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On the algorithm of degenerations and fundamental groups
as a tool to understand algebraic surfaces

Meirav Amram
(Shamoon College of Engineering, Ashdod, Israel)
E-mail: meiravt@sce.ac.il

The classification of algebraic surfaces in the moduli space has been an interesting question for
many years. Fundamental groups are very nice invariants in classification of algebraic surfaces.

We consider an algebraic surface X in some projective space. We project X onto the projective
plane CP?, using a generic projection, and get the branch curve S in CP?. The curve S is a
cuspidal curve with nodes and branch points, and it can tell a lot about X. We can get the
presentation of the fundamental group G of the complement of S in CP?. Group G does not
change when the complex structure of X changes continuously. In fact, all surfaces in the same
component of the moduli space have the same homotopy type and therefore have the same group

G.

But it is difficult to describe S explicitly, and therefore it is not easy to write down a presentation
for G. To tackle this problem, we use a nice degeneration and regeneration algorithm. And
together with the use of some regeneration rules and the van-Kampen Theorem, we get the
presentation of G. We note that despite these techniques, we still cannot skip some algebraic
work in order to determine what G is.

If G is too complicated, we can calculate its quotient, which is the fundamental group Ggu
of the Galois cover of X, and also this quotient does not change when the complex structure
of X changes continuously. Some examples of such calculations appear in [1] and [2]. In [1] we
prove that surfaces with Zappatic singularity of type Ry, have a trivial Ggy. And in [2] we divide
surfaces with degree 6 degenerations to two sets: trivial or non-trivial Ggy. Moreover, some
other works were done in this research domain, for example for surfaces with different Zappatic
singularities, and surfaces that degenerate to non-planar shapes.

In the end of the talk I will present an output of a new computer algorithm, developed jointly
with U. Sinichkin (TAU, Israel). This algorithm provides the presentation of the fundamental
group G, when the branch curve S is given.

REFERENCES
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Foliations on closed three-dimensional Riemannian
manifolds with a bounded mean curvature of leaves

Dmitry V. Bolotov
(B. Verkin ILTPE of NASU, 47 Nauky Ave., Kharkiv, 61103, Ukraine)
E-mail: bolotov@ilt.kharkov.ua

Recall that a foliation F of codimension one on a smooth 3-manifold M is called taut if its
leaves are minimal submanifolds of M for some Riemannian metric on M. In [1] it was proved
that if F is taut, then a number of cohomological classes H?(M) realized as Euler classes e(F)
of the tangent distribution to JF is finite.

We present the following result.

Theorem 1. Let M be a smooth closed three-dimensional orientable irreducible Riemannian
manifold. Then, for any fized constant Hy > 0, there are only finitely many cohomological classes
of the group H?*(M) that can be realized by the Euler class of a two-dimensional transversely
oriented foliation whose leaves have a modulus of mean curvature bounded above by the constant

H,.
REFERENCES
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Topological issues about the 6D ISST in Physics

Enzo Bonacci
(The Physics Unit of ATINER, Athens, Greece)
E-mail: enzo.bonacci@physics.org

The recent proposals of a three-directional time [6], of a time vector [7], and of a 6D spacetime
with SO(3,3) symmetry [5], have renewed the interest for the hexadimensional extension of Ein-
stein’s General Relativity formulated two decades ago via three-dimensional time [1, 2, 3]. We
wish to enrich the discussion about the hypothetical 6D geometrodynamics by giving a topolog-
ical response to two fundamental questions: 1) Why should the spacetime manifold require six
dimensions instead of four? 2) Why should the two extradimensions be timelike? The 4D universe
is supported by an intuitive logic: in order to describe an event, we need to know where and when
it is occurring, for a total amount of four coordinates (three spatial and one temporal). Although
reasonable, the current representation of the spacetime’s intimate structure could be incomplete:
we suggest adding the spin angular velocity among its intrinsic properties. If we assume that
each point of the continuum is a structureless rotating sphere of null radius, we obtain a 6D in-
herently spinning spacetime (acronym ISST). In the ISSTconstruction, we choose to neglect both
the spinning magnitude and its direction (up or down), focusing only on the plane of rotation
(perpendicular to the spinning axis) as essential information about how an event happens. The
two parameters defining the orientation of the rotation plane of a spinning point are interpreted
as ltime extradimensions because they are surely not spacelike (i.e., not related to the position
in a fixed Ozyz reference frame) and, as surface measures, they are basically timelike [4]. Our
geometric analysis raises open questions ranging from the observation of a preferential arrow of
time to the role of temporal “hidden variables" in classic quantum phenomena.
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Characterized cycles integration on D-modules as solutions
in L-holomorphic bundles

Francisco Bulnes
(IINAMEI A.C., Research Department in Mathematics and Engineering, TESCHA, Mexico.)
E-mail: francisco.bulnes@tesch.edu.mx

From a moduli space developed to establish the equivalences between different characteristic
cycles classes; where some are objects of a complex holomorphic bundle and others elements
of a sheaf of coherent D-modules, are determined co-cycles that represent solutions of the field
equations in the holomorphic context and Lagrangian submanifolds. The characteristic cycles
of the category of Lagrangian submanifolds are solutions to the field equation on IL-holomorphic
bundles in the space-time M (as complex Riemannian manifold) with singularities. We have the
following technical lemma:

Lemma 1 (F. Bulnes). Characteristic cycles in C(G), as Lagrangians have their equivalent in a
flat space P44 (corresponding to the spertwistor space PT), as lines bundles in P. The cycles

in C(G), are solutions of the field equation on L-holomorphic bundles to the space-time M, which
includes singularities.



One-dimensional Monotone Non-autonomous Dynamical
Systems and Strange Nonchaotic Attractors

David Cheban
(Moldova State University)
FE-mail: david.ceban@usm.md

This work is devoted to the study of the dynamics of one-dimensional monotone non-autonomous
(cocycle) dynamical systems and strange nonchaotic attractors. A description of the structure
of their invariant sets, omega limit sets, Bohr/Levitan almost periodic and almost automorphic
motions, global attractors, pinched and minimal sets is given. An application of our general
results is given to scalar differential and difference equations. Below we give some of our results
for discrete dynamical systems generated by scalar difference equations.

Below we will use the terminology and notation from [1]|. Let (Y, d) be a complete metric space
and (Y, Z, o) be a dynamical system on the space Y and C(Z x Y, R) be the space of all continuous
functions f :Z x Y — R equipped with the compact-open topology.

Consider the scalar difference equation

u(t+1) = flo(t,y),u), (yeY) (1)

where f € C(Y x Z,R). Denote by ¢(t,u,y) a unique solution of equation (1) passing through
the point v € R at the initial moment ¢ = 0.
From the general properties of solutions of equation (1) we have

a. (0,u,y) =wu for any u € R and y € Y;

b. o(t+ 7, u,y) = @(t,o(1,u,y),0(r,y)) for any t,7 € Z,, u € R and y € Y

c. the mapping (¢, u,y) — ¢(t,u,y) from Z, x R x Y — R is continuous;

d. if the function f is monotonically increasing in v € R uniformly with respect to y € Y,
then one has ¢(t,uy,y) < ¢(t,uz,y) forany t € Z, and y € Y.

Taking in consideration a. — b. we can conclude that every equation (1) with monotonically
increasing right hand side f generates a monotone cocycle (R, ¢, (Y, T, o)) with discrete time Z, .

Quasi-periodically forced monotone maps. An m-dimensional torus is denoted by 7™ :=
R™ /27Z™. Let (T™, T, o) be an irrational winding of 7™ with the frequency v = (1,19, ... ) €
R™. Consider difference equation

u(t+1) = f(o(t,w), u), (2)
where f € C(T™ x R,R), w € T™ and (7™, T,o) is an irrational winding of 7™ with the
frequency v = (v1,1v9,...,vy,) € R™. Denote by o(t,u,w) the unique solution of equation (2)

passing through the point v € R ate the initial moment ¢ = 0. If the function f is monotonically
increasing in u € R uniformly with respect to w € 7™, then the mapping ¢ : Z, xRxT™ = R
((t,u,w) — @(t,u,w)) possesses the properties a. — d.
Theorem 1. Let f € C(Z x R,R). Assume that the following conditions hold:

(1) there exist a solution p(t,uo, f) of equation

¥ = f(t,x) (3)

bounded on Z. ;
(2) the function f is strongly Poisson stable in t € Z uniformly with respect to u on every
compact subset of R.

Then the following statements hold:
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(1) the w-limit set wy, (xo := (uo, f) € R x H(f)) of point xy is a nonempty, conditionally
compact and invariant set of skew-product dynamical system (X,Z,m);

(2) h(wy,) =Y == H(f);

(3) the set w,, contains at least one but at most two minimal sets;

(4) if M C wy, is a minimal set, then every point x = (u, f) € M is strongly Poisson stable;

(5) if the function f is almost recurrent (respectively, recurrent) in t € 7 uniformly with
respect to u on every compact subset of R and M C w,, is a minimal set, then every point
x = (u, f) € M is almost recurrent (respectively, recurrent);

(6) if the function f is almost automorphic in t € 7 uniformly with respect to u on every
compact subset of R, then the minimal set M C w,, is almost automorphic.

Theorem 2. Assume that equation (3) is uniformly dissipative, then the following statements
hold:

(1) the cocycle (R, p, (H(f),Z,0)) associated by equation (3) admits a compact global attractor
2] I ={I4| g € H(f)};
(2) a(g),B(g) € 1,, and hence, 1, C [a(g), 5(g)], where
a(g) =inf{u € I,} and [(g) :=sup{u € I };
(8) the scalar function 5 : H(f) = R, g — B(g) (respectively, o : H(f) = R, g — a(g)) is
upper semi-continuous (respectively, lower semi-continuous);

(4)
p(t,a(g),9) = alo(t, g)) (4)

@(t)ﬂ(g%g) :/B(U(tag)) ) (5)

for anyt € Z and g € H(f);
(5) if the function f is strictly Poisson stable in t € Z uniformly with respect to u on every
compact subset of R, then there exists a residual subset G C H(f) such that for any g € G

the solution p(t,a(g),g) (respectively, ¢(t,B(g),q)) of equation
7' =g(t,x) (9€GCH(f)) (6)

(respectively,

18 compatible;
(6) Iy = [o(g), B(g)] for any g € H(f).

Remark 3. Suppose that a(go) = S(go) for some gy € H(f). Then a(g) = 5(g) for a residual
set G C H(f) of g € G. This type of attractors are called Strange Nonchaotic Attractors (see,
for example, [3, Ch.I| and the bibliography therein).
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Holomorphically Projective Mappings of Kahler Manifolds
Preserving The Generalized Einstein Tensor

Yevhen Cherevko
(Department of Physics and Mathematics Sciences, Odesa National University of Technology
112, Kanatnaya Str., 65039, Odesa, Ukraine)
E-mail: cherevko@usa.com

Vladimir Berezovski
(Department of Mathematics and Physics, Uman National University of Horticulture 1,
Institutskaya, 20300, Uman, Ukraine)
E-mail: berez.volodOgmail.com

Josef Mikes
(Department of Algebra and Geometry, Faculty of Science, Palacky University Olomouc
Kiitkovského 511/8, CZ-771 47 Olomouc, Czech Republic)
E-mail: josef.mikes@upol.cz

Yuliya Fedchenko
(Department of Physics and Mathematics Sciences, Odesa National University of Technology
112, Kanatnaya Str., 65039, Odesa, Ukraine)
E-mail:  fedchenko_julia@ukr.net

Holomorphically projective mappings which preserved the Einstein tensor

Rgi;
Ejj = Ry — —

were studied in [1]. Preserving the stress-energy tensor
Rg. .
Sij = RU - 2”

by conformal mappings was explored in [3|, [5]. It’s worth for noting that in many classical issues
e. g. |2, p. 359, just the latter is referred to as the Einstein tensor.

