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Abstract. In this paper we construct and study an integral of operator–valued
functions with respect to Hilbert space–valued measures generated by a res-
olution of identity. Our integral generalizes the Itô stochastic integral with
respect to normal martingales and the Itô integral on a Fock space.
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1. Introduction

It is well known that the Itô integral of adapted square integrable functions plays a
fundamental role in the classical stochastic calculus. In the case of complex–valued
integrands such integral can be interpreted (roughly speaking) as an ordinary
spectral integral applied to a certain vector from an L2-space. The reason for this is
that a square integrable martingale (integrator) can be regarded as a resolution of
identity applied to the above mentioned vector. At the same time, it is considerably
more difficult to establish a relation between the Itô and spectral integrals for L2-
valued integrands, since there is a problem in finding an explicit expression for
the corresponding spectral integral (see, for example, [5] and reference therein). In
this context a natural problem arises, — to give a suitable definition of “spectral
integral” which will generalize the Itô stochastic integral.

In this article we introduce a notion of such “spectral integral” and show that
it generalizes the classical Itô stochastic integral with respect to normal martin-
gales and the Itô integral on a Fock space. Such point of view enables us to treat
all these integrals in one framework.

Let us give a short exposition of our constructions. First of all let us recall the
definition of an ordinary square integrable martingale and its interpretation using
Hilbert space theory, see e.g. [15], [5], [13]. Throughout this paper, (Ω,A, P ) is a
complete probability space endowed with a right continuous filtration {At}t∈R+

,
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i.e., with a family {At}t∈R+
of σ-algebras At ⊂ A such that As ⊂ At if s ≤ t and

At =
⋂
s>tAs for all t ∈ R+. Furthermore, we assume that A coincides with the

smallest σ-algebra generated by
⋃
t∈R+

At and A0 contains all the P -null sets of

A.

Since At ⊂ A, the Hilbert space L2(Ω,At, P ) is a subspace of L2(Ω,A, P ).
Denote by Et the corresponding orthogonal projection in the space L2(Ω,A, P )
onto L2(Ω,At, P ). It can be shown that a projection-valued function R+ 3 t 7→ Et
is a resolution of identity in the space L2(Ω,A, P ) and, for each t ∈ R+,

EtF = E[F |At], F ∈ L2(Ω,A, P ),

where E[ · |At] denotes a conditional expectation with respect to the σ-algebra At.
Note that Et is right continuous (instead of the usual for functional analysis left
continuous) since the filtration {At}t∈R+ is right continuous. In what follows, we
will consider only right-continuous resolutions of identity.

By definition (see, e.g., [18], [19]) a function M : R+ → L2(Ω,A, P ) is called a
square integrable martingale with respect to the filtration {At}t∈R+ if EsMt = Ms

for all s ∈ [0, t]. Such martingale M is said to be closed by a function M∞ ∈
L2(Ω,A, P ) if EtM∞ = Mt for all t ∈ R+.

Suppose that a square integrable martingaleM is closed byM∞ ∈ L2(Ω,A, P ).
Then the Itô stochastic integral

∫
R+
F (t) dMt of a complex-valued function F : R+ →

C with respect to M can be interpreted as a spectral integral
∫
R+
F (t) dEt applied

to M∞. That is, ∫
R+

F (t) dMt =

( ∫
R+

F (t) dEt

)
M∞.

In general case, when F is a “fine” L2(Ω,A, P )-valued function the Itô integral
is well defined but it is impossible to realize the latter equality, because it is not
clear what the symbol

∫
R+
F (t) dEt means. In view of this it is natural to ask — in

what sense the expression
( ∫

R+
F (t) dEt

)
M∞ can be understood in general case?

A key point for the answer is the observation that the conditional expectation
E[ · |At] is a resolution of identity in the Hilbert space L2(Ω,A, P ) and that a
function F : R+ → L2(Ω,A, P ) can be naturally viewed as an operator–valued
function R+ 3 t 7→ AF (t) whose values are operators AF (t) of multiplication by
the function F (t) in the space L2(Ω,A, P ). This suggests us to consider the above
mentioned question in a more comprehensive sense — in what sense the expression( ∫

R+

A(t) dEt

)
M∞ or, equivalently,

∫
R+

A(t) dMt,

can be understood? Here E : R+ → H is a resolution of identity in a Hilbert space
H, R+ 3 t 7→ A(t) is an operator-valued function whose values are linear operators
in H, Mt := EtM∞ is an abstract martingale and M∞ ∈ H.
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In the next section we give the answer to this question for a certain class of
operator-valued functions R+ 3 t 7→ A(t). The corresponding integral∫

R+

A(t) dMt (1.1)

we define as an element of the Hilbert spaceH and call it a Hilbert space-valued sto-
chastic integral (or simply H-stochastic integral). We stress that formally the con-
struction of H-stochastic integral is similar to the one of the Itô integral. Since the
H-stochastic integral integrates with respect to an Hilbert space-valued measure
and the integrand is, generally speaking, non-bounded operator–valued function
one has to analyze the mutual dependencies of the integrand and the integrator.
Therefore, by analogy with the classical Itô integration theory in order to give a
correct definition of integral (1.1) we introduce a suitable notion of adaptedness
between the integrand A and the integrator M .

We illustrate our abstract constructions with a few examples. Thus, in Sec-
tion 3 we show that the Itô stochastic integral is the particular case of the H-
stochastic integral. Namely, we suppose that H := L2(Ω,A, P ) and take a nor-
mal martingale N : R+ → L2(Ω,A, P ) as an L2(Ω,A, P )-valued martingale (by
definition the process N = {Nt}t∈R+ is a normal martingale if N and t 7→
N2
t − t are both martingales). For a given adapted square integrable function

F ∈ L2(R+ × Ω, dt × P ) let R+ 3 t 7→ AF (t) be the corresponding operator-
valued function whose values are operators AF (t) of multiplication by the function
F (t) = F (t, ·) ∈ L2(Ω,A, P ) in the space L2(Ω,A, P ), i.e.,

L2(Ω,A, P ) ⊃ Dom(AF (t)) 3 G 7→ AF (t)G := F (t)G ∈ L2(Ω,A, P ).

Then the H-stochastic integral of AF coincides with the Itô integral
∫
R+
F (t) dNt

of F . That is, ∫
R+

AF (t) dNt =

∫
R+

F (t) dNt.

In Sections 4-6 using the notion of the H-stochastic integral we give the defi-
nition and establish properties of an Itô integral on a symmetric Fock space F(H)
over a real Hilbert space H. In the special important case when H = L2(R+, dt)
we obtain the well-known Itô integral on the Fock space F = F(L2(R+, dt)). This
integral is the pre-image (under the corresponding probabilistic interpretation of
F) of the classical Itô stochastic integral with respect to normal martingales which
possess the Chaotic Representation Property. Observe that the Itô integral on the
Fock space F is the useful tool in the quantum stochastic calculus, see e.g. [4], [2]
for more details.

