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Abstract. In this paper we review some recent results connected with stochastic

integrals of Hitsuda–Skorohod type on the extended Fock space and its riggings.

1. Introduction

The problem of extending for Itô stochastic integral is a subject of interest of many

researchers. First who proposed such extensions were M. Hitsuda [1], Yu.L. Daletsky [2,

3], A.V. Skorohod and Yu.M. Kabanov [4, 5, 6]. The definitions of the extended stochastic

integral proposed by M. Hitsuda and A.V. Skorohod were equivalent and given in terms

of the Fock space structure by using the Chaos Representation Property (CRP) of the

Wiener process (this property was derived by Itô in [7]). Yu.L. Daletsky used another

approach: his extension based on the integration by parts formula. In [6] Kabanov

introduce the notion of the Hitsuda–Skorohod type stochastic integral in the case of

integration with respect to a compensated Poisson process (this process also possesses

the CRP, see [8]). Afterwards it became clear that in the construction of the Hitsuda–

Skorohod type integral, the Gaussian and Poisson character of processes never appears.

One uses only the CRP of Wiener or Poisson processes. Thus in [9] (see also [10, 11]) it

was shown that the Hitsuda–Skorohoda integral as an operator on the Fock space is an

extension of the Itô integral not only in the Wiener and Poisson cases but in the case of

any normal martingale with CRP (the reader can find examples and properties of normal

martingales with CRP in, e.g., [12, 13, 14, 15, 9, 16]).

In the present paper we will explore the Hitsuda–Skorohod type integral connected with

some normal martingales without CRP. But in order to explain our motivation and make

our considerations clear, first we recall the Gaussian case (see, e.g., [17, 18, 19] for more

detailed presentation).

Let µG be the Gaussian measure on the Schwartz distributions space D′ = D′(R+)

and L2(D′, µG) be the corresponding L2-space. By definition the space D′ = D′(R+) is

the dual one of the Schwartz space D = D(R+) of infinite differentiable functions on R+

with compact supports. Denote by 〈x, ϕ〉 = x(ϕ) the action of x ∈ D′ applied to ϕ ∈ D
and construct a Wiener process {Wt}t∈R+

by the formula

(1.1) Wt(x) := 〈x, 1I[0,t)〉 := lim
n→∞

〈x, ϕn〉 (limit in L2(D′, µG)),
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where {ϕn}∞n=0 ⊂ D is a sequence converging in L2(R+) = L2(R+, dt) to the indicator

function 1I[0,t) of the set [0, t). Note that passing to a limit in (1.1) is possible due to

properties of the Gaussian measure µG, see Section 2 for details.

The CRP of {Wt}t∈R+
implies that for any function F ∈ L2(D′, µG) there exists a

uniquely defined vector f = (fn)∞n=0 from the symmetric Fock space

F := C⊕
∞⊕
n=1

L2
C(R+)⊗̂nn!

such that

F =

∞∑
n=0

In(fn), In(fn) := n!

∫
∆n

fn(t1, . . . , tn) dWt1 . . . dWtn ,(1.2)

where ∆n = {(t1, . . . , tn) ∈ Rn+| t1 < · · · < tn} and In(fn) is a multiple stochastic

integral. More exactly, the mapping (the so-called Wiener–Itô–Segal isomorphism)

(1.3) IG : F → L2(D′, µG), f = (fn)∞n=0 7→ IGf :=

∞∑
n=0

In(fn),

is a well-defined unitary operator. Note that Wt(x) =
(
IG(0, 1I[0,t), 0, 0, . . .)

)
(x).

It should be noticed that the isomorphism IG has a simple and naturale interpretation

from the spectral point of view. Namely, it is possible to understand the mapping IG as

the Fourier transform of a certain family (the so-called free field) of commuting selfadjoint

operators that act in the Fock space F and have a Jacobi structure. This result was

obtained by V.D. Koshmanenko and Yu.S. Samoilenko in [20]; see also [21]. Taking into

account this fact, we can rewrite representation (1.3) in the form

(1.4) (IGf)(·) =

∞∑
n=0

〈Pn(·), fn〉 ∈ L2(D′, µG),

where each 〈Pn(·), fn〉 is a polynomial of the first kind connected with the free field or,

in other terminology, 〈Pn(·), fn〉 is a generalized Hermite polynomial on D′, see, e.g.,

[21, 17, 22].

Now we are ready to pass to the definition of the Hitsuda–Skorohod integral. Let

F ∈ L2(R+;L2(D′, µG)) ∼= L2(D′, µG) ⊗ L2(R+). Then, for almost all t ∈ R+, we can

apply Wiener–Itô–Segal expansion (1.2) to the function F (t) = F (·, t) ∈ L2(D′, µG) and

write

(1.5) F (t) =

∞∑
n=0

n!

∫
∆n

fn(t1, . . . , tn; t) dWt1 . . . dWtn .

If F is integrable by Itô with respect to W then using term by term integration we obtain∫
R+

F (t) dWt =

∞∑
n=0

(n+ 1)!

∫
∆n+1

f̂n(t1, . . . , tn, t) dWt1 . . . dWtndWt

=

∞∑
n=0

In+1(f̂n) ∈ L2(D′, µG),
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where f̂n is the symmetrization of fn(t1, . . . , tn; t) with respect to n+ 1 variables. This

representation of the Itô integral suggests us to define its extension by∫
R+

F (t) d̂Wt :=

∞∑
n=0

In+1(f̂n)(1.6)

for all F ∈ L2(R+;L2(D′, µG)) such that

∞∑
n=0

In+1(f̂n) ∈ L2(D′, µG) or, equivalently, (0, f̂0, f̂1, . . . ) ∈ F .

Note that exactly in such a way the extended stochastic integral was defined by Hitsuda

and Skorohod.

Clearly, one can identify
∫
R+
F (t) d̂Wt with the vector (0, f̂0, f̂1, . . . ) from the Fock

space F and consider this integral as an unbounded operator

Iext : L2(R+;F)→ F , f(·) = (fn(·))∞n=0 7→ Iext(f) := (0, f̂0, f̂1, . . . ),(1.7)

with the domain

Dom (Iext) :=
{
f(·) = (fn(·))∞n=0 ∈ L2(R+;F)

∣∣ (0, f̂0, f̂1, . . . ) ∈ F
}
.

Further, one can interpret the Malliavin’s gradient (the stochastic derivative, see, e.g.,

[17, 19]) as an operator acting from F to L2(R+;F); to formulate “on this language”

some properties of the stochastic integral and the stochastic derivative (for example, the

stochastic integral and the stochastic derivative are adjoint one to another operators)

etc.

If we apply a Wiener–Itô–Segal type isomorphism to the integral Iext we obtain a

naturale extension of the Itô integral not only in the Wiener case but in the case of

any normal martingale with CRP. Moreover, the properties of the extended stochastic

integral and the stochastic derivative that can be formulated “on the language of Fock

spaces”, i.e., with using of the coefficients from (1.2)–(1.6) only, coincide (under the

corresponding Wiener–Itô–Segal type isomorphisms) for all these martingales. Thus this

point of view enables us to treat the stochastic analysis of all these processes in the one

framework (as the analysis on the Fock space F).

In view of this it is natural to ask: “is it possible to construct an analog of the Hitsuda–

Skorohod integral for processes without the CRP?”. Recently it became clear (see [23, 24,

25]) that this is possible at least for the cases of stochastic integration with respect to

Gamma, Pascal and Meixner processes (the processes of Meixner type). In spite of the

fact that these processes are normal martingales without the CRP, they are connected

with Jacobi fields (generalizations of the free field), which act in the so-called extended

Fock space

(1.8) Fext := C⊕
∞⊕
n=1

Fn,extn!.

Here each Fn,ext is the space L2
sym(Rn+, ρn) of symmetric square integrable with respect

to some measure ρn functions (see, e.g., [26, 27]). It should be noticed that the theory
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of Jacobi fields in the Fock space was created by Yu.M. Berezansky in [28] and carried

out by him and his collaborators, see survey [29] for a more complete bibliography.

So, it follows from results of [30] (see also [31, 32, 33, 34, 35, 36, 37, 38]) that for each

process of Meixner type there exists a Jacobi field in the space Fext that is a certain

family A = {A(ϕ)}ϕ∈D of commuting selfadjoint operators. These operators have a

Jacobi structure and are connected with the orthogonal decomposition in (1.8). Applying

the projection spectral theorem to this field we can construct a Fourier transform I with

respect to the generalized joint eigenvectors of the family A. This transform has a form

similar to (1.4), but the operator I is a unitary between the spaces Fext and L2(D′, µ),

(1.9) I : Fext → L2(D′, µ), f = (fn)∞n=0 7→ (If)(·) :=

∞∑
n=0

〈Pn(·), fn〉,

where µ is a measure of Meixner type and {Pn(x)}∞n=0 = P (x) is a generalized joint

eigenvector of the operator A(ϕ) corresponding to the eigenvalue 〈P1(x), ϕ〉 ≡ 〈x, ϕ〉.
The sequence {Pn(x)}∞n=0 is called the sequence of polynomials of the first kind connected

with the family A.

In this case, the process of Meixner type {Mt}t∈R+
is defined by the formula

Mt(x) := 〈x, 1I[0,t)〉 :=
(
I(0, 1I[0,t), 0, 0, . . .)

)
(x).

Note also that 〈Pn(·), fn〉, n ∈ Z+, as well as the generalized Hermite polynomials

are Schefer polynomials, that is orthogonal polynomials with a generating function of

exponential type, see [36, 37, 30] for more details.

In the present paper, using Fourier transform (1.9), we introduce and study extended

stochastic integrals connected with processes of Meixner type. We define these integrals

by analogy with (1.7), but using instead of the Fock space F the extended Fock space

Fext. Note that related results to this topic have been established in [39, 40, 41].

The paper is organized in the following manner. In the forthcoming section we give

a brief introduction in the Gaussian white noise analysis and recall the construction of

stochastic integrals on a Fock space and its riggings in the framework of this analysis, this

section serves as a model example. In Section 3 we give a necessary information about the

generalized Meixner measure and the extended Fock space. Section 4 is devoted to the

construction and study of the Itô stochastic integral on the extended Fock space. Finally,

in Section 5 we give definitions and establish main properties of extended stochastic

integrals on the extended Fock space and its riggings.

2. Stochastic integrals in the Gaussian white noise analysis

In this section we recall some basic concepts of the Gaussian white noise analysis (see,

e.g., [17, 21, 18] for more details) and describe a general approach to construction of the

extended stochastic integral.