Let us refer to
def

Qi]’ = Rij — K}Rgij. (1)
as the generalized Einstein tensor. Here k is a constant. Conformal mappings which pre-
serving the introduced tensor were explored in [6].

It is known that a covariant vector 1); determining holomorphically projective mapping between
two Kihler spaces (V*,.J,¢) and (V", J,g) should satisfy the equations

1
_ B
Vi =iy — baJi s + P
Here we denote by comma ", covariant derivative respect to the metric g of a space (V" J, g).
The affinor J! is referred to as a complex structure. The structure is the same for both manifolds.
The symbols R;; and R;; denote Ricci tensors of spaces (V", J, g) and (Vn, J,g) respectively.
It follows from (38) that the deformation of the generalized Einstein tensor can be written as

€;; — €; = Rij — kRy;; — Rij + rRgi;. (3)

(Rij — Rij)- (2)

Taking account of the preservation requirement, i. e. @ij = ¢,;, from (38) we get

Rij — Ry = K‘Rgij — KRgi;. (4)



Since (38) holds we can rewrite (38) as
_ o B K D
Vig =iy — YaiVpdy + = (G — Rgij). (5)

Let us recall that R = R;;g".

Differentiating (38) covariantly with respect to #* and the connection I' which is compatible
with the metric g of the manifold (V") J, g), alternating in j and k£ and using the Ricci identity,
we obtain the conditions of integrability:

H Y Ty—
Wiy, = o (OxRg;; — 0;Rgy, — OxRgij + 0;Rgi), (6)
where R
def K
b= R+ m@?ﬂik — O iy — ) Tiw + T iy — 20 Tn). (7)

Finally, we can summarize by the theorem

Theorem 1. If manifolds (V",J,g) and (V",J,g) are in holomorphically projective correspon-
dence and the mapping preserves the tensor €;; = R;; — kRg;j, then the function v generating the
mapping, must satisfy the system of PDE’s (38) whose conditions of integrability are (38). Also,
the tensor VVZ’JL,C 18 preserved by the mapping.
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Some questions about virtual Legendrian knots

Vladimir Chernov
(Dartmouth College, Hanover, USA)
F-mail: vladimir.chernov@dartmouth.edu

Rustam Sadykov
(Kansas State University)
E-mail: rstsdk@gmail.com

Virtual Legendrian knots were introduced by Cahn and Levi and jointly with Sadykov we
proved the Kuperberg type theorem for them. We will discuss a few open questions about the
virtual Legendrian knots including the versions of the Ding-Geiges Theorem, Arnolds 4 cusp
conjecture and the applications of this to causality in spacetimes with the changing topology of
the spacelike section in the spirit of our works with Nemirovski.
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Morse-Smale flows in the Boy’s surface

Luca Di Beo
(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
E-mail: dibeoluca@gmail.com

Morse-Smale (MS) dynamical systems are amongst the simplest possible dynamical systems,
with strong restrictions imposed on its critical points. In this thesis, I present a brief history of
the development of the theory, along with the introduction of important definitions, theorems
and lemmas. Moreover, I investigate MS systems in the Boy’s surface (P¢) with emphasis on
optimal ones. A method relying only on topological features has been used in order to classify
MS systems in P‘. A review of some topological properties of this space is presented in order to
construct the necessary arguments that allowed the discovery of this type of flow in P°.

At the time this thesis was written, there was no current work in the literature regarding the
classification of all optimal MS flows in P‘. Hence, my original contribution to knowledge here is
the finding of all 342 optimal MS flows in P‘, the finding of all 80 optimal Projective MS (PMS)
flows (Projective MS flows in P‘are those MS flows in P‘that can be extended to MS flow in RP?)
in P‘, and the exposure of a few non-optimal ones, as a preparatory path for future researchers,
all up to symmetry.
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Morita equivalence of non-commutative Noetherian schemes

Yuriy Drozd
(Institute of Mathematics NASU)
E-mail: y.a.drozd@gmail.com

This is a joint work with Igor Burban, see [1].

The classical Morita theorem (see, for instance, |3, Ch. 18|) claims that the categories of modules
over rings A and B are equivalent if and only if there is a finitely generated projective generator
P of the category of right A-modules such that End4 P ~ B. Then this equivalence is established
by the functor P ® 4 —. If A and B are Noetherian, the same is the criterion of equivalence of
their categories of finitely generated modules. On the other hand, Gabriel [2] proved that two
Noetherian schemes X and Y are isomorphic if and only if the categories of coherent (or, which
is the same, of quasi-coherent) sheaves of Ox- and Oy-modules are equivalent. We present here
a result which is, in some sense, a combination and generalization of these two classical theorems.

Definition 1. (1) A non-commutative Noetherian scheme (NCNS) is a pair X = (X, Ox),
where X is a separated Noetherian scheme and O is a sheaf of Ox-algebras which is
coherent as a sheaf of Ox-modules. We denote by Coh X and QCoh X respectively the
categories of coherent and quasi-coherent sheaves of left Ox-modules.

Note that the category QCohX is locally Noetherian and CohX is its subcategory of
Noetherian objects. Therefore, they uniquely define each other.

(2) Two NCNS X and Y are called Morita equivalent if the categories Coh X and CohY (or,
which is the same, QCoh X and QCohY) are equivalent.

(3) A NCNS X is called central if Ox coincides with the center of Ox, i.e. for every point
z € X the ring Ox, is the center of the algebra Ox,.

Proposition 2. For every NCNS X = (X, Ox) there is a Noetherian scheme Z and a morphism
¢: Z — X such that the NCNS X = (Z,9*Ox) is central and Morita equivalent to X. Moreover,
the ring of global sections I'(Z,Oyz) is isomorphic to the center of the category CohX, i.e. the
endomorphism ring of the identity functor idconx. If the scheme X is excellent, the morphism ¢
18 finite.

Thus, studying Morita equivalence, we can only consider central schemes. The following result
is an analogue of the Gabriel’s theorem.

Theorem 3. If a NCNS X = (X, Ox) is central, the scheme X is determined by the category
QCoh X (or, which is the same, by CohX) up to an isomorphism.

Actually, we give an explicit construction that restores X from QCoh X, namely, from the so
called spectrum of this category in the sense of Gabriel [2], i.e. isomorphism classes of indecom-

posable injective objects. It is important that this construction also recovers affine open coverings
of X.

Definition 4. A coherent sheaf of right Ox-modules P is called a local progenerator for X if for
every point x € X its stalk P, is a projective generator of the category of right Ox ,-modules.

Our main result if the following.

Theorem 5. Let X = (X,0x) and Y = (Y, Oy) be central NCNS. They are Morita equivalent
if and only if there is an isomorphism ¢ : Y — X and a local progenerator P for X such that
¢*(Endo, P) ~ Oy. Then this equivalence is established by the functor ¢*(P Qo, —).
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Note that even if X =Y, the isomorphism ¢ need not be identity. If it is so, this equivalence
is called central.

We also specialize this theorem for the case of non-commutative curves, where it gives a sort of
“globalization” of the known results on the local global correspondence from the theory of lattices
over orders (or integral representations of rings).

Definition 6. A non-commutative curve is a NCNS X = (X, Ox) such that X is excellent and
of pure dimension 1 and Ox is reduced, i.e. contains no nilpotent ideals.

We always suppose X central and connected (in the central case, it just means that X is
connected). We denote by Qx the sheaf of fractions of Ox and set Ox = Qx ®p, Ox. We denote
Q(X) =T(X, Qx) and Q(X) = I'(X, Qx). Note that Q(X) is a semisimple Q(X)-algebra and for
every closed point x € X the ring Ox, is an Ox ,-order in this algebra. Since X is excellent, the
set Sing(X) of such closed points z € X that this order is not maximal is finite (it follows from
[4, Ch. 6]).

Theorem 7. Let X = (X, Ox) and Y = (X, Oy)) be two central non-commutative curves with the
same central curve X. They are centrally Morita equivalent if and only if the following conditions
are satisfied:

o the semisimple Q(X)-algebras Q(X) and Q(Y) are centrally Morita equivalent;

e Sing(X) = Sing(Y);

o for every x € Sing(X) the Ox  -orders Ox . and Oy, (or, which is the same, their m,-
completions) are centrally Morita equivalent.
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Some critical point results for Fréchet manifolds

Kaveh Eftekharinasab
(Institute of Mathematics of NAS of Ukraine)
E-mail: kaveh@imath.kiev.ua

Linking techniques (see [1]) provide significant results in critical points theory. We present
linking theorem and some of its corollaries, namely a mountain pass theorem and a three crit-
ical points theorem for Keller C'-functional on C'-Fréchet manifolds. We refer to [2] for the
definitions.

Theorem 1 (Linking Theorem, [2]). Let M be a C*'- Fréchet manifold endowed with a complete
Finsler metric p and let p : M — R be a closed Keller C}-functional. Suppose {Sy,S,C} is
a linking set through v € C(So, T), C is closed and p(7y(Sy),C) > 0. Suppose the following
conditions hold

(1) s :—sup, g,y < infcp — i,
(2) ¢ satisfies the Palais-Smale condition at

¢~ inf supp(y(w)), (1)

where H — {h € C(S,T) : hlas, = 7}
Then c is a critical value and ¢ > i. Furthermore, if ¢ =1 then Cr(p,c) N C # 0.

The theorem yields the following corollaries:

Theorem 2 (Mountain Pass Theorem, [2]). Suppose that xo,x, € M, xy belongs to an open
subset U C M and x, ¢ U. Let ¢ : M — R be a closed a Keller C}-functional satisfying the
following condition:

(1) max{p(zo), p(z1)} < infoy p(x) — i
(2) ¢ satisfies the Palais-Smale condition at

¢ — inf sup @(h(t)), (2)

heCiefo 1)
where C :— {h € C([0,1], M) : h(0) = xq, h(1) = z1}.
Then ¢ is a critical value and ¢ > 1. If ¢ =1 then Cr(p,c) N U # 0.

Theorem 3 (Three Critical Points Theorem, [2|). Let M be a connected Fréchet manifold and
©: M — R a closed a Keller C}-functional satisfying the Palais-Smale condition at all levels. If
@ has two minima, then @ has one more critical point.

We apply the mountain pass theorem and the Minimax principle to prove the following theorem
which provides the sufficient conditions for a local diffeomorphism to be a global one.

Theorem 4. [2]| Let M, N be connected C*- Fréchet manifolds endowed with complete Finsler
metrics 8, p respectively. Assume that ¢ : M — N is a local diffeomorphism of class Keller C!.
Let T : N — [0,00] be a closed Keller C}-functional such that Z(x) = 0 if and only if x = 0 and
T'(z) = 0 if and only if x = 0. If for any ¢ € N the functional ¢, defined by

$q(z) = L(p(x) — q)
satisfies the Palais-Smale condition at all levels, then ¢ is a Keller C}-global diffeomorphism.
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On partial preliminary group classification of some class of
(1 + 3)-dimensional Monge-Ampere equations.
One-dimensional Galilean Lie algebras.