Most of the basic results of this paper were announced and partially proved
in brief preliminary note [17].
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2. A construction of H-stochastic integral

LetH be a complex Hilbert space with the inner product (· , ·)H and the norm ‖·‖H,
L(H) be a space of all bounded linear operators inH. Suppose that E : R+ → L(H)
is a right-continuous resolution of identity inH, i.e., {Et}t∈R+ is a right-continuous
and increasing family of projections, such that E∞ := limt→∞Et = 1.

A slight generalization of the notion of square integrable martingale is the
following.

Definition 2.1. A function M : R+ → H, t 7→Mt, is called an H-valued martingale
with respect to E if EsMt = Ms for all t ∈ R+ and all s ∈ [0, t].

It is clear that an ordinary square integrable martingaleM : R+ → L2(Ω,A, P )
with respect to the filtration {At}t∈R+

is an L2(Ω,A, P )-valued martingale with
respect to the resolution of identity Et = E[ · |At]. By analogy with the classical
probability the H-valued martingale M will be called closed by a vector M∞ ∈ H
if Mt := EtM∞, t ∈ R+.

Sometimes it will be convenient for us to regard the H-valued martingale
M : R+ → H as an H-valued measure B(R+) 3 α 7→ M(α) ∈ H on the Borel
σ-algebra B(R+). To this end, for any interval (s, t] ⊂ R+, we set

M((s, t]) := Mt −Ms, M({0}) := M0, M(∅) := 0,

and then extend this definition to all Borel subsets of R+. Using such H-valued
measure we construct a nonnegative Borel measure

B(R+) 3 α 7→ µ(α) := ‖M(α)‖2H ∈ R+.

The purpose of this section is to define and study a Hilbert space-valued
stochastic integral (or H-stochastic integral)∫

R+

A(t) dMt (2.1)

for a certain class of functions R+ 3 t 7→ A(t) whose values are linear operators
in H. A construction of this integral we give step-by-step, beginning with the
simplest class of operator-valued functions. Since in the special case (see above) we
want to obtain a generalization of the classical Itô integral, we have to introduce
a suitable notion of adaptedness between A(t) and Mt such that on one hand
gives a natural generalization of the usual notion of adaptedness in the classical
stochastic calculus, and on the other hand, allows us to obtain an analogue of the
Itô isometry property and as a result to extend integral (2.1) from simple to a
wider class of operator-valued functions.

Let us introduce the required class of simple functions. For each point t ∈ R+,
we denote by

HM (t) := span{Ms2 −Ms1 | (s1, s2] ⊂ (t,∞)} ⊂ H
the linear span of the set {Ms2 −Ms1 | (s1, s2] ⊂ (t,∞)}, and

LM (t) = L(HM (t),H)
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will represent the set of linear operators in H such that continuously act from
HM (t) to H. We stress that the set LM (t) consists of all linear (bounded or non-
bounded) operators A : H → H such that

‖A‖LM (t) := sup

{
‖Ag‖H
‖g‖H

∣∣∣∣ g ∈ HM (t), g 6= 0

}
<∞.

Definition 2.2. A linear operator A in H will be called Mt-measurable if

(i) A ∈ LM (t) and ‖A‖LM (t) = ‖A‖LM (s) for all s ∈ [t,∞).
(ii) A is partially commuting with the resolution of identity E. More precisely,

AEsg = EsAg, g ∈ HM (t), s ∈ [t,∞).

Evidently, if an operator A in H is Mt-measurable for some t ∈ R+ then A
is Ms-measurable for all s ∈ [t,∞).

Definition 2.3. We say that a family {A(t)}t∈R+
of linear operators in H is an

M -adapted operator-valued function if, for every t ∈ R+, the operator A(t) is
Mt-measurable.

An M -adapted operator-valued function R+ 3 t 7→ A(t) will be called simple
if there exists a partition 0 = t0 < t1 < · · · < tn <∞ of R+ such that

A(t) =

n−1∑
k=0

Akκ(tk,tk+1](t), t ∈ R+, (2.2)

where κα(·) is the characteristic function of a Borel set α ∈ B(R+). It is clear
that each operator Ak in (2.2) is Mtk -measurable, since A(t) is the Mt-measurable
operator for every t ∈ R+.

Denote by S = S(M) the space of all simple M -adapted operator-valued
functions on R+. For each A ∈ S of kind (2.2), we introduce a quasinorm

‖A‖S2
:=

(∫
R+

‖A(t)‖2LM (t) dµ(t)

) 1
2

:=

(n−1∑
k=0

‖Ak‖2LM (tk) µ((tk, tk+1])

) 1
2

, (2.3)

where, as above, µ is a Borel measure on R+ defined by µ(α) := ‖M(α)‖2H. Since
a simple operator-valued function A is M -adapted, we conclude that, for each
t ∈ R+,

‖A(t)‖LM (t) = ‖A(t)‖LM (s), s ∈ [t,∞).

Due to the latter equality and finite additivity of the measure µ, definition (2.3)
is correct, i.e., it does not depend on the choice of representation A in S.

Let us give the definition of an H-stochastic integral.

Definition 2.4. For A ∈ S of kind (2.2), the H-stochastic integral with respect to
M is defined as an element of H given by∫

R+

A(t) dMt :=

n−1∑
k=0

Ak(Mtk+1
−Mtk). (2.4)



6 Volodymyr Tesko

Of course, definition (2.4) does not depend on the choice of representation of
the simple function A in the space S. Further, let 0 ≤ s ≤ ∞ be fixed. Clearly,
if A belongs to S then Aκ[0,s] also belongs to S. Hence, for every A ∈ S, we can
define an indefinite H-stochastic integral by

s∫
0

A(t) dMt :=

∫
R+

A(t)κ[0,s](t) dMt.

The following statement gives a description of the properties of our integral.

Theorem 2.5. Let 0 ≤ s ≤ ∞ be fixed. For all constants a, b ∈ C and for all simple
operator-valued functions A,B ∈ S, we have

s∫
0

(
aA(t) + bB(t)

)
dMt = a

s∫
0

A(t) dMt + b

s∫
0

B(t) dMt, (2.5)

∥∥∥ s∫
0

A(t) dMt

∥∥∥2

H
≤

s∫
0

‖A(t)‖2LM (t) dµ(t). (2.6)

Moreover, the indefinite integral
∫ s

0
A(t) dMt of A ∈ S is an H-valued martingale

with respect to resolution of identity E. That is, for any u ∈ [0, s],

Eu

( s∫
0

A(t) dMt

)
=

u∫
0

A(t) dMt. (2.7)

Proof. Equalities (2.5) and (2.7) are obvious. Let us check inequality (2.6).