2.1. Elements of the Gaussian white noise analysis. Denote by D := C∞0 (R+) the

set of all real-valued infinite differentiable functions on R+ with compact supports. This
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set can be naturally endowed with a projective limit topology

D = pr lim
τ∈T

Dτ ,

where T denotes the set of all pairs τ = (τ1, τ2) such that τ1 ∈ N and τ2 is an infinite

differentiable function on R+ such that τ2(t) ≥ 1 for all t ∈ R+; Dτ is the closure of

C∞0 (R+) in the norm | · |Dτ generated by the scalar product

(ϕ,ψ)Dτ =

∫
R+

( τ1∑
k=0

ϕ(k)(t)ψ(k)(t)
)
τ2(t) dt,

i.e., Dτ denotes the Sobolev space of order τ1 weighted by the function τ2. Henceforth

we will regard D as the corresponding topological space.

As is known (see, e.g., [21, 42]), Dτ are densely and continuously embedded into the

space L2(R+) of square integrable with respect to the Lebesgue measure real-valued

functions on R+. Therefore one can consider the chain (the rigging of L2(R+))

(2.1) D′ ⊃ D−τ ⊃ L2(R+) ⊃ Dτ ⊃ D,

where D−τ , D′ = ind limτ∈T D−τ are the dual of Dτ , D with respect to L2(R+) spaces

respectively. We denote by 〈· , ·〉 the dual pairing between elements of D′ and D (and

also D−τ and Dτ ) inducted by the scalar product (· , ·)L2(R+) in L2(R+), i.e., we set

〈f, ϕ〉 := (f, ϕ)L2(R+), f ∈ L2(R+), ϕ ∈ D,

and then extend this definition by continuity. We preserve the notation 〈· , ·〉 for the dual

pairings in tensor powers and complexifications of chain (2.1).

We denote by C(D′) the generated by cylinder sets σ-algebra on D′. Let µG be the

Gaussian measure on C(D′), i.e., a probability measure with the Fourier transform

(2.2)

∫
D′
ei〈x,ϕ〉µG(dx) = e

− 1
2 |ϕ|

2
L2(R+) , ϕ ∈ D.

Denote by L2(D′, µG) the space of square integrable with respect to µG complex-valued

functions on D′. It follows from (2.2) that∫
D′
〈x, ϕ〉2µG(dx) = |ϕ|2L2(R+), ϕ ∈ D.

Therefore, extending the mapping

L2(R+) ⊃ D 3 ϕ 7→ 〈· , ϕ〉 ∈ L2(D′, µG)

by continuity, we obtain a random variable 〈· , f〉 ∈ L2(D′, µG) for each f ∈ L2(R+).

Thus we can define a random process {Wt}t∈R+
as

Wt(·) := 〈· , 1I[0,t]〉

(here and below 1IA denotes the indicator of a set A). It is easy to see that finite-

dimensional distributions of a random process W· coincide with those of a Wiener one.
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Namely, for all N ∈ N, u1, . . . , uN ∈ R and t1, . . . , tN ∈ R+∫
D′

exp
(
i

N∑
k=1

ukWtk(x)
)
µG(dx) =

∫
D′

exp
(
i〈x,

N∑
k=1

uk1I[0,tk]〉
)
µG(dx)

= exp
(
− 1

2

∣∣ N∑
k=1

uk1I[0,tk]

∣∣2
L2(R+)

)

= exp
(
− 1

2

N∑
k,j=1

ukuj min{tk, tj}
)
.

Hence {Wt}t∈R+
can be interpreted as a Wiener process.

An important technical tool in the Gaussian white noise analysis is the Wiener–Itô–

Segal isomorphism

IG : F → L2(D′, µG)

between the symmetric Fock space F := F(L2(R+)) over L2(R+) and the complex

Hilbert space L2(D′, µG). Let us recall that the symmetric Fock space F is defined as

F =

∞⊕
n=0

L2
C(R+)⊗̂nn!, L2

C(R+)⊗̂0 := C,

i.e., F is a complex Hilbert space of sequences f = (fn)∞n=0, fn ∈ L2
C(R+)⊗̂n, such that

‖f‖2F =

∞∑
n=0

|fn|2L2
C(R+)⊗̂n

n! <∞.

Here and below ⊗̂ denotes a symmetric tensor product (⊗ denotes an ordinary tensor

product), the subindex C denotes the complexification of a real space.

In what follows, we always identify in the natural way the space L2
C(R+)⊗̂n with the

space L2
C,sym(Rn+) of all complex-valued symmetric functions from L2

C(Rn+). Namely, we

identify each element g1⊗̂ · · · ⊗̂gn ∈ L2
C(R+)⊗̂n with the symmetric function

1

n!

∑
σ

g1(tσ(1)) . . . gn(tσ(n)) ∈ L2
C,sym(Rn+)

(σ running over all permutations of {1, . . . , n}) and extend this procedure to all elements

of L2
C(R+)⊗̂n. This is possible because the mapping

g1⊗̂ · · · ⊗̂gn 7→
1

n!

∑
σ

g1(tσ(1)) . . . gn(tσ(n))

after being extended by linearity and continuity to the whole space L2
C(R+)⊗̂n is a unitary

operator acting from L2
C(R+)⊗̂n to L2

C,sym(Rn+). Naturally

|fn|2L2
C(R+)⊗̂n

=

∫
Rn+
|fn(t1, . . . , tn)|2 dt1 . . . dtn = n!

∫
∆n

|fn(t1, . . . , tn)|2 dt1 . . . dtn

for all fn ∈ L2
C(R+)⊗̂n ∼= L2

C,sym(Rn+), where ∆n = {(t1, . . . , tn) ∈ Rn+ | t1 < · · · < tn}.
Return to the Wiener–Itô–Segal isomorphism IG. There are several equivalent ways of

construction of IG: using multiple stochastic integrals either the Jacobi fields approach

or the system of infinite-dimensional Hermite polynomials. We do not discuss this in
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details (see, e.g., [20, 17, 21, 19, 22, 29] and references therein), but we note that IG is

completely characterized by the following properties:

(i) IG : F → L2(D′, µG) is a unitary operator (an isometrical isomorphism);

(ii) IG(f0, 0, 0, . . .) = f0 for all f0 ∈ C;

(iii) for each n ∈ N and any disjoint Borel sets α1, . . . , αn of finite Lebesgue measure(
IG(0, . . . , 0︸ ︷︷ ︸

n times

, 1Iα1⊗̂ · · · ⊗̂1Iαn , 0, 0, . . .)
)
(·) = Wα1(·) . . .Wαn(·),

where Wαk(·) := 〈· , 1Iαk〉 for all k ∈ {1, . . . , n}.
It should be noted that properties (i)-(iii) of IG and the fact that the set

C
⊕

span
{

(0, . . . , 0︸ ︷︷ ︸
n times

, 1Iα1
⊗̂ · · · ⊗̂1Iαn , 0, 0, . . .)

∣∣n ∈ N; αi ∈ B(R+); αi ∩ αj = ∅, i 6= j
}

is dense in the Fock space F play a fundamental role in the construction of the Itô integral

and its extensions in terms of the Fock space structure, see below for more details.

Let us construct a convenient for our considerations rigging of F . For τ ∈ T and q ∈ N
we set

F(τ, q) :=

∞⊕
n=0

D⊗̂nτ,C(n!)22qn, F+ := pr lim
τ∈T,q∈N

F(τ, q),

where F(τ, q) denotes a complex Hilbert space of sequences f = (fn)∞n=0 such that

fn ∈ D⊗̂nτ,C (D⊗̂0
τ,C := C) and

‖f‖2F(τ,q) :=

∞∑
n=0

|fn|2
D⊗̂nτ,C

(n!)22qn <∞.

It can be shown that for all q ∈ N and τ ∈ T the dense and continuous embedding

F(τ, q) ↪→ F takes place. Thus one can construct a rigging of the Fock space F

(2.3) F− ⊃ F(−τ,−q) ⊃ F ⊃ F(τ, q) ⊃ F+,

where the spaces

(2.4) F(−τ,−q) =

∞⊕
n=0

D⊗̂n−τ,C2−qn, F− = ind lim
τ∈T,q∈N

F(−τ,−q)

are dual ones of F(τ, q) and F+ with respect to the zero space F respectively. The

(generated by the scalar product in F) pairing between elements of F− and F+ (and also

F(−τ,−q) and F(τ, q)) will be denoted by 〈〈· , ·〉〉F .

Using rigging (2.3) and the isomorphism IG one can construct the rigging

F− ⊃ F ⊃ F+

↓ IG ↓ IG

(D′)− ⊃ L2(D′, µG) ⊃ (D)+,

where the space of test functions (D)+ := IGF+ is the IG-image of the Fock space

F+ with the topology that is inducted by the topology of F+, the space of generalized

functions (D′)− is the dual one of (D)+ with respect to L2(D′, µG). Note that IG can be
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extended to an isomorphism between F− and (D′)−. We keep the same notation IG for

the corresponding extension.

Now we recall definitions of some important operators on Fock spaces.

For each ξ = (ξn)∞n=0 ∈ F− we define the S-transform by the formula

(Sξ)(λ) :=

∞∑
n=0

〈ξn, λ⊗n〉, λ ∈ DC,

where the series converges absolutely in a (depending on ξ) neighborhood of 0 ∈ DC.

Each vector ξ from F− is uniquely determined by its S-transform. More exactly, let

Hol 0(DC) be the set of all (germs of) functions that are holomorphic at 0 ∈ DC. It

follows from [43] that the S-transform is a one-to-one map between F− and Hol 0(DC).

Taking into account that Hol 0(DC) is an algebra with ordinary algebraic operations

we can define a Wick product ξ♦ζ of ξ, ζ ∈ F− by the formula

ξ♦ζ := S−1(Sξ · Sζ) ∈ F−.

It is easy to calculate that for all ξ = (ξn)∞n=0, ζ = (ζn)∞n=0 ∈ F−

(2.5) ξ♦ζ =
( n∑
m=0

ξm⊗̂ζn−m
)∞
n=0

.

Furthermore, if ξ = (ξn)∞n=0 ∈ F− and

h(·) =

∞∑
n=0

hn(· − ξ0)n : C→ C

is a holomorphic at (Sξ)(0) = ξ0 function then one defines the Wick version of h by

h♦(ξ) := S−1h(Sξ) ∈ F−.

As is easy to see,

(2.6) h♦(ξ) =

∞∑
n=0

hn(0, ξ1, ξ2, . . . )
♦n,

where ξ♦n := ξ♦ . . .♦ξ (n times) and ξ♦0 := 1.

Using the isomorphism IG, all the above definitions and results can be reformulated in

terms of the generalized functions space (D′)−. In particular, a Wick product and Wick

versions of holomorphic functions can be defined on (D′)− and used in order to study

so-called stochastic equations with Wick-type nonlinearities (see, e.g., [44, 17]).

For each t ∈ R+ we define the annihilation operator a−(δt) on F+ and the creation

operator a+(δt) on F− (here δt denotes the delta function at t) by setting “on coordinates”

(2.7)
(a−(δt)ϕn)(t1, . . . , tn−1) := nϕn(t1, . . . , tn−1, t), ϕn ∈ D⊗̂nC ;

(a+(δt)ξn) := δt⊗̂ξn, ξn ∈ D′C
⊗̂n
.