Vasyl Fedorchuk
(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine,
79060, 3-b Naukova St., Lviv, Ukraine)
E-mail: vasfedOgmail.com

Volodymyr Fedorchuk
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A solution of many problems of the geometry, theoretical physics, astrophysics, differential
equations, nonlinear elasticity, fluid dynamics, optimal mass transportation, one-dimensional gas
dynamics and etc. has reduced to investigation of classes of Monge-Ampere equations in the
spaces of different dimensions and different types. At the present time, there are a lot of papers
and books in which those classes have been studied by different methods.

Let us consider the following class of (1 + 3)-dimensional Monge-Ampére equations:

det (uu) = F (z9, 21, T2, T3, U, Ug, U1, U2, Us)

0*u ou
8$Maxl,’ Uaq = 8xa7 w,v,&x = 07 1a2a3'
Here, M(1,3) is a four-dimensional Minkowski space, F' is an arbitrary real smooth function.
For the group classification of this class we have used the classical Lie-Ovsiannikov approach.
At the present time, we have performed partial preliminary group classification of the class under
consideration, using one-dimensional nonconjugate Galilean subalgebras of the Lie algebra of the
Poincaré group P(1,4).
In my report, I plan to present some of the results obtained concerning with partial preliminary
group classification of the class under consideration.

where u=wu(z), = = (2o, 21,22,23) € M(1,3), vy =
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On packing and lattice packing of Minkowski-Chebyshev
balls

Nikolaj Glazunov
(Glushkov Institute of Cybernetics NASU, Kiev)
E-mail: glanm@yahoo.com

The Minkowski hypothesis was formulated in |1] and refined in |2, 3, 4|. Regarding the concepts
of the geometry of numbers, see [5].

Let
D, ={(z,y), p>1} CR? (1)
be the 2-dimension region:
|z[” + [y” < 1. (2)
Let
Alp,o) = (1 +0)(1+77) 5 (1+0") 7, (3)

be the function defined in the domain
M:oo>p>1,1<0<0,= (1), (4)

of the {p, o} plane, where ¢ is some real parameter; here 7 = 7(p, o) is the function uniquely
determined by the conditions

A4 BP=1,0<7<T,

where
_1 _1

A=A(p,o) = (1+77)% — (1+07) 7, (5)

B=B(p,0) =o(l+0") rr(1+7)77, (6)
7, is defined by the equation

20—7)P=1+7,0<7, <1 (7)
Proposition 1. The function A(p,o) in region M determines the moduli space of admissiblel

lattices of the rigion D, each of which contains three pairs of points on the boundary of D,.

Proposition 2. Let A(D,) be the critical determinant of the region |x|? + |y|P < 1. Let AL and
AS) be two D,-admissible lattices each of which contains three pairs of points on the boundary
of D, and with the property that (1,0) € Az(,o), (—27YP 271/p) ¢ Az(,l). Under these conditions the
lattices are uniquely defined.

Let d(A,(OO)),d(Az(,l)) be determinants of the lattices. Let A" = A(p,1) = 47%%, AP =
A(p,op) = 30,.
Proposition 3. d(AY) = A(p,0,), d(AY) = A(p, 1).

Remark 4. For example in the case p = 2 the lattice Ago) has the determinant d(A;O)) = ¥3 and

2
is defined by generators a; = (1,0),as = (%7 ?)
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Theorem 5. [6]
A(p,1), 1<p <2, p=>po
A D — ) ) ) )
(Dr) { A(p,op), 2 < p < po;
here po is a real number that is defined unique by conditions A(po,op,) = A(po, 1), 2,57 < pg <
2, 58.

Definition 6. In two-dimensional case we will call geometric figures of the form |z|P + |y|P <
R, R > 0, with p > pg the two-dimensional Minkowski-Chebyshev balls.

In cases of dimension grater then two, when the constant py is unknown, we will call geometric
figures of the form |z1|? + |xo|? + |23/" + -+ + |2,|? < R, R > 0, the n-dimensional Minkowski-
Chebyshev balls if p is a sufficiently large.

We investigate packing and lattice packing by equal Minkowski-Chebyshev balls of n-dimensional
Euclidean spaces and also of corresponding spheres.

Proposition 7. Let Z? be the integer lattice in R? with a point in the origin. Then the density
of packing by two-dimensional open Minkowski-Chebyshev balls over the lattice 72 tends to unity
as p tends to infinity

Conjecture 8. Let A be the integer (n > 2)-dimensional lattice in R™ with a point in the origin.
Then the density of packing by n-dimensional open Minkowski-Chebyshev balls over the lattice A
tends to unity as p tends to infinity

Problem 9. Is there an analogue of Theorem 5 in the case of geometric bodies of the form

|21 [P + |2 P + |23]P 4+ - - + |z,|P < 1,n > 2,

Problem 10. If there exists an analogue of Theorem 5 in the case of geometric bodies of the
form

|21 [P+ |z2fP + |z3|P + -+ -+ |z |F < 1,n > 2,
what is the value of the constant pg .
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Unbounded order and norm convergence of some operators
on Banach lattices

Omer GOK
(Yildiz Technical University, Faculty of Arts and Sciences, Mathematics Department, Esenler,
Istanbul, TURKEY)
E-mail: gok@yildiz.edu.tr

Let X be a Banach space. An operator T': X — X is said to be demicompact if, for every
bounded sequence (z,) in X such that (x, — Tz,) converges to x € X, there is a convergent
subsequence of (x,). For example, each compact operator is demicompact. But, the converse
is not true in general. If the identity operator I : X — X on the infinite dimensional Banach
space X, then —I is demicompact but it is not compact. We say that an operator 7' : X — X
is weakly demicompact if, for every bounded sequence (x,) in X such that (z, — Tx,) weakly
converges in X, there is a weakly convergent subsequence of (z,,). Every demicompact operator is
weakly demicompact. An operator T': X — Y between Banach spaces is called Dunford-Pettis if
it carries weakly compact subsets of X onto compact subsets of Y. Equivalently, for each weakly
null sequence (z,,) we have ||T'z,| — 0 as n — oo. An operator 7' : X — X is called unbounded
demi Dunford-Pettis if, for every sequence (z,,) in X such that z,, — 0in o(X, X’) and (x, —Tx,,)
unbounded norm converges to 0 as n — oo, we have (z,) unbounded norm convergent to 0. For
example, for the identity operator I : [* — [*°, —I is unbounded demi Dunford-Pettis operator.

Theorem 1. Let E be a Banach lattice. Every Dunford-Pettis operator T : E — E is unbounded
demi Dunford-Pettis.

In this study, we characterize the operators on Banach lattices that under which conditions
they satisfy unbounded demicompactness property.
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An explicit formula for the A-polynomial of the knot with
Conway’s notation C'(2n,4)

Ji-Young Ham
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An explicit formula for the A-polynomial of the knot with Conway’s notation C'(2n,4) up to
repeated factors is presented.

The main purpose of the paper is to find the explicit formula for the A-polynomial of the knot
with Conway’s notation C'(2n,4) up to repeated factors. Let us denote the knot with Conway’s
notation C(2n,4) by T, and the A-polynomial of the knot with Conway’s notation C'(2n,4) by
Agpn. The following theorem gives the explicit formula for the A-polynomial of T,.

Theorem 1. The A-polynomial A, = As,(L, M) is given explicitly by

AQn = Pon (U)an ( —U)
where

i+1

IJ —i+2n

ZgnO(L§'J+n)2—2L1+1J HM2)” [5]-2[% J“J”"(LMQ +1)” 2[5
X (—2LM® + LM* — LM? — M* + M2z 4 M? — 2)L'5']

X (LM? + L+ M2+ 2+ 1) (— 3LJ\/./2+L+MQ+Z—3)L%J

X (=1 (LM? +1) —2LM? + L+ M? + 2 — 2) if n =0,
s (Tl ey L2l o gz o gy mameli o
X (=2LM® + LM* — LM? — M* + M2z + M? — 2)L'%")

< (LM2 + L+ M?+ 2 +1) (=3LM? + L+ M? +  — 3)L %]

X ((=1)i (=2LM2 + L+ M2+ z —2) — LM? — 1) ifn <0,

pan(z) =

and

w=bBL2M*—2L2M? + [2 — 2LM* + 12LM?2 — 2L + M* — 2M?2 + 5.

FIGURE 1.1. A two bridge knot with Conway’s notation C(2n,4) for n > 0 (left)
and for n < 0 (right)
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The symplectic invariants of 3-webs

Konovenko Nadiia
(ONTU, Odesa, Ukraine)
E-mail: ngkonovenko@gmail.com

The classical web geometry ([1],[2],[4]) studies invariants of foliation families with respect to
pseudogroup of diffeomorphisms. Thus for the case of planar 3-webs the basic semi invariant is
the Blaschke curvature (|3]). It is also curvature of the Chern connection ([4]) that are naturally
associated with a planar 3-web.

Let D C R? be a connected and simply connected domain in the plane, equipped with sym-
plectic structure given by differential 2-form 2 = dx A dy in the standard coordinates on the
plane.

Remind that a 3-web in the domain is a family of three foliations being in general position.
We'll assume that these foliations are integral curves of differential 1-forms w;, ¢ = 1,2,3, and
write

W3 = <OJ1,W2,W3> )
where w; € Q' (D) are such differential 1-forms that w; Aw; # 0 in D, if i # j.

Definition 1. We say that two planar 3-webs W3 and Wg given in domains D and D respectively
are symplectively equivalent if there is a symplectomorphism ¢ : D — D, such that ¢ (W3) = Ws.

Proposition 2. Let W3 = (wy, ws, ws) and /Wvg = (W1, We, ws3) be two planar 3-webs in domains D
and D respectively given by normalized
w1+ wy + w3z =0. (1)

differential forms. Then a diffeomorphism ¢ : D — D establishes a symplectic equivalence of
3-webs if and only if

®* (@z) = EWo(3),
where (0,€) € Ag X Zsy, and Az C Sg is the subgroup of even permutations and Zs = {1,—1}.

In our case normalization (1) and the above proposition shows that the Chern form  is itself
symplectic invariant of 3-webs.
Let’s write down + in following form

V= T1wy + Tows + T3ws,
where functions x; € C* (D) are barycentric coordinates of 7, i.e.
T+ 29+ 23 =1.

Then we have

dwl = (1‘3 — 1’2) w1 VAN W2,
de = (x1 — $3> w1 A wWa,
dW3 = (132—1}1)&}1/\0.}2.