Taking into account the definition of
∫ s

0
A(t) dMt, it will be enough to prove

(2.6) replacing s with ∞. Let A ∈ S be of the form

A(t) =

n−1∑
k=0

Akκ∆k
(t), ∆k := (tk, tk+1].

Since M is the H-valued martingale with respect to E, we see that M(∆k) =
E(∆k)Mtk+1

, where E(∆k) := Etk+1
−Etk . Using Definition 2.2 and the properties
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of resolution of identity E we get∥∥∥ ∫
R+

A(t) dMt

∥∥∥2

H
=

(∫
R+

A(t) dMt,

∫
R+

A(t) dMt

)
H

=

n−1∑
k,m=0

(
AkM(∆k), AmM(∆m)

)
H

=

n−1∑
k,m=0

(
AkE(∆k)Mtk+1

, AmE(∆m)Mtm+1

)
H

=

n−1∑
k,m=0

(
E(∆k)AkE(∆k)Mtk+1

, E(∆m)AmE(∆m)Mtm+1

)
H

=

n−1∑
k=0

(
AkE(∆k)Mtk+1

, AkE(∆k)Mtk+1

)
H=

n−1∑
k=0

‖AkM(∆k)‖2H

≤
n−1∑
k=0

‖Ak‖2LM (tk)‖M(∆k)‖2H =

n−1∑
k=0

‖Ak‖2LM (tk)µ(∆k)

=

∫
R+

‖A(t)‖2LM (t) dµ(t).

�

Inequality (2.6) enables us to extend the H-stochastic integral to operator–
valued functions R+ 3 t 7→ A(t) which are not necessarily simple. Namely, denote
by S2 = S2(M) a Banach space associated with the quasinorm ‖ · ‖S2

. For its

construction, at first it is necessary to pass from S to the factor space Ṡ :=
S/{A ∈ S | ‖A‖S2 = 0} and then to take the completion of Ṡ. It is not difficult
to understand that elements of the space S2 are equivalence classes of operator-
valued functions on R+ whose values are linear operators in the space H. These
classes are completely characterized by their following properties:

• An operator-valued function R+ 3 t 7→ A(t) belongs to some equivalence
class from S2 if and only if, for µ-almost all t ∈ R+, A(t) is a Mt-measurable
function and there exists a sequence (An)∞n=0 of simple functions An ∈ S
such that ∫

R+

‖A(t)−An(t)‖2LM (t) dµ(t)→ 0 as n→∞. (2.8)

• Operator-valued functions R+ 3 t 7→ A(t) and R+ 3 t 7→ B(t) belong to the
same equivalence class from S2 if and only if, for µ-almost all t ∈ R+,

A(t)g = B(t)g, g ∈ HM (t).
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By convention in what follows we will not make the distinctions between the
equivalence class and operator-valued function from this class.

Definition 2.6. An operator-valued function R+ 3 t 7→ A(t) is said to be H-
stochastic integrable with respect to M if A belongs to the space S2.

Let A be an H-stochastic integrable function with respect to M and (An)∞n=0

be a sequence of the simple functions An ∈ S such that (2.8) holds. Due to
inequality (2.6) a limit

lim
n→∞

∫
R+

An(t) dMt

exists in H and does not depend on the choice of the sequence (An)∞n=0 ⊂ S
satisfying (2.8). We denote such limit by∫

R+

A(t) dMt := lim
n→∞

∫
R+

An(t) dMt ∈ H

and call it the H-stochastic integral of A with respect to M . It is clear, if A and
B belong to the same equivalence class from S2 then∫

R+

A(t) dMt =

∫
R+

B(t) dMt.

Note that for all H-stochastic integrable functions the assertions of Theo-
rem 2.5 hold. To prove this fact, one should write (2.6) and other expression from
Theorem 2.5 for approximating functions from S and then pass to the limit. We
omit the details, note only that due to (2.6) the limit transition is always possible.

To clarify slightly the definition of H-stochastic integral, we consider a simple
example which shows that an ordinary spectral integral applied to a certain vector
from H can be thought of as the H-stochastic integral.

Example. Let M : R+ → H be an H-valued martingale closed by a certain vector
M∞ ∈ H. Suppose f : R+ → C is a square integrable function with respect to µ,
that is f ∈ L2(R+, µ). In the space H we consider a family {Af (t)}t∈R+

of the
operators of multiplication by the complex number f(t), i.e.,

Af (t)g := f(t)g, g ∈ H.

It is clear that Af ∈ S2 and∫
R+

Af (t) dMt =

∫
R+

f(t) dMt =

(∫
R+

f(t) dEt

)
M∞.

Note one simple property of the integral introduced above. Let U be some
unitary operator acting from H onto another complex Hilbert space K. Then

G : R+ → K, t 7→ Gt := UMt,

http://imath.kiev.ua/~tesko/
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is a K-valued martingale with respect to the resolution of identity

X : R+ → L(K), t 7→ Xt := UEtU
−1.

Proposition 2.7. If an operator-valued function R+ 3 t 7→ A(t) is H-stochastic
integrable with respect to M then the operator-valued function R+ 3 t 7→ UA(t)U−1

is H-stochastic integrable with respect to G and

U

(∫
R+

A(t) dMt

)
=

∫
R+

UA(t)U−1 dGt ∈ K.

Proof. These properties are immediate if A is a simple adapted function, and a
proof of the general case is not difficult. �

3. The Itô stochastic integral as a particular case of the
H-stochastic integral

Before stating the results let us recall the definition of the Itô stochastic integral.
In our presentation of stochastic integration we will restrict ourselves to normal
martingales. Note that this family of martingales includes Brownian motion, the
compensated Poisson process and the Azéma martingales as particular cases, see
e.g. [8], [6], [13], [11], [3].

Let (Ω,A, P ) be a complete probability space with a right continuous filtra-
tion {At}t∈R+

. Suppose that A coincides with the smallest σ-algebra generated by⋃
t∈R+

At and A0 contains all the P -null sets of A. In addition, suppose that A0

is trivial, that is every α ∈ A0 has probability 0 or probability 1.

By definition a process N = {Nt}t∈R+
is a normal martingale on (Ω,A, P )

with respect to {At}t∈R+ if {Nt}t∈R+ and {N2
t − t}t∈R+ are martingales with

respect to {At}t∈R+ . In other words, N is a normal martingale if Nt ∈ L2(Ω,At, P )
for all t ∈ R+ and

E[Nt −Ns|As] = 0, E[(Nt −Ns)2|As] = t− s (3.1)

for all s, t ∈ R+ such that s ≤ t. In what follows, without loss of generality we
assume that N0 = 0.

