 gives the sufficient conditions that ρ is a cor-
relation measure. More exactly, let ρ be a given measure on Γ0. Suppose that the
corresponding functional τ (defined by (7.10)) satisfies all conditions of Theorem 7.5
and, moreover,

∞∑
n=0

2nρ(Γ
(n)
Λ ) <∞

for every compact |Λ| ⊂ R. Then Γ is the set of full measure µ and due to equality (7.12)
and representation (7.9) we have

τ(f) =

∫
Γ0

f(η) dρ(η) =

∫
Γ

(Kf)(γ) dµ(γ), f ∈ Ffin(D).

So, ρ is the correlation measure of µ. If, moreover, ρ is absolutely continuous with respect
to the Lebesgue–Poisson measure ν then the corresponding correlation functional kµ of

µ coincides with τ , i.e., τ = kµ = dρ
dν .

Remark 7.8. We formulate some problems, the investigation of which are essential for
the above described theory:

(1) To give sufficient conditions on a functional τ = (τn)∞n=0 ∈ F ′fin(D) which would
guarantee the existence of representation (7.9), i.e., to give conditions for validity
of Theorem 7.5 different from (7.10) or (7.11).

(2) To prove an infinite dimensional analog of Theorem 6.9 and as a consequence to
get an analog of Theorem 6.10 for the classical Bogoliubov functional.

(3) To investigate the situation when a measure ρ on Γ0 is a correlation measure
for a probability measure on Γ. More exactly, to give sufficient conditions on
ρ which would guarantee the existence of representation (7.9) for the functional
τ ∈ F ′fin(D) determined by ρ and, moreover, these conditions should assure that
the measure µ from (7.9) is concentrated on Γ.
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