Using the second normalization (1) condition we’ll rewrite these relations in the following form
dwi = )\ZQ, 1= 1,2,3, (2)

AN = T3 —To, Ay =21 — T3, \3 = Ty — T,
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and .
$1:§(1+)\2—)\3)7$2:

Theorem 3. Functions

(1+)\3—)\1),$3: (1—|—>\1—)\2)

1
3

Wl

Ji = AT+ A3+ A5,

Jo = N3+ M+ AN,

o = (BN (8- 2) (8- A3)
Js = A2

are symplectic invariants of 3-webs.
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Solutions to Mumford’s second problem on theta functions

Kopeliovich Yaacov
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In his book Tata Lectures on Theta Mumford asks whether there is a systematic way to derive
relations between theta functions of rational characteristics and their derivatives. We solve this
problem using the residue theorem. ( Joint work with Julia Bernatska)
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Geometric interpretation of first Betti numbers of orbits of
smooth functions
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Let M be a compact connected surface and P is a real line R or a circle S'. Denote by F(M, P)
the space of smooth functions f € C°°(M, P) satisfying the following conditions:

1) the function f takes constant value at M and has no critical point in OM;
2) for every critical point z of f there is a local presentation f,: R* — R of f near z such
that f, is a homogeneous polynomial R? — R without multiple factors.

Let X be a closed subset of M. Denote by D(M, X) the group of C°°-diffeomorphisms of M fixed
on X, that acts on the space of smooth functions C*°(M, P) by the rule: (f, h) — f o h, where
he D(M,X), f e C>®(M,P).

The subset S(f, X) ={h € D(M,X) | fo h= f} is called the stabilizer of f with respect to
the action above and O(f,X) = {foh |h € D(M,X) is orbit of f. Denote by D;s(M, X) the
identity path component of D(M, X) and let S'(f, X) = S(f) N Dia(M, X).

Homotopy types of stabilizers and orbits of Morse functions were calculated in a series of papers
by Sergiy Maksymenko, Bohdan Feshchenko, Elena Kudryavtseva and others. Furthermore, pre-
cise algebraic structure of such groups for the case M # S? T2 was described in [1]. In particular,
the following theorem holds.

Theorem 1. [1| Let M be a connected compact oriented surface except 2-sphere and 2-torus and
let f € F(M,P). Then oS (f,0M) € B, where B is a minimal class of groups satisfying the
following conditions:

1) 1eB;

2) if A,B € B, then A x B € B;

3ifAeBandn > 1, then A, Z € B.

Note that a group G belongs to the class B iff G is obtained from trivial group by a finite
number of operations X, ,Z. It is easy to see that every group G € B can be written as a word
in the alphabet A= {1,Z,(,), X,%,8,4,...}. We will call such word a realization of the group
G in the alphabet A.

Denote by (;(G) the number of symbols Z in the realization w of group G. The number 3, (G)
is the rank of the center Z(G) and the quotient-group G/[G,G] (Theorem 1.8 [2]). Note, this
number depends only on the group G, not the presentation w. Moreover, 5;(G) is first Betti
number of O(f).

Edge of I'; will be called ezternal if it is incident to the vertex of I'y that is corresponding to
a non-degenerate critical point of f or non-fixed boundary component of M with respect to the
action of S'(f, W) for f-adapted submanifold X which contains W = S' x 0. Otherwise, it will
be called internal. Denote by #Orby,(M, W) the number of orbits of the action of S'(f, W) on
internal edges of Iy, .
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Theorem 2. Let M be a disk D* or a cylinder C = S* x [0,1] and f € F(M, P). Then
10rbiu (M, W) = B1(moS' (f,0M)),
where W = OM if M = D? or W = S x 0 if M is a cylinder.
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On diffeological principal bundles of non-formal pseudo-
differential operators over formal ones
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Let E be a complex vector space over a compact boundaryless manifold M. In this communi-
cation, G denotes either the group of non-formal, invertible bounded classical pseudodifferential
operators or the group of invertible elements of the algebra of non-formal, maybe unbounded,
classical pseudodifferential operators of integer order, equipped with a given diffeology which
makes classical composition and inversion smooth. H is the normal subgroup of G of operators
which are equal to Id up to a smoothing operator. We also assume that the group H is regular
for its subgroup diffeology. We analyze the short exact sequence

Id - H—G—G/H — Id,

where G/H is understood as a group of formal pseudodifferential operators, along the lines of
the theory of principal bundles, where, G is the total space, G/H is the base space and H is the
structure group.

Problem 1. There is actually no local slice G/H — G, or in other words the principal bundle
G — G/H has no known local trivialization.

Therefore, one has to consider what has been called by Souriau as "structure quantique" in
[4] and diffeological connections along the lines of Iglesias-Zemmour [1] in order to interpret the
so-called smoothing connections described in [2| (that we generalize here for S' to any M) in
terms of horizontal paths. More precisely, we show:

Theorem 2. Any smoothing connection in the sense of |2| defines a diffeological connection along
the lines of |1].

and we explain how one can understand the notion of curvature of covariant derivatives, with
values in smoothing operators, in terms of curvature of a connection 1-form on G — G/H.

Then, we specialize to M = S*, by giving more examples of smoothing connections, and explain
in this context how the Schwinger cocyle is, in cohomology, a first Chern form of the principal
bundle G — G/H for a given smoothing connection. We finish the exposition of the results
by showing that higher Chern forms tr(Q¥) of this connection with curvature Q define closed
2k—cocycles on the Lie algebra of GG, and that the cocycle obtained for k = 2 is non trivial, along
the lines of [3].

As a conclusion, we give open problems related both to our construction and to the interpre-
tation of index-like problems on pseudodfferential operators.
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Tereshchenkivska, 3, Kyiv, 01024, Ukraine)
E-mail: maks@imath.kiev.ua

Let G and H be two groups acting on path connected topological spaces X and Y respectively.
Assume that H is finite of order m and the quotient maps p : X — X/G and ¢ : Y — Y/H
are regular coverings. Then it is well-known that the wreath product G ¢ H naturally acts on
W = X™ x Y, so that the quotient map r : W — W/(G U H) is also a regular covering. We
give an explicit description of m (W/(Gt H)) as a certain wreath product m1(X/G) 9, m(Y/H)
corresponding to a non-effective action of m1(Y/H) on the set of maps H — m(X/G) via the
boundary homomorphism 0y : m(Y/H) — H of the covering map q.

Such a statement is known and usually exploited only when X and Y are contractible, in which
case W is also contractible, and thus W/(G ! H) is the classifying space of G H.

The applications are given to the computation of the homotopy types of orbits of typical
smooth functions f on orientable compact surfaces M with respect to the natural right action of
the groups D(M) of diffeomorphisms of M on C*(M,R).
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The geometrical properties of degenerations of curves and
surfaces

Jia-Li Mo
(School of Mathematics, Soochow University, China.P.R)
E-mail: mojiali0722@126.com

In this talk, we will mainly discuss the topology and arithmetic properties of degenerations of
curves and surfaces. First, we investigate the influences of the base points of cubic pencils on the
Mordell-Weil groups in this part. We pay attention to 8, 7 ,6 and 5 base points in general position
for such cubic pencil, and classify these cubic pencils. And we give the following theorem:

Theorem 1. This is the main theorem (taken from [2]).

Given n (= 8,7,6,5) points in general position in P2, S : sHy +tHy =0, [s,t] € P! is a cubic
pencil with n (= 8,7,6,5) simple base points. Then, the Mordell-Weil groups of the fibrations are
1somorphic to two types respectively:

3 3 2 4
By: =2 +2)_ pt)+ > at'+, v =27+ 222+ 2> _pt") + Y _at' +1° (1)
=0 =0 1=0 =0
4 2 3
E}: =2 +a(po+mt +1°) + Z at', y* +try =2°+ x(Zpit’) + Z gt' —t* (2)
i=0 i=0 =0
2
El: y+ty=2" —|—xz Zqztl v+ toy = 2° "HCZ qutl (3)
=0 1=0
DY : y? + psay = 2° + pata® + (pst? + pot®)x + pett + 17 (4)

A Del Pezzo surface X is either P! x P! or the blow-up of P? in m (m = 1,---,8) points in
general position. The degree d of X is defined to be d = 9 —m. As an application, we give a new
proof of the number of (—1) curves in Del Pezzo surfaces.

Theorem 2. The number of (—1) curves in Del Pezzo surfaces of degree 1,2,3,4 is 240, 56, 27
and 16 respectively.

In the second part, we talk about the surfaces of minimal degree in P". In fact, the degree of
such surface is n — 1. The fundamental group of Galois cover of surface is an important invariant
of the moduli space of such surfaces. In [1], we use the tools of degenerations of surfaces to prove
the following theorem:

Theorem 3. The Galois cover of the surface of minimal degree is simple-connected and general
type.

In the end, we give an open question:

Question: It is well known that the fundamental groups of most surfaces of general type are
non commutative. But it is not easy to find concrete examples of such surfaces. Let ay be a series
of integral number whose limit is infinity. How to give a series of surfaces of degree a, whose the
fundamental groups of Galois covers are all non commutative?
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Nilpotent aaproximations in the Goursat Monster Tower

Piotr Mormul
(University of Warsaw, Warsaw, POLAND)
E-mail: mormul@mimuw.edu.pl

In the paper "Kumpera—Ruiz algebras in Goursat flags are optimal in small lengths" (J. Math.
Sciences 126 (2005), 1614—1629) we conjectured that the two notions ’strongly nilpotent’ (Def-
inition 3 up there) and ’tangential’ (Definition 6 up there) are but synonyms in the world of
Goursat flags. Now a concrete road map to a possible proof of that long-standing conjecture is
being proposed.
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The role of topological invariants in the study of the early
evolution of the Universe

Tetiana Obikhod
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Questions of the evolution of the Universe, the nature of forces and physical processes at
an early stage of the evolution of the Universe are the most relevant in theoretical high-energy
physics. The evolution of the Universe is connected with phase transitions in vacuum, represented
by alternating minima and maxima of the potential. The discovery of the Higgs boson led to
the problem of a metastable vacuum in the mechanism of electroweak symmetry breaking and
confirmed the hypothesis that a vacuum decay took place. Such a transition in vacuum between
two minima can be represented in D-brane language. D-brane approach is realized through Planck
brane in the left minimum of potential and TeV brane in the right minimum of potential. Every
D-brane presented in terms of vector bundle is characterized by topological invariant, [1]. So, the
calculation of topological invariants informs us about the possibility of phase transitions between
different states of vacuum.

We considered two universal bundles of : (Va(R®), p, Go(R%)), S : (Va(RC), p, Go(R%)) which
are isomorphic to vector bundles, 73,78 correspondingly. Taking into account the theorem on the
existence of a vector bundle V()41 (R") — 5™, [2] for n > 4, and using the fact

PR"!
PR—2 — Vi(R") = S" '
we presented the exact sequence

0— 7T3(‘/1(R4)) — 7'('4(‘/1(R5)) =Z.

We used the equivalence of homotopic groups

m3(Vi(RY)) = m3(Va(R))

mi(Vi(R?)) = ma(Va(R))
according to [2| with F' = R,c =1,k = 1.

Using the fact that D-branes can be represented as a vector bundles with a base - a sphere

and using the embedding of spheres, S* C S5, we observe a transition from one solitonic state in
the form of Db-brane to D4-brane with the corresponding equidistant set of energy levels. The

obtained result signals about the possibility of phase transitions in the form of vacuum decay
from Planck brane to TeV brane.
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Definition 1. Open O-spheroid with rank n, or O-spheroid with rank n, in a metric space (X, p)
with a metric p, n € N, is a set

A={z e X |p(z,z1) + -+ p(z,x,) < a},

where xy,...,z, are different fixed points of the space (X, p), called the foci, and a is a fixed
positive number, called the distance. We can get a respective definition in linear normed spaces.