Let us introduce the space of functions for which the Itô integral is defined.
We will denote by L2(R+ × Ω) the space of all B(R+) × A-measurable functions
(classes of functions) F : R+ × Ω→ C such that∫

R+

∫
Ω

|F (t, ω)|2 dP (ω) dt =

∫
R+

‖F (t)‖2L2(Ω,A,P ) dt <∞,

and L2
a(R+×Ω) will present the subspace ofA-adapted functions. Recall, a function

F ∈ L2(R+ × Ω) is called A-adapted if F (t, ·) is At-measurable for almost all
t ∈ R+, that is F (t, ·) = E[F (t, ·)|At] for almost all t ∈ R+.
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Suppose that F (t) = F (t, x) is a simple function from the space L2
a(R+×Ω),

i.e., there exists a partition 0 = t0 < t1 < · · · < tn <∞ of R+ such that

F (·) =

n−1∑
k=0

Fkκ(tk,tk+1](·) ∈ L2
a(R+ × Ω).

The Itô integral of such function F with respect to N is defined by∫
R+

F (t) dNt :=

n−1∑
k=0

Fk(Ntk −Ntk−1
) ∈ L2(Ω,A, P )

and has the Itô isometry property∥∥∥ ∫
R+

F (t) dNt

∥∥∥2

L2(Ω,A,P )
=

∫
R+

‖F (t)‖2L2(Ω,A,P ) dt.

Since the set L2
a,s(R+×Ω) of all simple functions from L2

a(R+×Ω) is dense in the

space L2
a(R+ × Ω) (with respect to the topology of L2(R+ × Ω)), extending the

mapping

L2
a(R+ × Ω) ⊃ L2

a,s(R+ × Ω) 3 F 7→
∫
R+

F (t) dNt ∈ L2(Ω,A, P )

by continuity, we obtain a definition of the Itô integral on L2
a(R+ × Ω). In what

follows, we keep the same notation
∫
R+
F (t) dNt for the extension.

Let us show that the Itô integral can be interpreted as the H-stochastic inte-
gral. To this end, we set H := L2(Ω,A, P ) and consider in this space a resolution
of identity

E : R+ → L(L2(Ω,A, P )), t 7→ Et := E[ · |At],
generated by the filtration {At}t∈R+

. It is easy to see that the normal martingale
N is the L2(Ω,A, P )-valued martingale with respect to Et := E[ · |At] and

µ([0, t]) = ‖Nt‖2L2(Ω,A,P ) = E[N2
t ] = E[N2

t | A0] = t

is the ordinary Lebesgue measure on R+.
Let us prove that in the context of this section Nt-measurability is equivalent

to the usual At-measurability. More precisely, the following result holds (the proof
being similar to the one in [17] is omitted).

Lemma 3.1. Let t ∈ R+. For a given function F ∈ L2(Ω,A, P ) the operator AF of
multiplication by F in the space L2(Ω,A, P ), i.e.,

L2(Ω,A, P ) ⊃ Dom(A) 3 G 7→ AFG := FG ∈ L2(Ω,A, P ),

Dom(AF ) := {G ∈ L2(Ω,A, P ) |FG ∈ L2(Ω,A, P )},
is Nt-measurable if and only if the function F is At-measurable.

Moreover, if F ∈ L2(Ω,A, P ) is a At-measurable function then

‖AF ‖LN (s) = ‖F‖L2(Ω,A,P ), s ∈ [t,∞).

http://imath.kiev.ua/~tesko/
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This allows us to establish the following result.

Theorem 3.2. For given F ∈ L2(R+ ×Ω) the family {AF (t)}t∈R+ of the operators
AF (t) of multiplication by F (t) ∈ L2(Ω,A, P ) in the space L2(Ω,A, P ),

L2(Ω,A, P ) ⊃ Dom(AF (t)) 3 G 7→ AF (t)G := F (t)G ∈ L2(Ω,A, P ),

is H-stochastic integrable with respect to the normal martingale N (i.e. AF belongs
to S2 = S2(N)) if and only if F belongs to the space L2

a(R+ × Ω).

Proof. This fact is an immediate consequence of Lemma 3.1 and the definitions of
the spaces L2

a(R+ × Ω) and S2. �

The next theorem shows that the Itô stochastic integral with respect to the
normal martingale N can be interpreted as the H-stochastic integral.

Theorem 3.3. Let F ∈ L2
a(R+ × Ω) and {AF (t)}t∈R+

be the corresponding family
of the operators AF (t) of multiplication by F (t) in the space L2(Ω,A, P ). Then∫

R+

AF (t) dNt =

∫
R+

F (t) dNt.

Proof. In view of Theorem 3.2, Lemma 3.1 and the definitions of the integrals, it
is sufficient to prove the statement only for simple functions F ∈ L2

a(R+×Ω). But
in this case it can be easily proved directly. �

4. An Itô integral on a Fock space

Let F(H) be a symmetric Fock space over a complex separable Hilbert space H,
that is

F(H) := C⊕
∞⊕
n=1

H�nn!,

where � stands for the symmetric tensor product (⊗ is the ordinary tensor prod-
uct). Thus, F(H) is a complex Hilbert space of sequences f = (fn)∞n=0 such that
each fn belongs to H�n (H�0 := C) and

‖f‖2F(H) = |f0|2 +

∞∑
n=1

‖fn‖2H�nn! <∞.

Let us fix a resolution of identity R+ 3 t 7→ Pt ∈ L(H) in the space H. For
each t ∈ R+, we define the second quantization of Pt by the formula

ExpPt := I ⊕
∞⊕
n=1

P⊗nt ,

i.e.,
ExpPtf := (f0, Ptf1, . . . , P

⊗n
t fn, . . .) ∈ F(H) (4.1)

for all f = (fn)∞n=0 ∈ F(H). It is clear that ExpP : R+ → L(F(H)) is a resolution
of identity in F(H).
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Suppose that M : R+ → F(H) is an F(H)-valued martingale with respect to
Et := ExpPt of the form

Mt = (0, . . . , 0︸ ︷︷ ︸
k-times

,Mk(t), 0, 0, . . .) ∈ F(H), (4.2)

where k ∈ N is fixed. In what follows, we fix such martingale M .
In this section, starting with the notion of the H-stochastic integral, we define

an Itô integral (on the Fock space F(H)) with respect to such martingale M and
derive its properties. More exactly, we give a meaning to the expression∫

R+

f(t) dMt (4.3)

for a certain class of F(H)-valued functions f : R+ → F(H).
First, let us describe a class of functions f : R+ → F(H) for which expression

(4.3) will be defined. In the Fock space F(H), for a fixed vector f ∈ F(H), we
consider the operator Af of a Wick multiplication by f , i.e.,

F(H) ⊃ Dom(Af ) 3 g 7→ Afg := f♦g ∈ F(H),

Dom(Af ) := {g ∈ F(H) | f♦g ∈ F(H)}.