It is easy to show (see, e.g., [22]) that the operators a−(δt) and a+(δt) can be extended

to linear continuous operators on F(τ, q) and F(−τ,−q) respectively, and a+(δt) is the

dual operator of a−(δt) in the sense that for all ξ ∈ F(−τ,−q) and ϕ ∈ F(τ, q)

〈〈a+(δt)ξ, ϕ〉〉F = 〈〈ξ, a−(δt)ϕ〉〉F .
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It is obvious that

(2.8) a+(δt)ξ = ξ♦(0, δt, 0, 0, . . .), ξ ∈ F(−τ,−q).

Also we note that

∂(δt) := IGa−(δt)I
−1
G : (D)+ → (D)+

is the Gateaux derivative in the direction δt:

(∂(δt)F )(x) = lim
ε→0

F (x+ εδt)− F (x)

ε
, F ∈ (D)+, x ∈ D′,

see, e.g., [17]. The operator ∂(δt) is called the Hida derivative.

2.2. Stochastic integrals on a Fock space and its riggings. In this subsection we

recall the construction of stochastic integrals on a Fock space and its riggings in the

framework of the Gaussian white noise analysis. Namely, starting from the classical Itô

integral with respect to a Wiener process, we define the Itô integral on the Fock space

F and construct its generalization—the extended (Hitsuda–Skorohod type) stochastic

integral on F and its riggings. We stress that this approach enables us to define the

extended stochastic integral not only with respect to a Wiener process but also with

respect to any normal martingale with the Chaos Representation Property (CRP).

We start from a definition of the classical Itô integral (we refer to the books [45, 46]

for a proof of existence and the properties of this integral). Let {At}t∈R+
be a natural

filtration of σ-algebras At = σ{Ws | s ≤ t} generated by a Wiener process {Wt}t∈R+ (this

filtration is made complete and right continuous). We denote by L2
a(R+ ×D′) the set of

all adapted with respect to {At}t∈R+
functions from the space

L2(D′ × R+) := L2(D′ × R+, C(D′)× B(R+), µG × dt) ∼= L2(D′, µG)⊗ L2(R+),

where B denotes the Borel σ-algebra. It can be shown that L2
a(R+×D′) is a subspace of

L2(R+×D′), that is a linear closed subset of L2(R+×D′). We will refer to L2
a(R+×D′)

as the space of Itô integrable functions.

Let us recall that a function F ∈ L2(D′ × R+) is adapted (or nonanticipative) with

respect to the filtration {At}t∈R+
if for almost all t ∈ R+ the function F (·, t) is At-

measurable. In other words, F ∈ L2(D′ × R+) is adapted with respect to {At}t∈R+ if

F (·, t) = E[F (·, t) |At] for almost all t ∈ R+, where E[ · |At] denotes the conditional expec-

tation with respect to the σ-algebra At. We note that E[ · |At] is the orthogonal projection

of L2(D′, µG) onto the subspace of all At-measurable functions from L2(D′, µG).

Let F (t) = F (x, t) be a simple Itô integrable function. That is, F ∈ L2
a(R+ ×D′) can

be written as

F (·) =

n−1∑
k=0

F(k)1I(tk,tk+1](·) ∈ L2
a(D′ × R+),

where 0 ≤ t0 < t1 < · · · < tn < ∞ (evidently, every F(k) is an Atk -measurable function

from the space L2(D′, µG)). The Itô integral of F with respect to a Wiener process W·

is defined by the formula

(2.9)

∫
R+

F (t) dWt :=

n−1∑
k=0

F(k)(Wtk+1
−Wtk) ∈ L2(D′, µG)
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and has the isometry property

(2.10)
∥∥∥∫

R+

F (t) dWt

∥∥∥2

L2(D′,µG)
= ‖F‖2L2(D′×R+) ≡

∫
R+

‖F (t)‖2L2(D′,µG) dt.

Since the set L2
a,s(D′×R+) of all simple Itô integrable functions is dense in L2

a(D′×R+)

(with respect to the topology of L2(D′×R+)), isometry property (2.9) allows us to extend

the Itô integral to the class L2
a(R+ ×D′) of Itô integrable functions, and (2.9) still holds

in this class. Namely, extending the mapping

L2
a,s(D′ × R+) 3 F 7→

∫
R+

F (t) dWt ∈ L2(D′, µG)

by continuity we obtain a definition of the Itô integral on L2
a(D′ × R+).

Let us now turn from the Itô integral on the space L2(D′, µG) to one on the Fock

space F . This integral will be defined in the simplest possible way as the I−1
G -image of

the Itô integral
∫
R+
F (t) dWt. To be precise, denote by L2(R+;F) the Hilbert space of

F-valued functions (more exactly, of equivalence classes)

R+ 3 t 7→ f(t) ∈ F , ‖f‖2L2(R+;F) :=

∫
R+

‖f(t)‖2F dt <∞

with the corresponding scalar product. It is clear that any function f from the space

L2(R+;F) has a form f(t) = (fn(t))∞n=0, where each fn(t1, . . . , tn; t) belongs to the space

L2
C(R+)⊗̂n⊗L2(R+). This means that fn belongs to L2

C(Rn+1
+ ) and fn is symmetric with

respect to first n variables.

Since the spaces L2(D′ × R+) and L2(R+;F) can be interpreted as tensor products

L2(D′, µG)⊗ L2(R+) and F ⊗ L2(R+) respectively, we conclude that

IG ⊗ 1 : L2(R+;F)→ L2(D′ × R+)

is a unitary operator.

Definition 2.1. We say that a function f ∈ L2(R+;F) is Itô integrable if (IG ⊗ 1)f

belongs to L2
a(D′ × R+), i.e., if

f ∈ L2
a(R+;F) := (IG ⊗ 1)−1L2

a(D′ × R+).

The Itô integral of f ∈ L2
a(R+;F), denoted by I(f), is defined by

I(f) := I−1
G

(∫
R+

IG(f(t)) dWt

)
∈ F .

Remark 2.1. It follows from definition of I and equality (2.10) that, for all f ∈ L2
a(R+;F),

‖I(f)‖2F =

∫
R+

‖f(t)‖2F dt.

As a consequence, the operator I acts isometrically from the subspace L2
a(R+;F) of

L2(R+;F) into the Fock space F .

It is natural now to ask: “How to verify that a function f(·) = (fn(·))∞n=0 ∈ L2(R+;F)

is Itô integrable and how to express the corresponding Itô integral in terms of the Fock

space structure?” The answer is following.



STOCHASTIC INTEGRAL OF HITSUDA–SKOROHOD TYPE 11

Theorem 2.1. The following statements are fulfilled:

(I) A function R+ 3 t 7→ f(t) = (fn(t))∞n=0 ∈ F is Itô integrable (i.e., f belongs to

L2
a(R+;F)) if and only if f ∈ L2(R+;F) and for almost all t ∈ R+

f(t) = (f0(t), f1(t)1I[0,t), f2(t)1I[0,t)2 , . . .).

(II) For each f(·) = (fn(·))∞n=0 ∈ L2
a(R+;F)

(2.11) I(f) = (0, f̂0, f̂1, . . .) ∈ F ,

where f̂n ∈ L2
C(R+)⊗̂n+1 denotes the symmetrization of fn(t1, . . . , tn; t) with re-

spect to all variables, or, equivalently, f̂n is the projection of fn ∈ L2
C(R+)⊗̂n ⊗

L2(R+) onto L2
C(R+)⊗̂n+1. Since the function fn(t1, . . . , tn; t) is symmetric with

respect to first n variables, its symmetrization f̂n is given by

f̂n(t1, . . . , tn+1) :=
1

n+ 1

n+1∑
k=1

fn(t1, . . . , tk� , . . . , tn+1; tk).

Although this theorem easily follows from the results of, e.g., [19, 9, 11], for the reader’s

convenience we present here a proof.

Proof. In order to prove (I), it is sufficient to show that

(2.12) E[IGfn|At] = IG(1I[0,t)nfn)

for any fn ∈ L2
C(R+)⊗̂n, because IG : F → L2(D′, µG) is a unitary operator and E[· |At]

is an orthogonal projector in the space L2(D′ × R+) (here and below in this proof we

identify fn with (0, . . . , 0, fn, 0, 0, . . .) ∈ F , where fn standing at the n-th position).

Moreover, since functions

fn = 1Iα1
⊗̂ · · · ⊗̂1Iαn , αi ∈ B(R+), αi ∩ αj = ∅, i 6= j,

form a total set in L2
C(R+)⊗̂n, it is sufficient to check (2.12) for these functions. Using

property (iii) of IG, the properties of the conditional expectation and the fact that

E[Ws|At] = Wt, t ≤ s,

since the Wiener process W is a martingale with respect to {At}t∈R+
, we get

E[IGfn|At] = E[IG(1Iα1
⊗̂ · · · ⊗̂1Iαn)|At] = E[Wα1

· . . . ·Wαn |At]

= E
[∏n

i=1

(
Wαi∩[0,t) +Wαi∩[t,∞)

) ∣∣At]
= Wα1∩[0,t) · . . . ·Wαn∩[0,t)

= IG(1Iα1∩[0,t)⊗̂ · · · ⊗̂1Iαn∩[0,t)) = IG(1I[0,t)nfn).

The first part of the theorem is proved.

Let us establish the second part of the theorem. First of all we note that according to

Remark 2.1 and Theorem 3.2 from [11] we have

‖I(f)‖2F =

∫
R+

‖f(t)‖2F dt and ‖(0, f̂0, f̂1, . . .)‖2F =

∫
R+

‖f(t)‖2F dt
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for all f ∈ L2
a(R+;F). Hence, the linear mappings

f 7→ I(f) and f 7→ (0, f̂0, f̂1, . . .)

act continuously (more exactly, isometrically) from L2
a(R+;F) to F . Therefore, it is

sufficient to check (2.11) for simple functions f ∈ L2
a(R+;F) of form

f(t) = g1I(s1,s2](t), g = 1Iα1
⊗̂ · · · ⊗̂1Iαn ,(2.13)

where n ∈ N, Borel sets αi ∈ B(R+), i ∈ {1, . . . , n}, are disjoint and (s1, s2] ⊂ R+ (these

functions form a total set in L2
a(R+;F)). We note that if f(·) = g1I(s1,s2](·) ∈ L2

a(R+;F)

has form (2.13) then by assertion (I)

g = 1Iα1
⊗̂ · · · ⊗̂1Iαn = (1Iα1

⊗̂ · · · ⊗̂1Iαn)1I[0,s1]n .