Definition 2. Closed O-spheroid with rank 7 in a metric space (X, p) with a metric p, n € N, is
a set

A= {1’ S X|,0(.CU,.’L‘1) + —l—p(x,xn) < a}7
where x1,...,z, are different fixed points of the space (X, p), called the foci, and a is a fixed
positive number, called the distance. We can get a respective definition in linear normed spaces.

Remark 3. S,(z1,...,z,;a)is an open O-spheroid with rank n with the foci in points z1, ..., z,
and the distance a. If we talk about open O-spheroid understanding what namely O-spheroid we
discuss, we note it S,,.

Definition 4 (|11, c. 193|). Border of (open or closed) O-spheroid with rank n, or n-ellipse with
the foci z1,...,x, and the distance a, in a metric space (X, p) we name the set

A={z e X|plx,x1)+ -+ p(z,z,) = a}.
Definition 5. Focal closeness of our O-spheroid with rank n equals to

7T-(Sn(xlv <oy T CL)) = 1<1’7;n<i]1.1<np(xi7 x])

Definition 6. Focal remoteness of our O-spheroid with rank n equals to

O(S,(z1, ..., 2050)) = 1<r£1<%}inp(mi,xj).

Definition 7. If all the foci belong to O-spheroid, then it is called a multicentered one.

Theorem 8. Let’s assume we have an O-spheroid S, (x4, ..., x,;a) in a metric space (X, p) with
a metric p, n > 1. If it is multicentered then
a
Sp) < ——.
m(Sn) n—1
Theorem 9. Let’s assume we have an O-spheroid S,(x1,...,x,;a) in a metric space (X, p) with
a metric p, n > 1. If we have that
a
(I)(Sn) < n — 17

then this O-spheroid is multicentered.

Theorem 10. Either all open and closed O-spheroids in arbitrary metric space (X, p) with a
metric p, or their borders, are bounded sets.

Remark 11. All closed O-spheroids in any Euclidean metric space (R™,p) with a standard
metric p are compact sets.
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Definition 12. Metric space (X, p) with a metric p is called conver, if next conditions are
satisfied:

1) X is a linear vector space;

2) Y{z,y, 2} C X Va € [0;1] we get:

plax + (1 = a)y, 2) < ap(x,z) + (1 — a)p(y, 2).

Theorem 13. If (X, p) is a convex metric space with a metric p, then V{z1,...,z,} C X Ya >0
open O-spheroid S, (z1,...,x,;a) is a connected set.

Remark 14. All O-spheroids in linear normed spaces are connected sets.

Theorem 15. If (X, p) is a conver metric space with a metric p, then ¥{xy,...,x,} C X VYa >0
open O-spheroid S, (x1,...,T,;a) is a connected set.

Theorem 16. Let’s assume that S,(x1,...,x,;a) is a non-empty O-spheroid in a convexr metric
space (X, p) with a metric p. Then its border is equal to its boundary.

Definition 17 (|7, c. 236]). Fermat—Torricelli point for fixed points {z1,...,2,} is such point

T € X, that Vo € X:
k=1 k=1

Definition 18. Voronoi radius of O-spheroid S, (x1,...,z,;a) we call number
R(S,) := sup inf p(x,y).
z€S,, Y€ISn
Theorem 19. Let’s assume that S, (x1,...,x,;a) is a non-empty O-spheroid in any FEuclidean

metric space (R™, p) with a standard metric p, meanwhile T is a Fermat Torricelli point for its
foci. Then next inequality is correct:

a— Z p(Tv Ik)
k=1

- < R(Sy).
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Infinitesimal deformations of surfaces of negative Gaussian
curvature with a stationary Ricci tensor

T. Podousova
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N. Vashpanova
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E-mail: vasha.ninaQukr.net

In [1] it was proved that every simply connected surface S € C* non-zero Gaussian and middle
of curvatures admits infinitely small (in.sm.) first-order deformations with a stationary Ricci
tensor whose tensor fields have the representations

af __ afs k __ ak af gk
T = pg™”, T = pad™ + pac™ dg,

where functions pu (z!,2?) and ¢ (2!, 2?) of class C® satisfy the following second-order partial
differential equation:
(da%a), s+ 2Hp = fo P dfy + 1o ™’ (d};)Jc . (1)

Let S be a surface of negative Gaussian curvature. Then (1) is an equation of hyperbolic type,
which in asymptotic lines takes the form

12+ dpy + lpg + cp = f() (2)

where d, [, ¢ are known functions of the point S, u (x!, 2?) is predefined function.

For equation (2), consider the Darboux problem: We will look for such an integral that takes
certain values on the characteristics 2! = x}, 2% = 2%; o (2!, 22) = Aa'), ¢ (z), 2?) = 7(2?).

Then each pair of functions will A(z'), 7(2*) match the only solution p(z!,2?) equation (2)
with known right side |2].

Fair

Theorem 1. Every simply connected surface of negative Gaussian curvature of the class C* and
without umbilical points admits ain.sm.deformations of the first order with preservation of the
Ricci tensor. In this case, the strain tensors are expressed in terms of a preassigned function of
two variables and two arbitrary functions of the class C3, each from one variable.

It should be noted that many phenomena in mechanics, physics, and biology are reduced to the
study of hyperbolic equations. To describe these phenomena completely for hyperbolic equations,
the Darboux problem is posed.
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Structures of optimal flows on the Boy’s and Girl’s surfaces

Alexandr Prishlyak
(Taras Shevchenko National University of Kyiv)
E-mail: prishlyak@yahoo.com

For a closed oriented surface, the Morse-Smale flows with a minimum number of fixed points
(optimal ms-flow) has a single source and sink, is defined by a chord diagram, and can be embed-
ded in R?® [3]. For the projective plane, the optimal flow has three critical points, but it cannot
even be mapped on any immersion in R3. The simplest immersions with one triple point are
Boy’s and Girl’s surfaces [1, 2|. Each of the surfaces has a natural stratification (cellular struc-
ture). It consists of one O-strata, three 1-strata (A, B, C') and four 2-strata. In the Boy’s surface
2-strata are set by their boundaries: A, B, C, ABA7'CAC~'BCB~!. On the Girl’s surface, the
boundaries of 2-strata are as follows: A, B, ABA7'CB~!, AC-'C-1BC.

We describe all possible structures of flows on these surfaces with respect to the homeomorphism
(isotopy) of the surface using separatrix diagrams and methods of papers [4, 5, 6, 7.

For the flows with one isolated point and a minimum number of separatrices, there are 18 (108)
structures per Boy’s surface (with one separatrix) and 3 (6) structures per Girl’s surface (without
separatrices).

For optimal ms-flows on the surfaces as stratified sets, there are 342 (2004 ) and 534 (1058)
flows, respectively. These flows have by 4 fixed points: 0-strata and by one point on each 1-strata.

There are 80 (438) and 118 (230) different structures for the ms-flows on the projective plane
that are mapping on these surfaces. The flows have by 3 sources, 3 sinks and 5 saddles (0-strata
has triple counting and points from 1-stratas have double counting).
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About solvability of the matrix equation AX = B over
Bezout domains
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E-mail: v.prokip@gmail.com

Let R be a Bezout domain with identity e # 0, i.e. R is an integral domain in which every
finite generated ideal is principal. Further, let R,, ,, denote the set of m x n matrices over R, and
GL(n,R) be the set of n x n invertible matrices over R. In what follows, I,, is the identity n x n
matrix, 0, is the zero m x k matrix, d;(A) € R is an ideal generated by the i—th order minors
of the matrix A € Ry, i = 1,2,...,min{m,n}.

Let A € R,,, and B € R,,; be nonzero matrices. Consider the nonhomogeneous matrix
equation

AX = B, (1)
where X is unknown matrix in R, ;. Denote by Ap = [A B] € Ry ntr the extended matrix
of the linear equations (1). It is known (see [1], [3], [4], [6]) that the equation (1) over a Bezout
domain R is solvable if and only if rank A = rank Ag = r and d;(A) = d;(Ag) foralli =1,2,... 7.

The problem of solvability of the equation (1) has drawn the attention of many mathematicians
(see [1]-[12] and references therein). This is explained not only by the theoretical interest to
this problem ([1], [3], [4], [6], [8]-[11]), but also by the existence of numerous applied problems
connected with the necessity of solution of linear matrix equations ([2], [5], [7], [12]). It may be
noted, that the equation (1) over Bezout domains is important in automatic control theory [2].

1. On application of the Hermite Normal Form. In the Bezout domain R we fix a set of
non-associated elements R. Every non-associated element a € R we associated with a complete
system of residues modulo ideal (a). Let A € R, ,, and rank A = r. Further, we assume that the
first row of the matrix A is nonzero. For the matrix A there exists W € GL(n,R) such that

Hl Oml,nfl
aw =y = [ Ol 1y o, ]

Hr Omr,nfr

is a lower block-triangular matrix, where H(A) € R,,,, H} = [}:3] € Ry 1, Hy = [hjl ZQ] €
h'rl hrr—l hr

Roso, -, Hy = . . ’* . € R,, and m; +mg + --- +m, = m. The elements h;
belong to the set of non-associated elements R for all i = 1,2,...,r. Moreover, in the first rows
[hﬂ coo hiia hi} of the matrices H;, ¢ > 2, the elements h;; belong to a complete system of
residues modulo ideal (h;) for all j = 1,2,...,7 — 1. The lower block-triangular matrix H, is

called the (right) Hermite normal form of the matrix A and it is uniquely defined for A (see [3]).

In this parch we propose necessary and sufficient conditions of solvability for the equation (1)
over a Bezout domain in terms of the Hermite normal forms of m x (n + k) matrices [A  Opy ]
and [A B]. A method for finding its solutions is also given. In what follows, we assume that
the fest row of the matrix A is nonzero.

Theorem 1. Let A € R,,,, and B € R,,, . The matriz equation AX = B s solvable over a
Bezout domain R if and only if the Hermite normal forms of matrices [A Om’k] and [A B] are
coincide.



40

It is easy to see that matrix equation (1) is solvable over a Bezout domain R if and only if the
matrix equation H(A)Y = B is solvable over R. Let Y € R, be the solution of H(A)Y = B.

. . . Yo . . .
Then for arbitrary matrix P € R,,_,; the matrix Xp = w-t [;} is a general solution of equation

(1). Theoretically speaking, the solution Xy = W~! [ Yo of equation (1) can be written as

Omfr,n
the matrix expression Xy = T'Xp, where T" € R,,,,. Thus, Xp is the right divisor of X, for an
arbitrary matrix P € R,,_, . Given the solution X,, we determine all possible ranks of other
solutions of the equation (1), i.e. rankB < rankXp < n + rankB — rankA.
2. A method of matrix transformations. In this part we apply matrix transformations
for established conditions under which the equation (1) is solvable.
Let A € R,,, and B € R, be nonzero matrices and let rank A = r > 1. For A there

exist matrices U € GL(m,R) and V € GL(n,R) such that UAV = ¢ Orn—s

Omfr,r Omfr,nfr
C € R,,. It is clear that det C' = ¢ # 0. In what follows C* = Adj C means the classical adjoint
matrix of the matrix C, i.e. C*C = cl,. Based on the above, we obtain the following theorem.