Recall, for given f = (fn)∞n=0 and g = (gn)∞n=0 from F(H) the Wick product f♦g
is defined by

f♦g :=

( n∑
m=0

fm�gn−m
)∞
n=0

(4.4)

provided the latter sequence belongs to F(H). It is easily seen that Dom(Af ) is
dense in F(H), since Ffin(H) ⊂ Dom(Af ) and Ffin(H) is a dense subset of F(H).
Here Ffin(H) denotes the set of all finite sequences (fn)∞n=0 from F(H).

The following statement underlies the definition of a class of functions for
which integral (4.3) will be defined.

Lemma 4.1. For given t ∈ R+ and f = (fn)∞n=0 ∈ F(H) an operator Af of Wick
multiplication by f in the space F(H) is Mt-measurable if and only if

ExpPtf = f. (4.5)

Moreover, if f ∈ F(H) has property (4.5) then

‖Af‖LM (s) = ‖f‖F(H), s ∈ [t,∞). (4.6)

Proof. Suppose that equality (4.5) holds for some t ∈ R+ and f = (f)∞n=0 ∈ F(H).
Let us prove that the corresponding operator Af of Wick multiplication by f is
Mt-measurable. Clearly, for this we need to verify hypotheses of Definition 2.2.

First, let us check that Af ∈ LM (t), i.e., there exists a constant C > 0 such
that

‖Afg‖F(H) ≤ C ‖g‖F(H)

for all g ∈ HM (t) := span{Ms2 −Ms1 | (s1, s2] ⊂ (t,∞)} ⊂ F(H).

http://imath.kiev.ua/~tesko/
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Fix g ∈ HM (t). From the definition of the spaceHM (t) and (4.2), we conclude
that

g = (0, . . . , 0︸ ︷︷ ︸
k-times

, gk, 0, 0, . . .). (4.7)

Therefore, according to (4.4) we have

Afg = f♦g = (0, . . . , 0︸ ︷︷ ︸
k-times

, f0�gk, f1�gk, . . .).

Taking into account that P⊗kt gk = 0 (because g ∈ HM (t) and M is the F(H)-
valued martingale with respect to ExpP ) and P⊗nt fn = fn for all n ∈ N∪{0}, we
obtain

‖fn�gk‖2H�n+k =
n!k!

(n+ k)!
‖fn‖2H�n‖gk‖2H�k .

Hence

‖Afg‖2F(H) = ‖f♦g‖2F(H) =

∞∑
n=0

‖fn�gk‖2H�n+k(n+ k)!

=

∞∑
n=0

‖fn‖2H�n‖gk‖2H�kn!k! = ‖f‖2F(H)‖g‖
2
F(H).

(4.8)

So, we can assert that Af ∈ LM (t) and equality (4.6) holds.
Let us check that Af is partially commuting with ExpP , i.e.,

Af ExpPs g = ExpPsAfg, g ∈ HM (t), s ∈ [t,∞). (4.9)

Using (4.1) and (4.7) we get

Af ExpPsg = f♦ExpPsg

= (0, . . . , 0︸ ︷︷ ︸
k-times

, f0�P⊗ks gk, . . . , fn�P⊗ks gk, . . .). (4.10)

On the other hand, we have

ExpPsAfg = ExpPs
(
f♦g

)
= (0, . . . , 0︸ ︷︷ ︸

k-times

, f0�P⊗ks gk, . . . , P
⊗n
s fn�P⊗ks gk, . . .). (4.11)

Since f = ExpPtf and ExpPs ExpPt = ExpPt for all s ∈ [t,∞), we conclude
that P⊗ns fn = fn for all n ∈ N and all s ∈ [t,∞). Hence, from (4.10) and (4.11) it
follows (4.9).

So, the first part of the lemma is proved. Let us prove the converse statement:
if for given f ∈ F(H) the corresponding operator Af of Wick multiplication by f
in the space F(H) is Mt-measurable then (4.5) holds.

Since Af is the Mt-measurable, we see that for any s ∈ [t,∞)

AExpPsg = ExpPsAg, g ∈ HM (t).
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Let s ∈ (t,∞) and (s1, s2] ⊂ (t, s] be fixed. We take

g := Ms2 −Ms1 = (0, . . . , 0︸ ︷︷ ︸
k-times

, gk, 0, 0, . . .) ∈ HN (t),

where gk := Mk(s2)−Mk(s1). Then, from the one hand side,

AEsg = Ag = f♦g = (0, . . . , 0︸ ︷︷ ︸
k-times

, f0�gk, f1�gk, . . .),

and on the other side, taking into account that P⊗ks gk = gk, we get

EsAg = Es(f♦g) = (0, . . . , 0︸ ︷︷ ︸
k-times

, f0�P⊗ks gk, . . . , P
⊗n
s fn�P⊗ks gk, . . .)

= (0, . . . , 0︸ ︷︷ ︸
k-times

, f0�gk, . . . , P⊗ns fn�gk, . . .).

Hence, fn�gk = P⊗ns fn�gk for each n ∈ N and all s ∈ (t,∞). Since resolution
of identity (4.1) is right continuous, the latter equality still holds for s = t, and
therefore equality (4.5) takes place. �

Now we are ready to introduce a class of F(H)-valued functions for which
integral (4.3) will be defined. Denote by L2(R+, µ;F(H)) := L2(R+ → F(H), µ)
the Hilbert space of F(H)-valued functions

f : R+ → F(H), ‖f‖2L2(R+,µ;F(H)) :=

∫
R+

‖f(t)‖2F(H) dµ(t) <∞,

with the corresponding scalar product, where as above µ(α) := ‖M(α)‖2F(H).

Definition 4.2. A function f(·) = (fn(·))∞n=0 ∈ L2(R+, µ;F(H)) is said to be
adapted with respect to ExpP if for µ-almost all t ∈ R+

ExpPtf(t) = f(t).

We will use the notation L2
a(R+, µ;F(H)) for the corresponding subspace of the

space L2(R+, µ;F(H)) formed by adapted functions.

Let E = E (ExpP ) denote the class of simple adapted functions with respect
to the resolution of identity ExpP . That is, a function f belongs to E if it belongs
to L2

a(R+, µ;F(H)) and can be written as

f(t) =

n−1∑
k=0

f(k)κ(tk,tk+1](t) ∈ F(H) (4.12)

for µ-almost all t ∈ R+, where 0 = t0 < t1 < · · · < tn <∞ is a partition of R+. We
denote by E2 = E2 (ExpP ) the closure of the set E in the space L2(R+, µ;F(H)).
Observe that if the structures of the elements of the Hilbert space H and the
orthogonal projection Pt are not known, then it is difficult to characterize the space
E2 (clear only that E2 ⊂ L2

a(R+, µ;F(H))). In a special case when H = L2(R+, dt)
and Pt is the resolution of identity of the operator of multiplication by t in the

http://imath.kiev.ua/~tesko/
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space L2(R+, dt), the space E2 can be analyzed in a deeper way, in particular, it
can be shown that E2 = L2

a(R+, µ;F(H)), see the next section for more details.