So in this case αi ⊂ [0, s1]. In particular αi ∩ (s1, s2] = ∅ for all i ∈ {1, . . . , n}.
Let f(·) = g1I(s1,s2](·) ∈ L2

a(R+;F) be of form (2.13). Evidently, in this case

f(t) = (0, . . . , 0︸ ︷︷ ︸
n times

, fn(t), 0, 0, . . .), fn(t) := (1Iα1
⊗̂ · · · ⊗̂1Iαn)1I(s1,s2](t),

and

F := (IG ⊗ 1)f = IG(g)1I(s1,s2]

is a simple Itô integrable function with respect to W , i.e., F ∈ L2
a,s(D′×R+). Therefore,

using Definition 2.1, equality (2.9), property (iii) of the isomorphism IG and taking into

account that αi ∈ B(R+), i ∈ {1, . . . , n}, are disjoint and αi ∩ (s1, s2] = ∅, we get

I(f) = I−1
G

(∫
R+

IG(f(t)) dWt

)
= I−1

G

(∫
R+

IG(g)1I(s1,s2](t) dWt

)
= I−1

G

(
IG(g)W(s1,s2]

)
= I−1

G

(
IG(1Iα1

⊗̂ · · · ⊗̂1Iαn)W(s1,s2]

)
= I−1

G

(
(Wα1 · . . . ·Wαn)W(s1,s2]

)
= 1Iα1⊗̂ · · · ⊗̂1Iαn⊗̂1I(s1,s2]

= ( 0, . . . , 0︸ ︷︷ ︸
n+1 times

, f̂n, 0, 0, . . .).

The theorem is proved. �

Remark 2.2. This theorem is one of the most useful results for our purpose. Analyzing

the proof, we see that it does not depend upon the Gaussian character of the Wiener–Itô–

Segal isomorphism IG. One only makes use the properties (i)–(iii) of the isomorphism

IG and the fact that the Wiener process W is a martingale. This observation plays a

crucial role in the construction of the extended stochastic integral with respect to any

normal martingale with the CRP (see Remark 2.7).

Remark 2.3. Let (s1, s2] ⊂ R+ be fixed. Choose a vector g = (gn)∞n=0 ∈ F such that

g = (g0, g11I[0,s1), g21I[0,s1)2 , . . .) and define a simple function f ∈ L2
a(R+;F) by

f(t) := g1I(s1,s2](t) = (fn(t))∞n=0, fn(t) := gn1I(s1,s2](t).
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Then, according to (2.11) and (2.5) we obtain

I(g1I(s1,s2]) = I(f) = (0, f̂0, f̂1, . . .)

= (0, g0⊗̂1I(s1,s2], g1⊗̂1I(s1,s2], . . .) = g♦(0, 1I(s1,s2], 0, 0, . . .).
(2.14)

If we compare (2.14) with (2.9) we will see the relationship between the Wick multipli-

cation ♦ on F and the ordinary multiplication on L2(D′, µG). Namely, suppose t ∈ R+

and F ∈ L2(D′, µG) is an At-adapted function. Then for each interval (s1, s2] ⊂ (t,∞)

the function F (Ws2 −Ws1) belongs to L2(D′, µG) and the I−1
G -image of F (Ws2 −Ws1)

has the form

I−1
G (F (Ws2 −Ws1)) = I−1

G (F )♦I−1
G (Ws2 −Ws1) = I−1

G (F )♦(0, 1I(s1,s2], 0, 0, . . .).

However it can be shown that in general case the IG-image of the Wick multiplication ♦

distinguishes from the ordinary multiplication.

We next turn our attention to generalizations of the Itô integral I. The most naive

and natural idea is to define a generalization of I by formula (2.11) for all functions

f(·) = (fn(·))∞n=0 ∈ L2(R+;F) such that (0, f̂0, f̂1, . . .) ∈ F . Namely, we accept the

following definition.

Definition 2.2. For a function f(·) = (fn(·))∞n=0 ∈ L2(R+;F) such that

(2.15) (0, f̂0, f̂1, . . . ) ∈ F or, equivalently,

∞∑
n=0

|f̂n|2L2
C(R+)⊗̂n+1(n+ 1)! <∞

we define its extended stochastic integral by the formula

Iext(f) := (0, f̂0, f̂1, . . .).

Applying the Wiener–Itô–Segal isomorphism to Iext, we obtain the extended stochastic

integral introduced by Hitsuda and Skorohod.

Properties of Iext can be easily obtained from the corresponding properties of the

extended stochastic integral on L2(D′×R+). In particular, let us consider the annihilation

operator a−(δt) (see (2.7)) as an unbounded one

(2.16) a−(δ·) : F → L2(R+;F), g = (gn)∞n=0 7→ a−(δ·)g = ((n+ 1)gn+1(·))∞n=0

with the dense in F domain

Dom(a−(δ·)) :=
{
g = (gn)∞n=0 ∈ F

∣∣∣ ∞∑
n=0

|gn|2L2
C(R+)⊗̂n

n!n <∞
}
.

Note that the IG-image of a−(δ·) is the so-called Malliavin’s gradient, see, e.g., [19].

The following statement follows from, e.g., [47] (see also [17, 19]).

Theorem 2.2. The extended stochastic integral Iext : L2(R+;F) → F and the annihi-

lation operator a−(δ·) : F → L2(R+;F) are adjoint one to another. In particular, these

operators are closed.
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Remark 2.4. The fact that in the Gaussian case the Skorohod integral is adjoint to the

stochastic derivative (the Malliavin gradient) was proved for the first time in [47]. This

result is a starting point in developing of a stochastic calculus for nonadapted processes

(the so-called anticipating stochastic calculus). We refer here to the book [19] and refer-

ence therein for an exhaustive presentation of results, techniques and applications of the

anticipating stochastic calculus.

Remark 2.5. Note that one can get rid of restriction (2.15) and introduce elements of a

Wick calculus considering stochastic integrals on the IG-pre-image of a so-called regular

rigging of L2(D′, µG), see, e.g., [25] for details.

We will now show that the extended stochastic integral Iext can be regarded as an

ordinary Bochner one. Before establishing the corresponding result, let as first look at

the following heuristic argumentation.

According to Remark 2.3 for a simple Itô integrable function

f(·) =

n−1∑
k=0

f(k)1I(tk,tk+1](·) ∈ L2
a(R+;F), f(k) ∈ F ,

we have

I(f) =

n−1∑
k=0

f(k)♦(0, 1I(tk,tk+1], 0, 0, . . .).

Using this equality, (2.8) and the formal representation

(0, 1I(tk,tk+1], 0, 0, . . .) =

∫
(tk,tk+1]

(0, δt, 0, 0, . . .) dt

we obtain (at least formally)

I(f) =

n−1∑
k=0

f(k)♦(0, 1I(tk,tk+1], 0, 0, . . .) =

n−1∑
k=0

f(k)♦
∫

(tk,tk+1]

(0, δt, 0, 0, . . .) dt

=

n−1∑
k=0

∫
(tk,tk+1]

f(k)♦(0, δt, 0, 0, . . .) dt

=

∫
R+

( n−1∑
k=0

f(k)1I(tk,tk+1](t)
)
♦(0, δt, 0, 0, . . .) dt

=

∫
R+

f(t)♦(0, δt, 0, 0, . . .) dt =

∫
R+

a+(δt)f(t) dt.

Since the delta-function δt is not a square integrable one, the last formula can not be

accepted as a definition of the extended stochastic integral on L2(R+;F). However from

results of [17, 11] the correctness of the following definition follows.

Definition 2.3. The extended stochastic integral of a function

ξ(·) = (ξn(·))∞n=0 ∈ L2(R+;F(−τ,−q))

is defined as a Bochner one in the space F(−τ,−q) (see (2.4)) by the formula

(2.17) Îext(ξ) :=

∫
R+

a+(δt)ξ(t) dt =

∫
R+

ξ(t)♦(0, δt, 0, 0, . . .) dt ∈ F(−τ,−q).
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Not complicated direct calculation shows that

Îext(ξ) = (0, ξ̂0, ξ̂1, . . .),

where each ξ̂n ∈ D⊗̂n+1
−τ,C is the projection of ξn(·) ∈ D⊗̂n+1

−τ,C ⊗ L2(R+) onto D⊗̂n+1
−τ,C . This

property means in particular that Îext is an extension of Iext, i.e.,

Iext(f) = Îext(f) =

∫
R+

a+(δt)f(t) dt, f ∈ Dom (Iext).

This result explain the same name for the integrals Iext and Îext.

It can be easily shown that the analog of Theorem 2.2 holds true for operators

Îext : L2(R+;F(−τ,−q))→ F(−τ,−q), a−(δ·) : F(τ, q)→ L2(R+;F(τ, q)),

where a−(δ·) is the restriction of operator (2.16) on F(τ, q). Moreover, now Iext and

a−(δ·) are continuous operators.

Remark 2.6. The IG-image of integral Îext has the form

IG
(
Îext(ξ)

)
=

∫
R+

∂+(δt)Ψ(t) dt =

∫
R+

Ψ(t)♦DẆt dt,

where Ψ(t) := IGξ(t), ∂
+(δt) := IGa+(δt)I

−1
G : (D′)− → (D′)− is an adjoint operator

to the Hida derivative ∂(δt), Ẇt := 〈·, δt〉 = IG(0, δt, 0, 0, . . .) ∈ (D′)− is the so-called

Gaussian white noise and ♦D denotes the Wick product in (D′)−, i.e.,

Ψ♦DΦ := IG(I−1
G Ψ♦I−1

G Φ), Ψ,Φ ∈ (D′)−.

Thus in such a way we obtain the well-known presentation∫
R+

Ψ(t)d̂Wt =

∫
R+

∂+(δt)Ψ(t) dt =

∫
R+

Ψ(t)♦DẆt dt,

where
∫
R+
◦(t)d̂Wt denotes the extended (Hitsuda-Skorohod) integral with respect to W

(see, e.g., [17, 48, 44] and reference therein for more details).

Remark 2.7. Let (Ω,A, P ) be a complete probability space with a right continuous fil-

tration {At}t∈R+ , i.e., As ⊂ At if s ≤ t and At =
⋂
s>tAs for all t ∈ R+. Suppose

that A coincides with the smallest σ-algebra generated by
⋃
t∈R+

At and A0 contains all

P -zero sets of A. In addition, suppose that A0 is trivial, that is for each α ∈ A0 we have

P (α) = 0 or P (α) = 1.

By definition a process N = {Nt}t∈R+ , N0 = 0, is a normal martingale on (Ω,A, P )

with respect to {At}t∈R+ if {Nt}t∈R+ and {N2
t − t}t∈R+ are martingales with respect to

{At}t∈R+
. This means that for all s, t ∈ R+ such that s ≤ t

E[Nt −Ns|As] = 0, E[(Nt −Ns)2|As] = t− s,

where as before E[ · |As] denotes the conditional expectation with respect to As.
It is known (see, for example, [13, 15]) that a mapping

IN : F → L2(Ω,A, P ), f = (fn)∞n=0 7→ INf :=

∞∑
n=0

IN,n(fn),
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is a well-defined isometry. Here IN,0(f0) := f0 and, for each n ∈ N,

IN,n(fn) := n!