, where

Theorem 2. The matriz equation AX = B is solvable over a Bezout domain R if and only if

UB = 0 D , where D € R, and C*D = cG, where G € R, .
m—r,k

If the equation AX = B is solvable, then for arbitrary matriz QQ € R,,—,, the matriz Xg =

Ut [g] is a general solution of equation AX = B.

From Theorem 2 we obtain the following comment. Let A, B € R,,,, be nonzero matrices and
let rank A < n. Suppose the matrix equation AX = B is solvable and Xg € R,,,, is its general
solution. Then AX = B has solutions X; € R, ,, i« = 1,2,..., such that Xo = X;T;, where
T; € Rn,n-

Presented results above can be extended to linear nonhomogeneous equations over commutative
rings of a more general algebraic nature.
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Regularization Method for a class of inverse problem
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Here are the names of (almost all) predefined theorem-like environments.
Theorem 1. For given f € H and g € H the problem

{ Z}Effifu“) =f 0<t<Tp 1)

has a unique solution v € C([0,T), H) N C'((0,T), H) given by
u=eg+ AT —e ) f (2)

(JA. Goldstein, Semi-groups of linear operators and applications, Ozford university, press New
York. 1985.).

Lemma 2. ForO<a <1 etp>0, on a les estimations suivantes :

1 2\ —2 1.
Supn>1(1 — W)(l -+ /\n) 2 g max(l,Tf ,Tlp)ma:c(a, (h’l(ﬁ)) p) (3)
Bne_/\”Ti 1 Y .
SuPn}lH—T%e”‘nTl < mal‘(l,Tl )ﬁ’l = 1,2 (4)
ﬁn N
TPzl g2z e ), < max(l, Ay )av (5)
With
1
TS e (6)
Problem 3.

Let H be a separable Hilbert space with the inner product (.;.) and the norm ||.|| and let A: H —
H be a positive self-adjoint linear operator with a compact resolvent. Consider the following final
value problem:
{ w(t)+Au(t) = f, 0<t<Ty 7)
U(Tl) = \I’l

where 0 < 77 < T3 and W, is a given function on H Our purpose is to identify the initial condition
©(0) and the unknown source f from the overspecied data u(Ty) = Wy, ¥y € H
Hence, the inverse problem can be formulated as follows: determine f and g such that

u(t) + Au(t) = f, 0<t<Ty
Lo <s ) )

from the data

{ u(Ty) = ¥y (9)
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Corollary 4. Let f et g the solutions of (1) , f2 et g° be the modified Tikhonov approzimations,
Let 12 and v be the measured data at Ty and Ty satisfying (9), If the reqularization parameter is

2 § 2
chosen as o = (E)@HZH) and o = (E)(P;“) spectively then, the following error estimates hold
1 2

respectively:
b1
1= £20 < mas (1T T ()75, a1 ) () R B
(ln(il)zh + 2)p1
(10
2+ po
o= < mas (1,7 T mas(() 7, ————— J+ymas(1, 7 ")) F B2 +2

(in(“2)p2 + 2

(11)
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Broadening of some vanishing theorems of global character
about holomorphically projective mappings of Kahlerian
spaces to the noncompact but complete ones.

Helena Sinyukova
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Ushinsky» )
E-mail: olachepok@ukr.net

The generalized Bochner technique (see, for example, [1]) allows to broad to the noncompact
but compete Kahlerian spaces some well-known theorems of holomorphically projective unique
definability that have been proved previously for the compact ones (see, for example, [2]). Thus,
the next theorems are true.

Theorem 1. Complete connected noncompact Kahlerian C"-space K™ (n > 2, r > 4) with
positive defined metric tensor and the Finstein tensor that doesn’t equal to zero, that satisfies the
recurrent conditions

jl(jﬁmhgmjghlEfk T(aﬂ) (579,% + F Fl/m) Tz(]% g™ ghlEzk + T aﬁ ikl + Tjo;j)mwijklm’

where

B B B
Ti(;'kz = ”5(O§Rj)kl + gl(iTjak

"~ gk(iTjo)‘lB - ﬂ(iFngkﬂ + By F1T]

F e

B _ B
T5) = 67 R; — Rj}, °
sz‘ — components of tensor of complex structu.fe, R;; - components of Ricci tensor, Ey — com-
ponents of Einstein tensor of the space K™; W4k Wikim — components of some contravariant

tensors, "," denotes the corresponding covariant differentiation, doesn’t admit non-trivial (differ-
ent from affine) holomorphically projective mappings on the whole.

Theorem 2. Complete connected noncompact Kahlerian C"-space K™ (n > 2, r > 4) with
positive defined metric tensor and the Einstein tensor that doesn’t equal to zero, that satisfies the
recurrent conditions ' '

le x6) gm Ekl Pi(l(,lkm Gilk Pi(laﬁ) 5117 (1)
where ; ;

PRt = 6URG — 6 RS, o

R;; — components of Ricci tensor, E;; — components of Einstein tensor of the space K™; Sitk - gil
components of some contravariant tensor, ", " denotes the corresponding covariant differentiation,
doesn’t admit non-trivial (different from affine) holomorphically projective mappings on the whole.

Recurrent conditions (1) may also be transformed to the more general form.
Examples of Kahlerian spaces of considered types are known.
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The weight of T-topologies on n-element set that consistent
with close to the discrete topology on (n — 1)-element set
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The topologies on an n-element set with weight k& > 2"~! (k is the number of the elements of
the topology) are called close to the discrete topology. In |1] all Ty-topologies have been listed
using the topology vector, an ordered set of the nonnegative integers (ay, as, ..., ), a; is one
less than the number of the elements in the minimum neighborhood M; of the element z;. In |2]
To-topologies on an n-element set with the vectors (0, ...,0, @, _1, ;) and (0, ...,0,1,1, a;,) in the
case M,,_1NM,_o = () have been investigated. These Ty-topologies are consistent with close to the
discrete topology on (n—1)-element set with the vectors (0, ..., 0, a;,_1) and the vector (0, ...,0,1, 1)
in the case M,,_; N M,_, = (). The question about Ty-topologies which are consistent with close
to the discrete topology on (n — 1)-element set with vectors (0,...,0,1,....,1), 1 < k < n — 3,

k
where all n — 1 — k two-element minimum neighborhoods have only one common point, remains
unresolved. This work we found the weight of these Ty-topologies.

So, the vector of Ty-topologies has the form: (0,...,0,1,...;1,0,,), 1 <k <n—-3,2<aq, <n-1
S~ Y~

k n—k—1
and ﬂ:;kﬂ M,, = {z1}. The following cases are possible for the minimum neighborhood M,, of
the element x,:

1. ﬂz;lkﬂ My, N M,y = {21}, so My, = {1, ..., Zg, Tn—(ap—d); o Lt xn}. The general formula

an—d
for the weight has the form |7| = 2772 4 2k=1  2k=d 4 ok—d . (gn—k—(an—d+1) _ 1)

2. (Vi1 My N M, = 0. The general formula for the weight has the form || = 272 + 251 +

2k—an 4 2k—(o¢n+1) . (2n—k—1 _ 1)
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On ternary assymetric medial top-quasigroups

Fedir Sokhatsky
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Let @ be an m element set. A ternary operation f defined on () is called invertible and the pair
(Q; f) is a quasigroup of the order m, if for every a, b of @ the terms f(z,a,b), f(a,z,b), f(a,b,x)
define permutations of (). To each ternary quasigroup (Q; f) of the order m there corresponds a
Latin cube of order m, i.e., a 3-dimensional array on m distinct symbols from @, each of which
occurs exactly once in any line of the array.

A triplet (fi, f2, f3) of ternary operations is called orthogonal [1], if for all aq,as,a3 € @ the
system

f1($1ax2,$3) = aq,
f2($1,$2>$3) = a2,
f3(I1,fE2,1‘3) = as

has a unique solution, i.e., superimposition of the corresponding cubes gives a cube such that
every triplet of elements of () appears exactly once in it.

Geometric interpretation of orthogonality is its relationships with geometric nets. This appli-
cation is well-studied for binary operations and the respective k-nets, projective and affine planes
(see for example [2], [3]). Relationships between t-tuples of orthogonal n-ary quasigroups of order
m and (¢, m,n)-nets were studied in [4], [5], [6]. The respective nets have the same combinatorial
and algebraic properties.

For every permutation o € S, a o-parastrophe °f of an invertible ternary operation f is defined
by

F(T10, T20, T35) = Tao = f(21,T2,73) = 24
In particular, a o-parastrophe is called:

e an i-th division if o = (i4) for i = 1,2, 3;

e principal if 40 = 4.
Therefore, each ternary operation has at most 4! = 24 parastrophes; among them 3! = 6 principal
parastrophes. An invertible operation and the respective quasigroup are called assymetric if all its
parastrophes are different. A quasigroup is called totally parastrophic orthogonal (top-quasigroup),
if each triplet of its different parastrophes are orthogonal. Binary assymetric top-quasigroups were
studied in [7], for ternary case the following statements are true.

Theorem 1 (|8]). A quasigroup (Q; f) is medial if and only if there exists an abelian group (Q;+)
such that

f(x1, 9, x3) = 121 + P22 + @323 + @, (1)

where p1, P2, 3 are pairwise commuting automorphisms of (Q;+) and a € Q.
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Theorem 2. Let (Q; f) be a medial ternary quasigroup (Q; f) with (1) and 11, T2, 73 € Sy. The
parastrophes ™f , 2f  3f are orthogonal if and only if the determinant

C1r Por, P31
Pl P2ry P31

4)017'3 902T3 9037'3
is an automorphism of the group (Q;+), where p, := J and J(x) = —x.

Note, that the pairwise commuting automorphisms 1, 2, 3, J generate a commutative
subring K of the ring End(Q; +). Let 7/ := (v, 15, v3) be a triplet of injections of the set {1,2, 3}
into the set {1,2,3,4}. The polynomial

Yy Y2 V3
di(V1,72:73:74) = | Vs V2re V3we
Yivs V2vs  V3us

over the commutative ring K will be called invertible-valued over a set H C K, if all its values
are automorphisms of the group (Q;+) when the variables 71, 72, 73, 74 take their values in H.

Theorem 3. A ternary medial quasigroup (Q; f) with (1) is a top-quasigroup if and only if each
polynomial dy is invertible-valued over the set {¢1, 2, 3, s}, where @ = J.

Theorem 4 ([9]). A ternary medial assymetric top-quasigroup over a cyclic group of the order
m exists if and only if the least prime factor of m is greater than 19.
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Extension theorems for holomorphic bundles on complex
manifolds with boundary

Andrei Teleman
(Aix Marseille Univ, CNRS, 12M, Marseille, France)
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We begin with the following important result due to Donaldson |Do| for Kéahler, and Xi |Xi]
for general Hermitian complex manifolds with boundary:

Theorem 1. Let .f( be a compact complexr manifold with non-empty boundary 0X, g be a Her-
mitian metric on X and € be a holomorphic bundle on X. Let h be a Hermitian metric on the
restriction Elgx. There exists a unique Hermitian metric H on & satisfying the conditions

AyFyg =0, H|px = h,
where Frr € A*(X,End(€)) denotes the curvature of the Chern connection associated with H.