Let us derive the connection between the spaces E2 (ExpP ) and S2(M).

Proposition 4.3. A function f : R+ → F(H) belongs to the space E2 (ExpP ) if and
only if the corresponding operator-valued function R+ 3 t 7→ Af (t) whose values
are operators of Wick multiplication by f(t) in the Fock space F(H) belongs to the
space S2(M).

Proof. This fact is an immediate consequence of Lemma 4.1 and the definitions of
the spaces E2 (ExpP ) and S2(M). �

Now we are ready to give a definition of Itô integral on the Fock space F(H).

Definition 4.4. An Itô integral of f ∈ E2 with respect to M is defined by∫
R+

f(t) dMt :=

∫
R+

Af (t) dMt ∈ F(H),

where Af (t) is the operator of Wick multiplication by f(t) in the space F(H).

Clearly, for a simple function f ∈ E of kind (4.12), we have

∫
R+

f(t) dMt =

n−1∑
k=0

f(k)♦(Mtk+1
−Mtk) ∈ F(H).

Theorem 4.5. Let f, g ∈ E2 and a, b ∈ C then∫
R+

(
af(t) + bg(t)

)
dMt = a

∫
R+

f(t) dMt + b

∫
R+

g(t) dMt

and ∥∥∥ ∫
R+

f(t) dMt

∥∥∥2

F(H)
=

∫
R+

‖f(t)‖2F(H) dµ(t). (4.13)

Proof. It is sufficient to prove the statement for simple adapted functions. The
first assertion is obvious. Concerning the second one, we use the technique of the
proof of Theorem 2.5 and equality (4.8). Thus, for a simple function f ∈ E of kind
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(4.12) we obtain∥∥∥ ∫
R+

f(t) dMt

∥∥∥2

F(H)
=
∥∥∥ n−1∑
k=0

f(k)♦(Mtk+1
−Mtk)

∥∥∥2

F(H)

=

n−1∑
k=0

‖f(k)♦(Mtk+1
−Mtk)‖2F(H)

=

n−1∑
k=0

‖f(k)‖2F(H)‖Mtk+1
−Mtk‖2F(H)

=

n−1∑
k=0

‖f(k)‖2F(H) µ((tk, tk+1])

=

∫
R+

‖f(t)‖2F(H) dµ(t).

�

Remark 4.6. Note as a consequence of the previous theorem that the integral∫
R+
f(t) dMt is well defined linear isometry operator from a subspace E2 of the

space L2(R+, µ;F(H)) into F(H).

5. Itô integral on the Fock space F(L2(R+))

Let L2(R+) := L2(R+, dt) be a complex L2-space with respect to the Lebesgue
measure dt = dm(t). The aim of this section is to show that the definition of
the Itô integral on the Fock space F := F(L2(R+)) proposed in [4] (see also [2])
is the particular case of the one proposed in the previous section. Note that the
Fock space F is closely related to the chaos expansion in probability theory (see,
e.g., [13], [9], [11] and also Section 6 below) and from a physics point of view it
describes a field of bosonic particles, like photons. We shall always identify (in the
natural way) the space L2(R+)�n with the space L2

sym(Rn+) of all complex-valued

symmetric functions from L2(Rn+). Now

‖fn‖2L2(R+)�n =

∫
Rn

+

|fn(t1, . . . , tn)|2 dt1 . . . dtn

= n!

∞∫
0

tn∫
0

· · ·
( t2∫

0

|fn(t1, . . . , tn)|2 dt1
)
. . . dtn−1 dtn

for all fn ∈ L2(R+)�n ∼= L2
sym(Rn+).

Recall the definition of the Itô integral on the Fock space F proposed in [4]
(see also [2]). First of all a function R+ 3 t 7→ f(t) = (fn(t))∞n=0 ∈ F is called Itô

http://imath.kiev.ua/~tesko/
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integrable if f belongs to L2(R+, dt;F) and, for almost all t ∈ R+,

f(t) = (f0(t),κ[0,t]f1(t), . . . ,κ[0,t]nfn(t), . . .).

In other words, in our terminology, a function f ∈ L2(R+, dt;F) is Itô integrable
if and only if f is an adapted function with respect to the resolution of iden-
tity ExpX : R+ → L(F), t 7→ ExpXt, constructed according to (4.1) using the
resolution of identity

R+ 3 t 7→ Xtf := κ[0,t]f ∈ L2(R+), f ∈ L2(R+),

of the operator of multiplication by t in the space L2(R+). Following the notations
of the previous section we will denote by L2

a(R+, dt;F) the set of all adapted
functions with respect to ExpX .

Observe here that each component fn(t1, . . . , tn; t) of a function

f(·) = (fn(·))∞n=0 ∈ L2(R+, dt;F)

belongs to the space L2
sym(Rn+)⊗ L2(R+). It means that fn belongs to L2(Rn+1

+ )
and it is a symmetric function in the first n variables, i.e., for m-almost all t ∈ R+

and for m⊗n-almost all (t1, . . . , tn) ∈ Rn+,

fn(t1, . . . , tn; t) =
1

n!

∑
σ

fn(tσ(1), . . . , tσ(n); t),

where σ running over all permutations of {1, . . . , n}, m is the Lebesgue measure.

Definition 5.1. The Itô integral I(f) of f ∈ L2
a(R+, dt;F) is defined as the unique

linear isometric mapping

I : L2(R+, dt;F)→ F , Dom(I) := L2
a(R+, dt;F), (5.1)

such that

I(gκ(s1,s2]) = g♦(0,κ(s1,s2], 0, 0, . . .)

= (0, g0 � κ(s1,s2], . . . , gn � κ(s1,s2], . . .) ∈ F
(5.2)

for any (s1, s2] ⊂ R+ and any g = (gn)∞n=0 ∈ F such that ExpXs1 g = g.

We stress that a set of all functions R+ 3 t 7→ f(t) := gκ(s1,s2](t) ∈ F such

that (s1, s2] ⊂ R+ and g = ExpXs1 g ∈ F is a total in the space L2
a(R+, dt;F).

The isometry of I means that

‖I(f)‖2F =

∫
R+

‖f(t)‖2F dt, f ∈ L2
a(R+, dt;F). (5.3)

Let us show that the integral I is a particular case of the integral introduced
in the previous section. To this end, note that

Z : R+ → F , t 7→ Z t := (0,κ[0,t], 0, 0, . . .),

is an F-valued martingale with respect to ExpX and

µ([0, t]) := ‖Zt‖2F = ‖κ[0,t]‖2L2(R+) = m([0, t]) = t
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is the Lebesgue measure on R+.