∫
∆n

fn(t1, . . . , tn) dNt1 . . . dNtn ,

∆n = {(t1, . . . , tn) ∈ Rn+ | t1 < · · · < tn},

is an iterated stochastic integral with respect to N . The integral IN,n(fn) has the isom-

etry property

‖IN,n(fn)‖2L2(Ω,A,P ) = (n!)2

∫
∆n

|fn(t1, . . . , tn)|2 dt1 . . . dtn = |fn|2L2
C(R+)⊗̂n

n!,

and, moreover, the orthogonality property

(IN,n(fn), IN,m(fm))L2(Ω,A,P ) =

{
0, n 6= m;

|fn|2L2
C(R+)⊗̂n

n!, n = m.

When IN : F → L2(Ω,A, P ) is an unitary operator (i.e., IN isometrically maps

the whole space F onto whole L2(Ω,A, P )) one says that N possesses the Chaotic

Representation Property (CRP). The unique decomposition of F ∈ L2(Ω,A, P ) as

F =
∑∞
n=0 IN,n(fn) is called the chaotic expansion of F . We observe that the standard

Wiener process W , the compensated Poisson process and some Azéma martingales are

examples of normal martingales, which possess the CRP. We refer to [13, 15, 9, 16, 49]

for more information about normal martingales and their properties.

Let N be a normal martingale with CRP. Then as in the Gaussian case the mapping

IN is completely characterized by the following properties:

(i) IN : F → L2(Ω,A, P ) is a unitary operator;

(ii) IN,0(f0) = f0 for all f0 ∈ C;

(iii) for each n ∈ N and any disjoint Borel sets α1, . . . , αn of finite Lebesgue measure,

IN,n(1Iα1
⊗̂ · · · ⊗̂1Iαn) = N(α1) · . . . ·N(αn),

where B(R+) 3 α 7→ N(α) ∈ L2(Ω,A, P ) is a vector-valued measure generated

by the normal martingale N , i.e., we set

N((s1, s2]) = Ns2 −Ns1 , N({0}) := N0 = 0, N(∅) := 0,

and extend this definition to all Borel subsets of R+.

Since IN has properties (i)-(iii) and the proof of Theorem 2.1 is based on the cor-

responding properties of the Wiener–Itô–Segal isomorphism only, we can conclude that

the IN -image of I is the Itô integral with respect to the normal martingale N and as

a consequence the IN -image of Iext gives an extension of this Itô integral. We refer to

[9] for the properties and applications of extended stochastic integrals connected with

normal martingales.
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3. The generalized Meixner measure and the extended Fock space

Recall the definition of the generalized Meixner measure on D′ , see [30].

Let us fix arbitrary functions

α : R+ → C, β : R+ → C

that are smooth and satisfy the conditions

θ(s) := −α(s)− β(s) ∈ R, η(s) := α(s)β(s) ∈ R+

for each s ∈ R+. We also assume that the functions θ and η are bounded on R+. Note

that in a certain sense η is a “key parameter”, which will be used often below.

For each s ∈ R+ denote by να(s),β(s) a probability measure on R that is defined by its

Fourier transform ∫
R
eiλt να(s),β(s)(dt) = exp

(
− iλ

(
α(s) + β(s)

)
+2

∞∑
m=1

(α(s)β(s))m

m

[ ∞∑
n=2

(−iλ)n

n!

(
β(s)n−2 + β(s)n−3α(s) + · · ·+ α(s)n−2

)]m)
.

Definition 3.1. We say that a probability measure µ on the measurable space (D′, C(D′))
with the Fourier transform∫

D′
ei〈x,ϕ〉 µ(dx) = exp

[ ∫
R+

∫
R

(
eitϕ(s) − 1− itϕ(s)

) 1

t2
να(s),β(s)(dt) ds

]
, ϕ ∈ D

is called the generalized Meixner measure.

Theorem 3.1. ([30]) The measure µ is a generalized stochastic process with independent

values in the sense of [50]. The Laplace transform of µ is a holomorphic at 0 ∈ DC

function.

Let α and β be constants. Accordingly to the classical classification [51] (see also

[36, 37, 30]) µ is the Gaussian measure for α = β = 0; µ is the centered Poissonian

measure for α 6= 0, β = 0; µ is the centered Gamma measure ([26, 31]) for α = β 6= 0;

µ is the centered Pascal measure ([33]) for α 6= β, αβ 6= 0, α, β ∈ R; µ is the centered

Meixner measure for α = β, Im(α) 6= 0. Thus the ”key parameter” η = 0 if and only if

µ is the Gaussian or Poissonian measure.

Denote by (L2) := L2(D′, µ) the space of complex-valued square integrable with re-

spect to µ functions on D′. A function

D′ 3 x 7→ F (x) =

n∑
k=0

〈x⊗k, ϕk〉 ∈ C, ϕk ∈ D⊗̂kC , ϕn 6= 0

is called a continuous polynomial on D′ of order n. Since the measure µ has a holomorphic

at 0 ∈ DC Laplace transform (Theorem 3.1), the set of all continuous polynomials on

D′ is dense in (L2) ([52]). Due to this fact, using the procedure of orthogonalization of

polynomials (see, e.g., [21] for details) one can construct an orthogonal decomposition of

the space (L2). Namely, for n ∈ Z+ let Pn be the set of all continuous polynomials on D′

of order ≤ n, P̃n be the closure of Pn in (L2) and (L2
n) := P̃n 	 P̃n−1, where 	 denotes
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the orthogonal difference in (L2), (L2
0) := C. Thus we can regard (L2) as the orthogonal

direct sum of subspaces (L2
n), i.e.,

(L2) =

∞⊕
n=0

(L2
n).

We pass now to the construction of the extended Fock space. To this end, for each

ϕn ∈ D⊗̂nC we define : 〈x⊗n, ϕn〉 : as the orthogonal projection of 〈x⊗n, ϕn〉 onto (L2
n). It

follows from results of [30] that : 〈x⊗n, ϕn〉 : = 〈Pn(x), ϕn〉, where Pn(x) ∈ D′⊗̂n and for

µ-almost all x ∈ D′

P0(x) = 1, P1(x) = x,

and for all ϕn ∈ D⊗̂nC , ψ ∈ DC

〈Pn+1(x), ϕn⊗̂ψ〉 = 〈Pn(x), ϕn〉〈P1(x), ψ〉

− n〈Pn(x),Pr [θ(·)ψ(·)ϕn(·, ·2, . . . , ·n)]〉

− n〈Pn−1(x), ϕψn〉

− n(n− 1)〈Pn−1(x),Pr [η(·)ψ(·)ϕn(·, ·, ·3 . . . , ·n)]〉.

(3.1)

Here Pr denotes the symmetrization operator and

ϕψn(·1, . . . , ·n−1) :=

∫
R+

ϕn(·1, . . . , ·n−1, t)ψ(t) dt ∈ D⊗̂n−1
C .

It should be noticed that 〈Pn(·), ϕn〉, n ∈ Z+, are Schefer polynomials, i.e., orthogonal

polynomials with a generating function of exponential type, see [37, 36, 30].

Let Fn,ext be a Hilbert space that is obtained as the closure of D⊗̂nC with respect to

the norm | · |Fn,ext generated by the scalar product

(ϕn, ψn)Fn,ext :=
1

n!

∫
D′
〈Pn(x), ϕn〉〈Pn(x), ψn〉µ(dx), ϕn, ψn ∈ D⊗̂nC

(note that since this scalar product is real, | · |Fn,ext =
√

(· , ·)Fn,ext). Of course, Fn,ext

depends on a parameter η; but we omit this parameter for simplification of notation. In

the situations when the dependence on η is significant we specify this.

It is possible to give an inner description of the scalar product in the space Fn,ext.

Namely, according to [25] (see also [30]) we have

(3.2)

(ϕn, ψn)Fn,ext =
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!

ls11 . . . lskk s1! . . . sk!

×
∫
Rs1+···+sk

+

ϕn(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

)

×ψn(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

)η(t1)l1−1. . . η(ts1)l1−1

×η(ts1+1)l2−1 . . . η(ts1+s2)l2−1 . . . η(ts1+···+sk−1+1)lk−1 . . . η(ts1+···+sk)lk−1

× dt1 . . . dts1+···+sk .
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It follows from (3.2) that actually Fn,ext is not connected directly with the measure

µ and depends on the function η only. Moreover, it can be shown that for all n ∈ N

(3.3) Fn,ext = L̂2(Rn+, ρn) := {fn ∈ L2(Rn+, ρn) : fn is symmetric in all variables},

where the Borel measure ρn is constructed by using (3.2). In particular, ρ1 is the Lebesgue

measure on R+. If µ is the Gaussian or Poissonian measure then η = 0 and therefore

ρn is the Lebesgue measure on B(Rn+). We refer a reader to [32] for a more detailed

discussion of spaces like Fn,ext.

Definition 3.2. We define the extended Fock space Fext by the formula

Fext :=

∞⊕
n=0

Fn,extn!, F0,ext := C.

Thus Fext is a complex Hilbert space of sequences f = (fn)∞n=0, fn ∈ Fn,ext such that

‖f‖2Fext
=

∞∑
n=0

|fn|2Fn,extn! <∞.

Remark 3.1. Let us explain the term the extended Fock space. It is not difficult to show

by analogy with [32] that the space Fn,ext is, generally speaking, the orthogonal sum

of L2
C(R+)⊗̂n and some another Hilbert spaces. In this sense Fn,ext is an extension of

L2
C(R+)⊗̂n and therefore Fext is an extension of F .

One can give another explanation of the fact that Fn,ext is a more wide space than

L2
C(R+)⊗̂n. Namely, let fn ∈ L2

C(R+)⊗̂n (fn is an equivalence class in L2
C(R+)⊗̂n). We

select a representative (a function) ḟn ∈ fn with a “zero diagonal”, i.e., ḟn(t1, . . . , tn) = 0

if there exist i, j ∈ {1, . . . , n}, i 6= j such that ti = tj . This function generates the

equivalence class f̃n in Fn,ext that can be identified with fn (see [25] for details).

Let Ffin denote the set of all finite sequences (ϕn)∞n=0, ϕn ∈ D⊗̂nC . It is clear that Ffin

is a dense subset of Fext and the mapping

Fext ⊃ Ffin 3 ϕ = (ϕn)∞n=0 7→ (Iϕ)(·) :=

∞∑
n=0

〈Pn(·), ϕn〉 ∈ (L2)

(the series, in fact, finite) is isometric. Extending this mapping by continuity to the

whole space Fext we obtain a unitary operator acting between Fext and (L2). We keep

the notation I for the extension, and we will refer to the operator I : Fext → (L2)

as the generalized Wiener–Itô–Segal isomorphism. Note that I is the Fourier

transform of a Jacobi field that act in the extended Fock space Fext, see [30] and also

[31, 32, 33, 34, 35, 36, 37, 38].