Note that the map H — A, F is a non-linear second order elliptic differential operator, so the
system AgFy =0, H|sx = h can be viewed as a non-linear Dirichlet problem. The theorem of
Donaldson and Xi states that this non-linear Dirichlet problem is always uniquely sovable.

Note also that the analogue statement for closed manifolds (i.e. in the case X = ) does
not hold. Indeed, the classical Kobayashi-Hitchin correspondence states that, for a holmorphic
bundle £ on a closed Hermitian manifold (X, g), the equation AjFy = 0 is solvable if and only if
deg,(€) = 0 (which is a topological condition if g is Kihlerian) and & is polystable with respect
to g (see [LT]).

Recall that a unitary connection V on a Hermitian differentiable bundle (E, H) on X is called
Hermitian Yang-Mills if AjFy = 0, F& = 0. In the classical case dimc(X) = 2 — which plays
a fundamental role in Donaldson theory — these conditions are equivalent to the anti-self-duality
condition F¢ = 0.

In [Do| Donaldson shows that Theorem 1 has important geometric consequences:

Corollary 2. Let X be a compact complex manifold with non-empty boundary, g be a Hermitian
metric on X and (E,H) be a Hermitian differentiable bundle on X. There erists a natural
bijection between:

(1) the moduli space of pairs (€,0) consisting of a holomorphic structure € on E and a dif-
ferentiable trivialization 0 of E|yx,

(2) the moduli space of pairs (V,T) consisting of a Hermitian Yang-Mills connection on (E, H)
and a differentiable unitary trivialization T of Elyx.

In other words, the moduli space of boundary framed holomorphic structures on F can be
identified with the moduli space of boundary framed Hermitian Yang-Mills connection on (E, H).

In the special case when X is the closure of a strictly pseudoconvex domain (with smooth
boundary) in C", Donaldson states the following result which gives an interesting geometric
interpretation of the quotient C*(9X, GL(r,C))/O>(X,GL(r,C)) of the group of smooth maps
90X — GL(r, C) by the subgroup formed by those such maps which extend smoothly and formally
holomorphically to X:

Corollary 3. Let O=(X,GL(r,C)) be the group of smooth, formally holomorphic GL(r, C)-valued
maps on X, identified with a subgroup of C*°(0X,GL(r,C)) via the restriction map.
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There exists a natural bijection between the moduli space of boundary framed Hermitian Yang-
Mills connections on the trivial U(r)-bundle on X and the quotient C*(0X,GL(r,C))/O>(X, GL(r,C)).

The idea of proof: Taking into account Corollary 2, it suffices to construct a bijection between
the quotient C*°(9X, GL(r, C))/O>*(X, GL(r,C)) and the moduli space of boundary framed holo-
morphic structures on the trivial differentiable bundle X x C". The construction is very natural:
one maps the congruence class [f] of a smooth map f : X — GL(r,C) to the gauge class of
the pair (the trivial holomorphic structure on X x C", f). The main difficulty is to prove the
surjectivity of the map obtained in this way. This follows from the following existence result:

Proposition 4. Let X be the closure of a strictly pseudoconvex domain (with smooth boundary)
in C" and £ be a smooth, topologically trivial holomorphic bundle on X. Then & admits a global
smooth trivialization on X which s holomorphic on X.

The statement follows using Grauert’s classification theorem for bundles on Stein manifolds
and the following extension theorem, which is proved in [Do| only for n = 2:

Proposition 5. Let X be the closure of a relatively compact strictly pseudoconves domain (with
smooth boundary) in C" and € be a smooth, topologically trivial holomorphic bundle on X. Then
& extends holomorphically to an open neighborhood U of X in C".

In my talk T will explain the idea of proof of the following general extension theorem (see [T]):

Theorem 6. Let M be a complex manifold, X C M an open submanifold of M whose closure X
has smooth, strictly pseudoconver boundary in M. Let G be a complex Lie group, m: Q — M a
differentiable principal G-bundle on M and J a holomorphic structure on the restriction P :— Q| x.

There exists an open neighborhood M' of X in M and a holomorphic structure J' on Q|
which extends J.

The proof uses methods and techniques introduced in [HiNa| and [Cal].

In the special case when M = C" and G = GL(r,C) one obtains as corollary Proposition 5
(and hence Corollary 3) in full generality. Moreover, one also obtains the following generalization
of this corollary:

Theorem 7. Let G = K© be the complexification of a compact Lie group K, X be a compact
Stein manifold with boundary and g be a Hermitian metric g on X. The moduli space of boundary
framed Hermitian Yang-Mills connections on the trivial K-bundle on (X, g) can be identified with
the quotient C*(0X,G) /0= (X, G).
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Recent progress in Iwasawa theory of knots and links

Jun Ueki
(Department of Mathematics, Ochanomizu University, Tokyo, Japan)
E-mail: uekijun460gmail.com

We briefly survey joint works with Ryoto Tange, Hyuga Yoshizaki, and Sohei Tateno.

Twisted Iwasawa invariants of knots [1]. Let K be a knot in S* with mx = m1(S® — K) and
let X,, = X = 5% — K denote the Z/nZ-cover for each n € Z~q. Let p be a prime number and let
m € Z with p{m. Let p: mx — GLy(Oy) be a representation over a finite extension O, of the
p-adic number field Q, and let A,(¢) denote the twisted Alexander polynomial. Then we have
the following.

Theorem 1. Let (K,p,m,p) be as above. Then there exists some \,u,v € Z such that for
any n > 0, |Hi(Xppn, pltor] = P holds. (We have NrA,(T) = p*(\ + p(lower terms)) in
AN

For each (K, p,p), there exists some m such that \/[O,] : Z,] = degA,(t). Hence for each K,
there exists some (p, p,m) such that A coincides with the genus of K.

For each (p, K, p), i’s and X’s determine whether A,(t) is monic in O,[t] and whether K is
fibered.

Example 2. (1) The \'s of the lifts p5, : 7x — SLy(O) of the holonomy representation of the
figure eight knot K = 4;.

(2) For any SLo-representations of the twist knots J(2,2k) (k € Z), we have = 0. We may
expect that if k # 0, £1, then there exists some p of J(2,2k) with p > 0.

Weber’s class number problem for knots [2]. Weber’s class number problem for number
fields is mostly unsolved for 200 years. Yoshizaki [3] recently pointed out that the sequence of
the class numbers converges in the ring of p-adic integers Z,. In the knot theory side, we obtain
the following.

Theorem 3. Let K be a knot in S® and let p be a prime number. Then the sizes of the p-torsion
subgroups of Hy(Xpn;Z) converges in Z,. The limit value is given by the roots of unity that are
close to the roots of the Alexander polynomial Ak (t).

Example 4. The limit values for the torus knot 7,, (a,b € Z; coprime) and the twist knot
J(2,2k) (k € Z).

Iwasawa invariants of the Z,-covers of links [4]. Cuoco-Monsky gave a variant of the
Iwasawa class number formula for Zpd—extensions of number fields and pointed out the existence
of the term O(1). In our side, we have the following.

Theorem 5. Let L be a d-component link in a rational homology 3-sphere M and let Y, —
X = M — L denote the Z/nZd—cover. Then there exists some A, such that the size of p-
torsion subgroup of Hy(Y,,Z) is given by PP "+t O)  phere O(1) is the Bachmann
Landau notation. If M is an integral homology 3-sphere, then the Zpd—cover 1s Greenberg, namely,
O(1) is a constant.

Example 6. The values p, A, and O(1) of Solomon’s link 47 and the twisted Whitehead link
Wag—1 (k € Z). We have a link with O(1) # 0 and a link with any p € Zx.
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[osepxusa V? kimacy C¥ k > 1 y npocropi Minkoscbkoro 'R, HasuBa€ThCs npocmopoéono-
dibHoto (waconodibroto, 130mponHor0), KO JOTHYHA IJIONIMHA /0 Hel B KOXKHIH To4ll € 1po-
cTOpoBONOAIOHO0 (Yaconoaibnoo, i30TponHow). Byjaemo posrisjarn Taki JBOBUMIpHI HOBEPXHI
npocropy 'R, abo Taki 06JacTi HA IMX MOBEPXHSAX, Y AKUX THI JOTHYHOT MJIOMIMHHU B KOMKHIi
Toumi oauH i Toii cammii. IIpu rpaccManoBoMy BimoGpaszkenni nosepxni V2 B rpaccMaHiB MHOTO-
B PG(2,4) orpumaemo epacemarnosuti obpas nosepxui V2. T'paccmanis 06pa3 1pocTopoBONOLi-
6HOi (1acononibHoi) JBOBUMIPHOT MOBepXHi NpocTOpy 'Ry € JBOBMMIPHUM i IMHOTOBUJIOM MHO-
rosujy daconoaibuux (mpocroposonoaibuux) mwionud [2]. [uaykoBana Merpuka rpaccMaHOBOIO
obpa3y mozke OyTH 3HAKOBH3HAYEHOIO, 3HAKOHEBH3HAYEHOI0 a00 BHPOIKEHOIO, a 3HAYUTHL I'PAC-
cMagiB 06pa3 Mozke OyTH JBOBHMipHOIO IIPOCTOPOBOIOAIOHOIO, 9aCOIMOII0HOI0 ab0 i30TPOIIHOIO 0~
BEepxHEI0. 3’gICyEMO MUTAHHS [IPO THII IPACCMAHOBOI0 00pa3y MOBEPXOHD 3 IJIOCKOI HOPMAJIbHOIO
3B’ I3HICTIO.

[ToHATTS MI0CKOI HOPMAIBLHOI 3B’ A3HOCTI ITiIMHOTOBUIY PHUMAaHOBOIO MHOTOBHILY OYJI0 BBEIEHO
E.Kaprauom [1|. IlimMHOrOBIN 3 MIIOCKOK HOPMATHHOIO 3B’SI3HICTIO € MiIMHOTOBUIAME 3 HYJIHO-
BHM TEH30POM CKpyTy. BaykK/JIMBOIO BIACTUBICTIO MOBEPXOHD 3 ILTOCKO HOPMAJIHHOIO 3B SI3HICTIO
€ iCHyBaHHs KOOPJAMHATHOI CITKH, BIJHOCHO SKOI MEPIIY Ta OOMABI ApYyTi KBaApaTHdHI (pOPMHI MO-
2KHa& OJTHOYACHO 3BECTHU JO JIaroHAJBHOTO BHUAY. LI KOOpJIWHATHA CITKa € CITKOIO JIiHIfl KpUBUHH.
[ToBepxHi 3 MIOCKOIO HOPMATBHOIO 3B I3HICTIO Ta IX TPACCMAHOBI 00pa3u y mpocTopi MiHKOBCHKO-
ro MaloTh IIe JI0JIATKOBI BJIaCTUBOCTI:

1) gkmo TpaccMaHoBHiT 06pa3 wacomodionoi moepxui V2 C! Ry 3 MIOCKOI HOPMAIbHOIO
3B’3HICTIO HEBUPOZKEHU, TO BiH € 9aCOMOAI0OHOI TTOBEPXHEIV;

2) HeBUPO/ZKeHUIT I'PACCMAHOBHI 00pa3 HPOCTOPOBOIOAIGHOT HOBEPXHI 3 IJIOCKOI0 HOPMAJILHOIO
3B SI3HICTIO MOYKe OyTH ab0 MPOCTOPOBOITOAIOHO0, a00 YacomoaibH00, a00 I30TPOITHOI MTOBEPXHEIO;

3) TUII HEBUPOJZKEHOI0 IPACCMAHOBOrO 00pasy rineprosepxai V2 JiesKoro TpUBUMIPHOTO I1ii-
IpoCcTOpY HpocTopy 'R, cruiBnajae 3 TumnoM mnosepxai V2.
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E-mail: kiosakv@ukr.net

JI. Kycik
(Ozechkuit Harionanbuuii MopebKuii yuisepcurer, Oyeca, Ykpaina)
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B. Icaes
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E-mail: isaevvb@gmail.com

Cepej po0iT 110 reoIe3nIHuM Bi0OparKeHHSM [CeBI0PIMAHOBUX MPOCTOPIB OCOOIUBE MiCITi 3a-
iitmae pobota 1896 poky T. JleBi-YUesitu, B sikiil BiH, BUXO/Is19H 3 PiBHIHD JUHAMIKH, C(DOPMYJTIOBAB
MOCTAHOBKY 337124l Ta OTpUMaB OCHOBHI piBHsHHS [1]. OcobauBICTIO POOOTH € BUKOPUCTAHHS TEH-
30pHUX METO/IiB.