Theorem 5.2. We have E2(ExpX ) = L2
a(R+, dt;F) and

I(f) =

∫
R+

f(t) dZt, f ∈ L2
a(R+, dt;F).

Proof. Since the set E (ExpX ) of all simple adapted functions with respect to the
resolution of identity ExpX is dense in the spaces E2(ExpX ) and L2

a(R+, dt;F),
in view of the definitions of the latter spaces, we conclude that E2(ExpX ) =
L2
a(R+, dt;F).

The second assertion of the theorem directly follows from the definitions of
the integrals. �

Now one can develop an abstract Itô calculus on the Fock space F . In par-
ticular, one can construct iterated Itô integrals and the corresponding Fock space
chaotic expansion, to prove an analog of Clark–Ocone formula and so on. We do
not discuss this in details (see, e.g., [4], [2]), but we recall here the expression of
the Itô integral I in terms of the Fock space structure. Since this fact is easily
proven, for the reader’s convenience we also present a proof.

Theorem 5.3. Let f(·) = (fn(·))∞n=0 belongs to L2
a(R+, dt;F). Then

I(f) =

∫
R+

f(t) dZt = (0, f̂1, . . . , f̂n, . . .), (5.4)

where each f̂n(t1, . . . , tn) is the symmetrization of fn−1(t1, . . . , tn−1; t) with respect
to n variables, i.e., in view of the fact that fn−1(t1, . . . , tn−1; t) is symmetric in
the first n− 1 variables,

f̂n(t1, . . . , tn) :=
1

n

n∑
k=1

fn−1(t1, . . . , tk� , . . . , tn; tk).

Proof. According to (5.3) and Theorem 3.2 from [1], for all f ∈ L2
a(R+, dt;F), we

have

‖I(f)‖2F =

∫
R+

‖f(t)‖2F dt and ‖(0, f̂1, . . . , f̂n, . . .)‖2F =

∫
R+

‖f(t)‖2F dt.

In other words, the linear mappings

f 7→ I(f) and f 7→ (0, f̂1, . . . , f̂n, . . .)

from L2
a(R+, dt;F) to F are continuous (more exactly, isometric). Therefore, it is

sufficient to check (5.4) for functions R+ 3 t 7→ f(t) := gκ(s1,s2](t) ∈ F such that
(s1, s2] ⊂ R+, and g = ExpXs1g.

Fix (s1, s2] ⊂ R+ and g = (gn)∞n=0 ∈ F such that g = ExpXs1g. For

f(t) := gκ(s1,s2](t) = (fn(t))∞n=0, fn(t) := gnκ(s1,s2](t),

http://imath.kiev.ua/~tesko/
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we have∫
R+

f(t) dZ(t) = g♦(Zs2 − Zs1)

= (0, g0 � κ(s1,s2], . . . , gn−1 � κ(s1,s2], . . .) = (0, f̂1, . . . , f̂n, . . .).

�

6. Relationship between the classical Itô integral
and the Itô integral on the Fock space F
The main purpose of this section is to connect the objects of Sections 3 and 5 with
each other. Such results are fairly standard, but we include it here for the sake of
completeness.

Without going into details, let us give a brief introduction to the theory of
probabilistic interpretations of the Fock space F , see e.g. [13], [9] for more details.
As before, let (Ω,A, P ) be a complete probability space with a right continuous
filtration {At}t∈R+ , A0 be the trivial σ-algebra containing all the P -null sets of
A and A coincides with the smallest σ-algebra generated by

⋃
t∈R+

At. Suppose

N = {Nt}t∈R+
, N0 = 0, is a normal martingale on (Ω,A, P ) with respect to

{At}t∈R+ .

It is well known that the mapping (so-called chaos expansion)

I : F → L2(Ω,A, P ), f = (fn)∞n=0 7→ If :=

∞∑
n=0

In(fn), (6.1)

is well-defined and isometric. Here I0(f0) := f0 and for each n ∈ N

In(fn) := n!

∞∫
0

tn∫
0

· · ·
( t2∫

0

fn(t1, . . . , tn) dNt1

)
. . . dNtn−1

dNtn

is an n-iterated Itô integral with respect to N .

In what follows we will always assume that the normal martingale N has the
Chaotic Representation Property (CRP), i.e., the mapping I : F → L2(Ω,A, P )
is unitary. In this way we get a probabilistic interpretation of the Fock space F .
We observe that the Brownian motion, the compensated Poisson process and some
Azéma martingales are examples of normal martingales which possess the CRP,
see for instance [13], [9], [8], [11], [3].

It is not difficult to show that the mapping I is completely characterized by
the following properties:

(i) I : F → L2(Ω,A, P ) is the unitary operator. That is, I maps the whole space
F onto whole L2(Ω,A, P ) and ‖If‖L2(Ω,A,P ) = ‖f‖F for all f ∈ F .

(ii) I0(f0) = f0 for all f0 ∈ C.
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(iii) For each n ∈ N and every disjoint sets α1, . . . , αn from B(R+) of finite
Lebesgue measure,

In(κα1
� · · ·�καn

) = N(α1) · . . . ·N(αn), (6.2)

where B(R+) 3 α 7→ N(α) ∈ L2(Ω,A, P ) is an vector-valued measure gener-
ated by the normal martingale N , i.e., we set

N((s1, s2]) = Ns2 −Ns1 , N({0}) := N0 = 0, N(∅) := 0,

and extend this definition to all Borel subsets of R+.

Let us pass to the establishing of the relationship between the objects of
Sections 3 and 5. From property (iii) of the mapping I it immediately follows that
the normal martingale N is the I-image of the F-valued martingale

Z : R+ → F , t 7→ Zt := (0,κ[0,t], 0, 0, . . .),

i.e., for almost all t ∈ R+, Nt = IZt ∈ L2(Ω,A, P ). The following step is to show
that the resolution of identity

E : R+ → L(L2(Ω,A, P )), t 7→ Et := E[ · |At],
is the I-image of the resolution of identity ExpX : R+ → L(F), where as before

ExpXt := I ⊕
∞⊕
n=1

X⊗nt , Xtf = κ[0,t]f, f ∈ L2(R+).

We have the following result.

Lemma 6.1. For all t ∈ R+ we have I−1E[ · |At]I = ExpXt. That is,

I−1E[If |At] = ExpXtf = (f0,κ[0,t]f1, . . . ,κ[0,t]nfn, . . .)

for all f = (fn)∞n=0 ∈ F .