In what follows, for each fn ∈ Fn,ext we preserve the notation 〈Pn, fn〉, i.e., we set

〈Pn, fn〉 := I(0, . . . , 0︸ ︷︷ ︸
n times

, fn, 0, . . .).

Then for each f = (fn)∞n=0 ∈ Fext we have

(3.4) If =

∞∑
n=0

〈Pn, fn〉 ∈ (L2).
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4. The Itô integral on the extended Fock space

We consider the Meixner random process

{Mt(·) := 〈· , 1I[0,t)〉}t∈R+

on the probability space (D′, C(D′), µ). It follows from Theorem 3.1 that this process has

orthogonal independent increments. Since in addition M· is locally square integrable,

this process is a normal martingale with respect to the natural filtration of σ-algebras

At := σ{Ms | s ≤ t} (the filtration is made complete and right continuous).

Remark 4.1. Note that if the parameter η from the definition of the measure µ is not a

constant then M· is not a Lévy process because in this case M· is not a time homogeneous

one.

We will define the Itô integral on the extended Fock space as the I−1-image of the

classical Itô stochastic integral with respect to the Meixner process. Namely, denote by

(L2)⊗ L2(R+)
a

the set of all adapted with respect to the filtration {At}t∈R+
functions

from the space L2(D′ × R+, C(D′)× B(R+), µ× dt) ∼= (L2)⊗ L2(R+), i.e.,

(4.1) (L2)⊗ L2(R+)
a

:=
{
F ∈ (L2)⊗ L2(R+)

∣∣∣F (·, t) = E[F (·, t) |At ] for a.a. t ∈ R+

}
.

Definition 4.1. We say that a function f ∈ L2(R+;Fext) ∼= Fext ⊗ L2(R+) is Itô

integrable if (I ⊗ 1)f belongs to (L2)⊗ L2(R+)
a
, i.e., if

f ∈ L2
a(R+;Fext) ∼= Fext ⊗ L2(R+)

a
:= (I ⊗ 1)−1(L2)⊗ L2(R+)

a
.

The Itô integral of f ∈ L2
a(R+;Fext) is defined as an element of Fext given by

I(f) := I−1
(∫

R+

I(f(t)) dMt

)
.

Before giving an inner description of the set L2
a(R+;Fext) and express the Itô integral

in terms of the extended Fock space Fext, let us look at the generalized Wiener–Itô–Segal

isomorphism I more carefully. First of all we note that this isomorphism has analogs of

properties (i)-(iii) of the Wiener–Itô–Segal isomorphism IG, i.e.,

(i) I : Fext → (L2) is a unitary operator;

(ii) I(f0, 0, 0, . . .) = f0 for all f0 ∈ C;

(iii) for each n ∈ N and any disjoint Borel sets α1, . . . , αn of finite Lebesgue measure(
I(0, . . . , 0︸ ︷︷ ︸

n times

, 1Iα1
⊗̂ · · · ⊗̂1Iαn , 0, 0, . . .)

)
(·) = Mα1

(·) . . .Mαn(·),

where Mαk(·) := 〈· , 1Iαk〉 for all k ∈ {1, . . . , n}.
However in contrast to the Gaussian case if η 6= 0 then the isomorphism I is not uniquely

determined by its properties (i)-(iii) because the set

C
⊕

span
{

(0, . . . , 0︸ ︷︷ ︸
n times

, 1Iα1
⊗̂ · · · ⊗̂1Iαn , 0, 0, . . .)

∣∣n ∈ N; αi ∈ B(R+); αi ∩ αj = ∅, i 6= j
}
,

is not dense in the extended Fock space Fext. Therefore in order to give a description of

the set L2
a(R+;Fext) and to express the Itô integral in terms of the extended Fock space
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structure one can not use the (based on (i)-(iii)) scheme of the proof of Theorem 2.1.

Somehow one must use another properties of the isomorphism I. As it follows from [25]

an appropriate property of I is recurrence relation (3.1), see details below.

We have the following result (cf. Theorem 2.1).

Theorem 4.1. A function f(·) = (fn(·))∞n=0 ∈ L2(R+;Fext) belongs to L2
a(R+;Fext) if

and only if for almost all t ∈ R+

f(t) = (f0(t), f1(t)1I[0,t), . . . , fn(t)1I[0,t)n , . . .).

Taking into account (4.1) and the definition of the space L2
a(R+;Fext), Theorem 4.1

is an immediate consequence of the equality

E[〈P0, f0〉|At] = 〈P0, f0〉 = f0, t ∈ R+, f0 ∈ C

and the following statement:

Theorem 4.2. Let fn ∈ Fn,ext, n ∈ N. Then for all t ∈ R+

(4.2) E[〈Pn, fn〉|At] = 〈Pn, fn1I[0,t)n〉.

Proof. Let us fix t ∈ R+. Since a conditional expectation E[ · |At] is an orthogonal

projection in (L2), it is sufficient to prove (4.2) on a total in Fn,ext set. We use the

induction with respect to n. For n = 1 equality (4.2) is fulfilled because

E[〈P1, 1I[a,b)〉|At] = E[〈P1, 1I[0,b)〉|At]− E[〈P1, 1I[0,a)〉|At] = E[Mb|At ]− E[Ma|At]

= Mmin{b,t} −Mmin{a,t} = 〈P1, 1I[a,b)1I[0,t)〉

and the set of indicators 1I[a,b) of intervals [a, b) ⊂ R+ is total in F1,ext = L2
C(R+). Assume

(4.2) is fulfilled for n ∈ {1, 2, . . . ,m} and let us prove this statement for n = m+ 1. To

this end, we need the following technical result.

Lemma 4.1. Let t ∈ R+ and n ∈ N. The set

(4.3)
{
ϕ⊗k⊗̂ψ⊗n−k

∣∣ϕ,ψ ∈ DC, suppϕ ⊂ [0, t), suppψ ⊂ [t,∞), k ∈ {0, 1, . . . , n}
}

is total in the space Fn,ext.

Proof. Let t ∈ R+ and n ∈ N. For φ ∈ DC we set φ1 := φ1I[0,t), φ2 := φ1I[t,∞). Then

(4.4) φ⊗n = (φ1 + φ2)⊗n =

n∑
k=0

Cknφ
⊗k
1 ⊗̂φ

⊗n−k
2 ,

where φ⊗k1 ⊗̂φ
⊗n−k
2 denotes the symmetrization with respect to all variables of the func-

tion

φ1(·1) . . . φ1(·k)φ2(·k+1) . . . φ2(·n)

(note that φ⊗k1 ⊗̂φ
⊗n−k
2 is a symmetric function, but not necessary from D⊗̂nC ). One can

show by direct calculation that each φ⊗k1 ⊗̂φ
⊗n−k
2 belongs to Fn,ext and can be approxi-

mated in this space by a sequence

(4.5)
{
ϕ⊗kl ⊗̂ψ

⊗n−k
l

∣∣ϕl, ψl ∈ DC, suppϕl ⊂ [0, t), suppψl ⊂ [t,∞)}
}∞
l=0
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(one can select ϕl → φ1, ψl → φ2 pointwisely as l→∞, then ϕ⊗kl ⊗̂ψ
⊗n−k
l → φ⊗k1 ⊗̂φ

⊗n−k
2

in Fn,ext as l→∞ by the Lebesgue theorem).

Let now fn ∈ Fn,ext be fixed. In order to prove the lemma, it is sufficient to check

that fn can be approximated by linear combinations of elements of set (4.3). Since the

set {φ⊗n |φ ∈ DC} is total in Fn,ext, for arbitrary ε > 0 there exist N ∈ N, constants

c1, . . . , cN and functions φ(1), . . . , φ(N) ∈ DC such that

∣∣∣fn − N∑
s=1

csφ
⊗n
(s)

∣∣∣
Fn,ext

<
ε

2
.

Decomposing each φ(s) in the sum φ(s),1 + φ(s),2 as above and using (4.4) we get

N∑
s=1

csφ
⊗n
(s) =

N∑
s=1

n∑
k=0

csC
k
nφ
⊗k
(s),1⊗̂φ

⊗n−k
(s),2 .

Let {ϕ⊗k(s),l⊗̂ψ
⊗n−k
(s),l }

∞
l=0 be sequence (4.5) for φ⊗k(s),1⊗̂φ

⊗n−k
(s),2 . Then

∣∣∣fn − N∑
s=1

n∑
k=0

csC
k
nϕ
⊗k
(s),l⊗̂ψ

⊗n−k
(s),l

∣∣∣
Fn,ext

≤
∣∣∣fn − N∑

s=1

csφ
⊗n
(s)

∣∣∣
Fn,ext

+
∣∣∣ N∑
s=1

n∑
k=0

csC
k
n

(
φ⊗k(s),1⊗̂φ

⊗n−k
(s),2 − ϕ

⊗k
(s),l⊗̂ψ

⊗n−k
(s),l

)∣∣∣
Fn,ext

< ε,

if l is sufficiently large. Thus the lemma is proved. �

We return now to the proof of the theorem. Taking into account the result of this

lemma it is sufficient to prove (4.2) for arbitrary fm+1 of the form

fm+1 = ϕ⊗k⊗̂ψ⊗m+1−k,

where ϕ,ψ ∈ DC, suppϕ ⊂ [0, t), suppψ ⊂ [t,∞) and k ∈ {0, 1, . . . ,m+ 1}. We will use

recurrent relations (3.1) and the induction hypothesis. The following cases are possible.

1) Let k = m+ 1, i.e., fm+1 = ϕ⊗m+1. Since suppϕ ⊂ [0, t), we see that

〈Pm+1(·), ϕ⊗m+1〉 = 〈Pm+1(·), 1I[0,t)m+1ϕ⊗m+1〉

and the function 〈P1(·), ϕ〉 is At-measurable. Hence using (3.1) we get

E[〈Pm+1(·), ϕ⊗m+1〉 |At] = E[〈P1(·), ϕ〉〈Pm(·), ϕ⊗m〉 |At]

−mE[〈Pm(·),Pr [θϕ2ϕ⊗m−1]〉 |At]−mE[〈Pm−1(·), 〈ϕ,ϕ〉ϕ⊗m−1〉 |At]

−m(m− 1)E[〈Pm−1(·),Pr [ηϕ3ϕ⊗m−2]〉 |At]

= 〈P1(·), ϕ〉〈Pm(·), ϕ⊗m〉 −m〈Pm(·),Pr [θϕ2ϕ⊗m−1]〉

−m〈Pm−1(·), 〈ϕ,ϕ〉ϕ⊗m−1〉 −m(m− 1)〈Pm−1(·),Pr [ηϕ3ϕ⊗m−2]〉

= 〈Pm+1(·), ϕ⊗m+1〉 = 〈Pm+1(·), 1I[0,t)m+1ϕ⊗m+1〉.

2) Let k = 0, i.e., fm+1 = ψ⊗m+1. Since suppψ ⊂ [t,∞), we conclude that

〈Pm+1(·), 1I[0,t)m+1ψ⊗m+1〉 = 0.
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Hence

E[〈Pm+1(·), ψ⊗m+1〉 |At] = E[〈P1(·), ψ〉〈Pm(·), ψ⊗m〉 |At]

−mE[〈Pm(·),Pr [θψ2ψ⊗m−1]〉 |At]−mE[〈Pm−1(·), 〈ψ,ψ〉ψ⊗m−1〉 |At]

−m(m− 1)E[〈Pm−1(·),Pr [ηψ3ψ⊗m−2]〉 |At]

= E[〈P1(·), ψ〉〈Pm(·), ψ⊗m〉] = 0 = 〈Pm+1(·), 1I[0,t)m+1ψ⊗m+1〉

if m > 1, and

E[〈P2(·), ψ⊗2〉 |At] = E[〈P1(·), ψ〉2 |At]− E[〈P1(·), θψ2〉 |At]− E[〈P0, 〈ψ,ψ〉〉 |At]

= E[〈P1(·), ψ〉2]− 〈ψ,ψ〉 = 0 = 〈P2(·), 1I[0,t)2ψ
⊗2〉

if m = 1 (here E[·] denotes an expectation).

3) Let k ∈ {1, . . . ,m}, i.e., fm+1 = ϕ⊗k⊗̂ψ⊗m+1−k. Since suppψ ⊂ [t,∞), we see

that

〈Pm+1(·), 1I[0,t)m+1ϕ⊗k⊗̂ψ⊗m+1−k〉 = 0.

In view of the latter and At-measurability of 〈P1(·), ϕ〉 (because suppϕ ⊂ [0, t)) we

obtain

E[〈Pm+1(·),ϕ⊗k⊗̂ψ⊗m+1−k〉 |At] = E[〈P1(·), ϕ〉〈Pm(·), ϕ⊗k−1⊗̂ψ⊗m+1−k〉 |At]

−mE[〈Pm(·),Pr [θϕϕ⊗k−1⊗̂ψ⊗m+1−k]〉 |At]

−mE[〈Pm−1(·), (ϕ⊗k−1⊗̂ψ⊗m+1−k)ϕ〉 |At]

−m(m− 1)E[〈Pm−1(·),Pr [ηϕϕ⊗k−1⊗̂ψ⊗m+1−k]〉 |At]

= 0 = 〈Pm+1(·), 1I[0,t)m+1ϕ⊗k⊗̂ψ⊗m+1−k〉.

The theorem is proved. �

In order to express the Itô integral I(f) in terms of the extended Fock space Fext we

accept the following convention.

Convention 1. When we consider elements of the space L2(R+;Fn,ext) ∼= Fn,ext ⊗
L2(R+) we always select a representative that vanishes on the set

dn+1 :=
{

(t1, . . . , tn; t) ⊂ Rn+1
+

∣∣∃tj = t
}
.

Such a choice of representative will not affect our discussion because in compliance with

(3.3) we have Fn,ext ⊗ L2(R+) = L̂2(Rn+, ρn) ⊗ L2(R+) and (ρn ⊗m)(dn+1) = 0, where

m denotes the Lebesgue measure on R+.

Now we have the following statement (cf. (2.11)).

Theorem 4.3. For each f(·) = (fn(·))∞n=0 ∈ L2
a(R+;Fext),

(4.6) I(f) = (0, f̂0, f̂1, . . .) ∈ Fext,

where f̂n ∈ Fn+1,ext is the symmetrizations of fn(t1, . . . , tn; t) with respect to n + 1

variables.
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Proof. The correctness of the definition of f̂n was proved in [25], Lemma 3.2. Equality

(4.6) is based on (3.1) and easily follow from Theorem 4.1 and [25] (see the proof of

Theorem 3.1 therein). �

5. Extended stochastic integrals on the extended Fock space and its

riggings

In this section we define and study generalizations of the Itô integral (4.6). These gen-

eralizations are constructed by analogy with the case of Fock spaces (see Definitions 2.2

and 2.3).

5.1. An extended stochastic integral on Fext. Taking into account Theorem 4.3 the

simplest way to define an extended stochastic integral on Fext is the following.

Definition 5.1. For a function f(·) = (fn(·))∞n=0 ∈ L2(R+;Fext) such that

(0, f̂0, f̂1, . . . ) ∈ Fext or, equivalently,

∞∑
n=0

|f̂n|2Fn+1,ext
(n+ 1)! <∞

we define its extended stochastic integral by the formula

(5.1) Iext(f) := (0, f̂0, f̂1, . . . ) ∈ Fext.

Thus the extended stochastic integral Iext is defined as an unbounded operator

Iext : L2(R+;Fext)→ Fext, f(·) = (fn(·))∞n=0 7→ Iext(f) := (0, f̂0, f̂1, . . . )

with the dense in L2(R+;Fext) domain

Dom (Iext) :=
{
f(·) = (fn(·))∞n=0 ∈ L2(R+;Fext)

∣∣ (0, f̂0, f̂1, . . . ) ∈ Fext

}
.

It immediately follows from Theorem 4.3 and Definition 5.1 that if f is integrable by Itô

(i.e., f ∈ L2
a(R+;Fext)) then f is integrable in the extended sense (i.e., f ∈ Dom (Iext))

and Iext(f) = I(f). Hence Iext is an extension of the Itô integral I.
Let us establish an analog of Theorem 2.2. To this end at first we introduce an

annihilation operator a−(δ·). According to [25] if gn ∈ Fn,ext then gn can be considered

as an element of Fn−1,ext ⊗ L2(R+) and, moreover,

|gn|Fn−1,ext⊗L2(R+) ≤ |gn|Fn,ext .

Due to this fact the following definition is correct.

Definition 5.2. An annihilation operator a−(δ·) is defined as an unbounded operator

a−(δ·) : Fext → L2(R+;Fext), g = (gn)∞n=0 7→ a−(δ·)g := ((n+ 1)gn+1(·))∞n=0,(5.2)

(a−(δt)g)n(t1, . . . , tn−1) = ngn(t1, . . . , tn−1, t)

with the dense in Fext domain

Dom(a−(δ·)) :=
{
g = (gn)∞n=0 ∈ Fext

∣∣∣ ∞∑
n=0

|gn|2Fn−1,ext⊗L2(R+)n!n <∞
}
.

From the corresponding statement in [25] we obtain.
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Theorem 5.1. The extended stochastic integral Iext : L2(R+;Fext)→ Fext and the anni-

hilation operator a−(δ·) : Fext → L2(R+;Fext) are adjoint one to another. In particular,

these operators are closed.

Remark 5.1. It is possible to consider I and Iext on intervals [0, t], t ∈ R+, using functions

f(·)1I[0,t](·) instead of f(·) in the corresponding definitions. But in this case it is necessary

to keep in mind that the domain of Iext depends on t and (even in the case η = 0) it is

possible that f is integrable in the extended sense on R+ but is not integrable on [0, t].

Note that the extended stochastic integral on riggings of Fext (see below) has no this

lack.

5.2. An extended stochastic integral on the “regular” rigging of Fext. The space

Fext has the following “lacks”: the extended stochastic integral Iext : L2(R+,Fext) →
Fext is an unbounded operator (and, moreover, the domain of Iext(◦1I[0,t]) depends on t);

there is no a multiplication on Fext that is naturally connected with Iext. This constricts

an area of possible applications of Iext. In this subsection we consider a natural in a

sense extension of Fext that has no the mentioned lacks.

Let q ∈ N,

Fext(q) :=

∞⊕
n=0

Fn,ext (n!)22qn

be a Hilbert space of sequences f = (fn)∞n=0, fn ∈ Fn,ext, such that

‖f‖2Fext(q)
=

∞∑
n=0

|fn|2Fn,ext(n!)22qn <∞.

We consider the (“regular” in a terminology of [25]) rigging of Fext

(5.3) F−ext = ind lim
q∈N

Fext(−q) ⊃ Fext(−q) ⊃ Fext ⊃ Fext(q) ⊃ pr lim
q∈N

Fext(q) = F+
ext,

where the space

Fext(−q) =

∞⊕
n=0

Fn,ext 2−qn, ‖f‖2Fext(−q) =

∞∑
n=0

|fn|2Fn,ext2
−qn <∞

is dual of Fext(q) with respect to Fext.

The extended stochastic integral Iext : L2(R+;Fext(−q)) → Fext(−q) and the anni-

hilation operator a−(δ·) : Fext(q) → L2(R+;Fext(q)) can be defined by formulas (5.1)

and (5.2) respectively, one can show by analogy with [25] that now these operators are

adjoint one to another and continuous. Moreover, Iext and a−(δ·) can be continued to

adjoint one to another linear continuous operators acting from F−ext ⊗ L2(R+) → F−ext

and F+
ext → F+

ext ⊗ L2(R+) correspondingly. Elements of the Wick calculus on F−ext can

be defined and applied by analogy with the Gaussian analysis.

But rigging (5.3) is not suit in order to define Iext as a Bochner integral by analogy

with (2.17) (because δt 6∈ L2(R+)C), this can lead to inconvenience in some applications.

In the forthcoming subsection we consider the analog of rigging (2.3) that is similar to

(5.3) but has no such a lack.
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5.3. The “nonregular” rigging of Fext,− and elements of the Wick calculus.

Excluding from T some indexes (and preserving for this modified set of indexes the

notation T ) we can formulate the following statement that is a suitable reformulation of

Proposition 2.3 in [25].

Proposition 5.1. For each τ ∈ T there exists q0 = q0(τ) ∈ N such that for all q ∈
Nq0 := {q0, q0 + 1, . . .} the dense and continuous embedding F(τ, q) ↪→ Fext takes place.

In what follows, we accept on default τ ∈ T and q ∈ Nq0 . Due to Proposition 5.1 one

can construct a rigging of the extended Fock space Fext

(5.4) Fext,− ⊃ Fext(−τ,−q) ⊃ Fext ⊃ F(τ, q) ⊃ F+,

where Fext(−τ,−q), Fext,− = ind limτ∈T,q∈Nq0 Fext(−τ,−q) are the dual spaces of F(τ, q),

F+ with respect to Fext correspondingly. It is not difficult to show that

Fext(−τ,−q) =

∞⊕
n=0

D
(n)
−τ,C2−qn, , D⊗̂0

−τ,C := C,

where D
(n)
−τ,C, n ∈ N are the negative spaces of the chain

ind lim
τ∈T

D
(n)
−τ,C =: D′(n)

C ⊃ D(n)
−τ,C ⊃ Fn,ext ⊃ D⊗̂nτ,C ⊃ D

⊗̂n
C := pr lim

τ∈T
D⊗̂nτ,C.