Proof. In order to prove the assertion of the lemma it is sufficient to show that

E[In(fn)|At] = In(κ[0,t]nfn) (6.3)

for any fn ∈ L2(R+)�n, n ∈ N.
Since functions

fn := κα1� · · ·�καn , αi ∈ B(R+), αi ∩ αj = ∅, i 6= j,

form a total set in L2(R+)�n, it is sufficient to check (6.3) for such functions.
Using (6.2), (3.1) and the properties of the conditional expectation, we get

E[In(fn)|At] = E[In(κα1� · · ·�καn)|At] = E[N(α1) · . . . ·N(αn)|At]

= E
[∏n

i=1

(
N(αi ∩ [0, t])−N(αi ∩ (t,∞])

) ∣∣At]
= N(α1 ∩ [0, t]) · . . . ·N(αn ∩ [0, t])

= In(κα1∩[0,t]� · · ·�καn∩[0,t]) = In(κ[0,t]nfn).

�

As an immediate consequence we have.
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Corollary 6.2. For given t ∈ R+ a function F ∈ L2(Ω,A, P ) is an At-measurable
if and only if f = ExpXtf , where f := I−1F ∈ F .

The next result explains the relationship between the Wick multiplication ♦
on F and the ordinary multiplication on L2(Ω,A, P ).

Lemma 6.3. Suppose t ∈ R+ and F ∈ L2(Ω,A, P ) is an At-adapted function.
Then for each α ∈ B([t,∞)) the function FN(α) belongs to L2(Ω,A, P ) and the
I−1-image of FN(α) has the form

I−1(FN(α)) = I−1F♦I−1(N(α)) = I−1F♦Z(α). (6.4)

Proof. Using (6.2) and taking into account that for any fixed interval [a, b] ⊂ R+

functions κα1
� · · ·�καn

, where each αi ∈ B([a, b]) and αi∩αj = ∅ for i 6= j, form
a total set in the space L2

sym([a, b]n) of all complex-valued symmetric functions

from L2([a, b]n), we get

In+1(fn � g1) = In(fn) I1(g1)

for all fn ∈ L2(R+)�n and all g1 ∈ L2(R+) such that fn = κ[0,t]nfn and g1 =
κ(t,∞)g1. Hence, for any f = (fn)∞n=0 ∈ F such that f = ExpXtf and any α ∈
B([t,∞)),

I(f♦Z(α)) = If · IZ(α) = If ·N(α).

From the latter equality and Corollary 6.2, we immediately obtain the assertion
of the lemma. �

Corollary 6.4. Suppose t ∈ R+ and F ∈ L2(Ω,A, P ) is an At-measurable func-
tion. Let AF be the corresponding operator of multiplication by F in the space
L2(Ω,A, P ), i.e.,

L2(Ω,A, P ) ⊃ Dom(AF ) 3 G 7→ AFG := FG ∈ L2(Ω,A, P ).

Then, for all g ∈ HZ(t) = span{Zs2 − Zs1 | (s1, s2] ⊂ (t,∞)} ⊂ F , we have

I−1AF Ig = I−1F♦g.

Proof. Let F ∈ L2(Ω,A, P ) be an At-measurable function, AF be the correspond-
ing operator of multiplication by F in the space L2(Ω,A, P ) and g ∈ HZ(t). Using
(6.4) we get

I−1AF Ig = I−1AFG = I−1(FG) = I−1F♦I−1G = I−1F♦g,

where G := Ig ∈ HN (t) = span{Ns2 −Ns1 | (s1, s2] ⊂ (t,∞)}. �

Remark 6.5. It should be noticed that in general case the I-image of the Wick
multiplication ♦ distinguishes from the ordinary multiplication. To be precise,
there exist functions F,G ∈ L2(Ω,A, P ) such that FG ∈ L2(Ω,A, P ) but

I−1(FG) 6= I−1F♦I−1(G).
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Before establishing the relationship between the classical Itô integral and
the Itô integral on the Fock space F we note that the spaces L2(R+ × Ω) and
L2(R+, dt;F) can be interpreted as tensor products L2(R+) ⊗ L2(Ω,A, P ) and
L2(R+)⊗F respectively. Therefore

1⊗ I : L2(R+, dt;F)→ L2(R+ × Ω)

is a well-defined unitary operator.

Theorem 6.6. We have L2
a(R+ × Ω) = (1⊗ I)L2

a(R+, dt;F) and

I

(∫
R+

f(t) dZt

)
=

∫
R+

If(t) dNt

for arbitrary f ∈ L2
a(R+, dt;F).

Proof. This result follows from Proposition 2.7 combined with Corollaries 6.2
and 6.4. �

Remark 6.7. Since L2
a(R+ × Ω) = (1 ⊗ I)L2

a(R+, dt;F), for any function F ∈
L2
a(R+×Ω) there exists a uniquely defined vector f(·) = (fn(·))∞n=0 ∈ L2

a(R+, dt;F)
such that F (t) = If(t) =

∑∞
n=0 In(fn(t)) for almost all t ∈ R+. In view of (5.4),

(6.1) and Theorem 6.6, we get∫
R+

F (t) dNt = I

(∫
R+

f(t) dZt

)
=

∞∑
n=1

In(f̂n) ∈ L2(Ω,A, P ).

Using this representation we can easily construct a natural extension of the
Itô integral, called the Hitsuda–Skorohod integral, whose study has become very
fashionable (see, e.g., [7], [16], [14], [11]). Namely, the expression

IHS(F ) :=

∞∑
n=1

In(f̂n) ∈ L2(Ω,A, P ), F ∈ Dom(IHS),

Dom(IHS) :=

{
G ∈ L2(R+ × Ω), G(t) =

∞∑
n=0

In(gn(t))
∣∣∣ ∞∑
n=1

In(ĝn) ∈ L2(Ω,A, P )

}
,

is called the Hitsuda–Skorohod integral of F . When N is a Brownian motion it is
exactly the integral introduced by Hitsuda [7] and Skorohod [16].

It is clear that L2
a(R+, dt;F) ⊂ Dom(IHS) and the operator IHS restricted to

the space L2
a(R+, dt;F) coincides with the Itô integral, i.e.,

IHS(F ) =

∫
R+

F (t) dNt, F ∈ L2
a(R+, dt;F).

Note that the Hitsuda–Skorohod integral can also be defined as the adjoint of the
Malliavin derivative, see e.g. [20], [14], [12].
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Remark 6.8. In this section we have seen that the Itô integral with respect to
normal martingales with CRP can be interpreted as the image of Itô integral (5.1)
on the Fock space F . Because of this fact we can treat the stochastic analysis
connected with all these martingales in one framework — as the analysis on the
Fock space.

In connection with this it is natural to ask:“is it possible to obtain a similar
result for some normal martingales without the CRP?”. Recently it became clear
(see surveys [10] and the references therein) that this is possible at least for the case
of stochastic integration with respect to Gamma, Pascal and Meixner processes.
But in this case it is necessary to use more complicated “extended Fock space”
instead of the Fock space F . It can be shown that the corresponding Itô integral
on the extended Fock space is the particular case of the H-stochastic integral.
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