Hence Fext(−τ,−q) consists of sequences ξ = (ξn)∞n=0, ξn ∈ D(n)
−τ,C such that

‖ξ‖2Fext(−τ,−q) =

∞∑
n=0

|ξn|2D(n)
−τ,C

2−qn <∞.

Remark 5.2. It is easy to see that if η = 0 then F(τ, q) ⊂ Fext(q), therefore Fext(−q) ⊂
Fext(−τ,−q). But in the general case there are no such embeddings, this is connected

with the structure of norms in Fn,ext.

Let us denote by 〈〈· , ·〉〉Fext
the dual pairing between elements of Fext(−τ,−q) and

F(τ, q) (just as Fext,− and F+), this pairing is generated by the scalar product in Fext.

The spaces Fext(−τ,−q) and Fext,− have a complicated structure as against usual sym-

metric Fock spaces. However since the positive spaces in riggings (5.4) and (2.3) coincide,

there exists a uniquely defined isomorphism

U : Fext,− → F−

such that for all ξ ∈ Fext,− and all ϕ ∈ F+

〈〈ξ, ϕ〉〉Fext
= 〈〈Uξ, ϕ〉〉F .

It is clear that U =
⊕∞

n=0 Un, where each Un : D′(n)
C → D′⊗̂nC is defined by

〈ξn, ϕn〉Fn,ext = 〈Unξn, ϕn〉, ξn ∈ D′
(n)
C , ϕn ∈ D⊗̂nC .

One can show ([25]) that the restrictions of Un on D
(n)
−τ,C are isometrical isomorphisms

between D
(n)
−τ,C and D⊗̂n−τ,C, therefore the restrictions of U on Fext(−τ,−q) are isometrical

isomorphisms between Fext(−τ,−q) and F(−τ,−q). In what follows, it is convenient for
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us to understand Fext,− and Fext(−τ,−q) as the U−1-images of F− and F(−τ,−q)
respectively.

Above mentioned realization of the space Fext,− is convenient for developing of a

Wick calculus on it. We do not discuss this in details, but we give a definition of a

Wick product on Fext,−. For given ξ = (ξn)∞n=0, ζ = (ζn)∞n=0 ∈ Fext,− a Wick product

ξ♦extζ ∈ Fext,− is defined by

ξ♦extη := U−1
(
Uξ♦Uζ

)
=
( n∑
m=0

ξm � ζn−m
)∞
n=0

,

where for each ξn ∈ D′(n)
C and each ζm ∈ D′(m)

C

ξn � ζm := U−1
n+m

(
Unξn ⊗̂ Umζm

)
.

The correctness of this definition (and, moreover, the fact that ♦ext is a continuous

operation in the topology of Fext,−) follows from results of [25]. We note also that if

η = 0 (the Gaussian and Poissonian cases) then the product � moves to the symmetric

tensor product ⊗̂ and ♦ext moves to ♦.

In order to describe an important property of the product � we adopt the following

convention.

Convention 2. Elements of the space Fn,ext ⊗Fm,ext are equivalence classes, and con-

sidering such elements we always choose representatives that vanish on the set{
(t1, . . . , tn; tn+1, . . . , tn+m) ∈ Rn+m

+

∣∣∃i ∈ {1, . . . , n}, j ∈ {n+ 1, . . . , n+m} : ti = tj
}
.

The following statement follows from [25], Lemma 4.1.

Proposition 5.2. Let fn ∈ Fn,ext, gm ∈ Fm,ext. Then

fn � ηm = f̂ngm ∈ Fn+m,ext,

where f̂ngm is the symmetrization of fn ⊗ gm with respect to n+m variables.

Finally, let us consider the creation operator aext,+(δt) that is defined by

(5.5) aext,+(δt) : Fext(−τ,−q)→ Fext(−τ,−q), aext,+(δt) := U−1a+(δt)U,

where a+(δt) is given by (2.7). It is easy to show that the operator aext,+(δt) is dual of

the annihilation operator a−(δt) : F(τ, q)→ F(τ, q) with respect to the zero space Fext:

(5.6) 〈〈aext,+(δt)ξ, ϕ〉〉Fext = 〈〈ξ, a−(δt)ϕ〉〉Fext , ξ ∈ Fext(−τ,−q), ϕ ∈ F(τ, q).

Moreover, a trivial calculation gives

aext,+(δt)ξ = ξ♦ext(0, δt, 0, 0, . . .), ξ ∈ Fext(−τ,−q).
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5.4. An extended stochastic integral on the “nonregular” rigging of Fext. It

follows from Theorem 4.3 and Proposition 5.2 that the Itô integral I(f) of a simple

function

f(·) =

n−1∑
k=0

f(k)1I(tk,tk+1](·) ∈ L2
a(R+;Fext)

has the form

I(f) =

n−1∑
k=0

f(k)♦ext(0, 1I(tk,tk+1], 0, 0, . . .) ∈ Fext.

Using the same arguments as in Subsection 2.2 it is natural to give the following definition

of the extended stochastic integral on the extended Fock spaces.

In what follows, let us fix τ ∈ T such that

(5.7)

∫
R+

|δt|2D−τ dt = c(τ) <∞

and q ∈ Nq0(τ) = {q0(τ), q0(τ) + 1, . . .}, where q0(τ) ∈ N is given in Proposition 5.1. The

existence of τ with the required property is proved in, e.g., [42], Chapter XIV.

Definition 5.3. The extended stochastic integral of a function

ξ ∈ L2(R+;Fext(−τ,−q))

is defined by the formula

(5.8) Îext(ξ) :=

∫
R+

aext,+(δt)ξ(t) dt ∈ Fext(−τ,−q)

as a Bochner integral of the vector-valued function

R+ 3 t 7→ aext,+(δt)ξ(t) = ξ(t)♦ext(0, δt, 0, 0, . . .) ∈ Fext(−τ,−q).

The correctness of this definition from the following statement follows.

Proposition 5.3. For all ξ ∈ L2(R+;Fext(−τ,−q)) integral (5.8) is well-defined as

a Bochner one and is continuous as an operator acting from L2(R+;Fext(−τ,−q)) to

Fext(−τ,−q).

Proof. Let ξ ∈ L2(R+;Fext(−τ,−q)). Using the estimate

‖aext,+(δt)ξ(t)‖Fext(−τ,−q) ≤ 2−
q
2 |δt|D−τ ‖ξ(t)‖Fext(−τ,−q)

(this inequality follows from (5.5) and results of [22]) we obtain∥∥∥∫
R+

aext,+(δt)ξ(t) dt
∥∥∥
Fext(−τ,−q)

≤
∫
R+

‖aext,+(δt)ξ(t)‖Fext(−τ,−q) dt

≤ 2−
q
2

∫
R+

|δt|D−τ ‖ξ(t)‖Fext(−τ,−q) dt

≤ 2−
q
2

(∫
R+

|δt|2D−τ dt
) 1

2
(∫

R+

‖ξ(t)‖2Fext(−τ,−q) dt
) 1

2

= 2−
q
2 c(τ)

1
2 ‖ξ‖L2(R+,Fext(−τ,−q)) <∞,

whence the necessary statement follows. �
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Remark 5.3. It follows from [25] that in the case where (5.7) does not hold, integral (5.8) is

well-defined as a Pettis one. Namely, for all ξ ∈ L2(R+,Fext(−τ,−q)), τ ∈ T, q ∈ Nq0(τ),

a function

ζ : R+ → Fext(−τ,−q), t 7→ ζ(t) := aext,+(δt)ξ(t)

is Pettis integrable, i.e.,

• the function 〈〈ζ(·), ϕ〉〉Fext
is measurable for any ϕ ∈ Fext(τ, q);

• 〈〈ζ(·), ϕ〉〉Fext
∈ L1(R+, dt) for all ϕ ∈ Fext(τ, q).

The corresponding Pettis integral of ξ is defined as a unique element of the space

Fext(−τ,−q), denoted by
∫
R+
ζ(t) dt, such that

〈〈
∫
R+

ζ(t) dt, ϕ〉〉Fext
=

∫
R+

〈〈ζ(t), ϕ〉〉Fext
dt.

Let us point out a relation between the extended stochastic integral Îext and the

annihilation operator a−(δ·).

Theorem 5.2. The integral Îext : L2(R+;Fext(−τ,−q))→ Fext(−τ,−q) is adjoint of the

annihilation operator a−(δ·) : F(τ, q)→ L2(R+,F(τ, q)) in the sense that

(5.9) 〈〈̂Iext(ξ), ϕ〉〉Fext
= 〈〈ξ, a−(δ·)ϕ〉〉L2(R+;Fext)

for all ξ ∈ L2(R+;Fext(−τ,−q)) and all ϕ ∈ F(τ, q).

Proof. Using (5.8) and (5.6) we obtain

〈〈Iext(ξ), ϕ〉〉Fext
= 〈〈

∫
R+

aext,+(δt)ξ(t) dt, ϕ〉〉Fext
=

∫
R+

〈〈aext,+(δt)ξ(t), ϕ〉〉Fext
dt

=

∫
R+

〈〈ξ(t), a−(δt)ϕ〉〉Fextdt = 〈〈ξ, a−(δ·)ϕ〉〉L2(R+;Fext)

for all ξ ∈ L2(R+;Fext(−τ,−q)) and all ϕ ∈ F(τ, q). �

From this statement and Theorem 5.1 we obtain the following corollary.

Corollary 5.1. Let f ∈ L2(R+;Fext) ⊂ L2(R+,Fext(−τ,−q)) be integrable in the sense

of Definition 5.1. Then the extended stochastic integral Îext(f) that is defined by (5.8)

coincides with the extended stochastic integral Iext(f) from Definition 5.1, i.e.,

Îext(f) = Iext(f), f ∈ Dom (Iext)

(this explains why we use the same name for these integrals).

In order to rewrite integral (5.8) by analogy with (5.1) we define

ξ̂n := U−1
n+1

(
Pr((Un ⊗ 1)ξn)

)
∈ D(n+1)

−τ,C

for all ξn ∈ D(n)
−τ,C ⊗ L2(R+), where Pr denotes the symmetrization operator. The next

statement follows from [25], Theorem 4.4.

Theorem 5.3. Let ξ = (ξn)∞n=0 ∈ L2(R+,Fext(−τ,−q)) (now ξn ∈ D(n)
−τ,C ⊗ L2(R+)).

Then

Îext(ξ) = (0, ξ̂0, ξ̂1, . . .) ∈ Fext(−τ,−q).
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Remark 5.4. All results of this subsection can be rewritten with obvious modifications

for the space Fext,− instead of Fext(−τ,−q).

Remark 5.5. Using the generalized Wiener–Itô–Segal isomorphism I : Fext → (L2),

defined by (3.4), one can reformulate all the above definitions and statements in terms of

test and generalized functions on D′ whose dual paring is generated by the scalar product

in the space (L2). In such a way one obtains a natural generalization of the Itô integral

with respect to Meixner processes, see [25] for more details.
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