[Ticaa Toro, IK TeH30pHI METOIU JOCTIIZKEeHHA 3afiHAIN JOMIHYIOUl MO3UIT B AudepeHIiagabHii
reometpii, I'. Beitn, JL.II. Eitsenxapt, B.®. Karan, ['.I. Kpyukosuu, A.C. ConomnoBHiKOB Ta iHtITi
o0y lyBa/iu CTPYHKY TEOPII0 reoJe3nvdHuX Bi00parkeHb ICeBJOPIMAHOBUX HPOCTOPIB, iHBapiaH-
THY BiZ{HOCHO BUOODPY CHUCTEMH KOOP/IMHAT.

Hoguit momroBx msi Teopist orpumadia micias pobir M.C. CuniokoBa, sikuii 3BiB 3aja4y Ji0
JOCJTiJKeHH ST JIiHIHOT cucremn qudepenniaibHux piBHsHD [2].

Bzaemmuo ojHO3HAYMHA BiAMOBIAHICTH MiK TOYKAMHU ICEBIOPIMAHOBHX MPOCTOPIB V), 3 meTpu-
SHUM TEH30POM g;; Ta Vy, 3 METPHIHIM TeH30POM J;; HA3UBAECTHCS TCOIC3MTHUM Bi0GPasKeH M,
AKIINO TIPU Hilf KOKHA Teoe3ndHa JiHig V), TepexoInTh B Te0Je3Hny Jinifo V.

ITcesiopimanis npocrip V,, B sikomy icuye renzop A; i, s, Taxuii, mo A; ., 4, ; = 0, HasuBa-
01h A-cumerpuanum. Tyr Koma “” 3HaK KoBapiaHTHOT moxijgHOT 1m0 38’s3u0cTi V,,. [eomesndno
A-CcUMeTPpUYHUM HA3WBAEMO IICEBJIOPIMAHIB MPOCTIP, B SKOMY yMOBa A-CHMETPUYHOCTI BUKOHY-
€ThCsT JIJIsT KOBAPIaHTHOI MOXiAHOT 10 3B’SI3HOCTI TMe0Ie3W9HO BiJIOBIIHOIO JAHOMY TPOCTOPY Vi,
nceslopimanosoro mpocropy V,, [3].

3okpema, sKIIo i Tenzopa Pivdi ncesgopimanosoro npocropy V;, Bukonyerbest ymosa Vi R;j =
0 (TyT V 3HaK KOBapiaHTHOI MOXiZHOI MO 3B’sA3HOCTI V), TO TaKiif MPOCTIp HA3MBAEMO TEOIe3MIHO
Pigui cumerpuannM. KINO 1 yMOBa BUKOHYETHCS JUIS TeH30pa PiMaHa, TO MpOCTip Ma€ Ha3BY
reoJle3NYHO CUMETPUYHUM.

Jloseseno, 1o He icHye reoje3ntdno Piddi cumerpudHuX TPOCTOPIB BiAMIHHUX BiJ ITPOCTOPIB
Eitamrreitna, a Takoxk, Mo HE iCHYE I'€0Je3WYHO CUMETPUIHUX IICEBIOPIMAHOBUX ITPOCTOPIB Bijl-
MIHHUX BiJI IPOCTOPIB CTaJ0I KPUBUHMU.

Takum amHOM, Teome3ndno Piudi cumerpudHi Ta reome3nvHO CHMETPWIHI TPOCTOPH iCHYIOTH
JIVITITe TO/Ii, KOJIW BOHW TipocTopu EifHITElHA Ta TPOCTOPU CTAJIOT KPUBUHY BiAMOBIIHO.
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HocaikyBasucs kBasi-reoje3udni Bijodpazkenust [1] y3arajibHeHO-peKypPEHTHUX HPOCTOPIB la-
pabosiunoro tuuy [3] (Va, gij, F{*) i (V. gy;). OcHosai piBHsHHS TAKOrO BioOpazKenHs B CyMicHiii
3a BioOpaskeHHsAM cucremi KoopauHat (x') MaTh BurIs ] 3]

h

fij(x) ( )+ Yu(x)d )+¢(z( ) (x)a
Ej = _Fji7 ‘Fij = gia-F]qa FZ] = _Fjia Fij =g; F?"

it g
F'Fe =0
F(ZJ - F i95)
FU, Fh KOMIOHEHTH 00’€KTiB 38’a3H0cTi V., i Vi,; ¥y, ©; - JAeqki kosekTopw; ”,” - 3HAK KOBapi-
aHTHOI noxiguoi B V,.
. . . . h o h
Axmo nudepennianbai piBHAHHA M1g adiHopa HAOyBaIOTh BUTJISIIY F(i’ 5= F(iqj), MU Ha-
3uBaE€MO AMDIHOPHY CTPYKTYPY y3arajgbHEHO-PEKYPEHTHOIO, a IIPH Fihj = Fihqj - PeKypeHTHO-
mapaboIiIHOIO.

Mu BBazkaemo, 1O y3arajJbHEHO-PEKYPEHTHa CTPYKTYpa iHTerpoBHA i KBa3i-reo/Ie3ndHe BijI-
obpazkeHHs 30epirae BEKTOp y3arajibHeHOl peKypeHTHOCTI [3], orzke B mpocTopi (V,, ﬁij) Juts adi-
Hopa F' BUKOHYIOTbCA CIIiBBiTHONICHHS

F(ZIJ) qu)

- 3HAaK KoBapiaHTHOI moxinzol BigHOCHO 3B’s13HOCTI [ B V,.

[To6ynoBano reomerpudHi 00’€KTH, iHBapiaHTHI BiZIHOCHO KBa3i-T€OME3WIHOTO BiZ0OpaKeHHS
y3arajabHEeHO-PEKYPEHTHUX MPOCTOPIB MapaboOidHOrO THITY, & TAKOXK PEKYPEeHTHO-TapadoiTHIX
npoctopiB. HaBoguThest psig yMOB Ha Iii 00’€KTH, IO NPU3BOJALATH JO TOrO, IO Y3araJbHEHO-
PEKYPEHTHH MPOCTip MapaboJigTHOTO THITY J0TycKae mapaboaiany K-cTpykTypy, 11 9Koi F(}; 5=
0, a pekypenTHO-TapaboiaHuil IPOCTIP JOIYCKAE KEJIEPOBY CTPYKTYPY 11apabdO/idHOIO THUILY.

Bupueno cremiajgbHi TUIIN KBa3i-reoge3nIHNX BigoOparkeHb y3araJibHEHO-PEKYPEHTHUX TTPOCTO-
piB, 110 30epiraloTh JesKi TeH30PU BHYTPIIIHHOIO XapaKTePy.

” |77

e
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CUHTYJAPHUX IHTErpaJibHUX OIlepaToOpiB

Mozess B. O.
(Byn. Cepennbodonranceka, 19-B, k. 270, 65039, Omeca, Ykpaina)
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Hexait D — BigkpuTwii OMHIYIHUN KPYT KOMILIEKCHOI mIonmuHu. B rimbbeproBomy mpocTopi
L?*(D) BBejeMo HACTYTHI OnepaTopu:

K — nobpe Bimomuii onepaTop beprmana;

W = W, - yuitapuuii (i3oMerpuumHumii) omeparop 3BazKeHOrO 3CyBY, yTBOpeHHil mapaboidHum
abo rinepboaivyanM apobHO-TiHIHNM IepeTBopeHHsIM g € G Kpyra D B cebe, n1e G — HeCKiHUYeHA
[UKJIiYHa KOMYTaTUBHA T'Pyla, HOPO/?KEHAa, IIEPETBOPEHHSM ¢, 3 OJHIEI0 ab0 JIBOMa HEPYXOMUMU
i TPAHUYHUME TOYKAMH BCiX 3CYBIB, IO JI€2KaTh Ha abCOJIIOTI.

Hexait, mani, 2 mozmagae C*-anredpy 06e3 3CyBy, dKa HOPOMKEHA OIEpATOPAMHM, IO MalOTh
urysag A = a(2)] +b(z) K + L, ne I — oqunnanmii, L — KoMnakTauii, Koedirmientu a, b € aBToMOp-
dbuumu dyHKIIIME, TOOTO 3310BOIBHAIOTH yMoBaM a(g(2)) = a(z), b(g(z)) = b(z), HenepepBHEME
Ha PIMaHOBI# MOBEPXHI IPYIIH.

Busuaetbcs C*-anrebpa B, mopo/zKeHa yciMa OepaTopaMy BUTISLY

+o0
B= > AW
j=—00
ne A; — oneparopu aarebpu 2.
Buasngerncs, mo anredpa B e posmupennaM aaredbpu 2 3a 10M0MOroio oneparopis 3cyBy W,
ne g € G. Bynyerbest anrebpa CUMBOJIIB Ta BCTAHOBIIOETHCS KpUTEpilt (ppearoabMOBOCTI jijisd
omeparopis C*-anrebpu ‘5.
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B [3] Mu gocuizkyBasin audeomopdizmu 1ces1o-piMaHOBUX HPOCTOPIB, sKi € KBa3i-Ie0 €3 IHUMU
Bijobpazkennsivu 1] 1 Boguovac maiizxke-reojesnunumu 2-ro tuiy [2]. OcHOBHI piBHSIHHS TAKOIO
sinobpazenns (Vy,, gi;, F') i (Vy,gy;) B cymicaiii 3a BigoOpazenusy cucremi koopaunar (z') ma-
I0Th BUTTIAT |3

—h

Ty (x) = (@) 4+ ¥a(2) 8} + ¢ (@) Fjj (),
Fij=—Fu, Fj=gal}, Fij=-Fu Fij=0.F
F'Er =0

h _ h
iy = Faty),

ze Fw F?j - KOMIIOHEHTH 00’€KTiB 3B’a3H0cTi V) i V,,, 1, (; - JedKi KoBeKTopH; ”,” - 3HAK KOBa-
pianTHOI ToxXigHOI B V,.

AdinopHy CTPYKTYDY, I KOi qudepenmiaabai piBHAHHS HabyBalOTh BATIALY [ wn = (};qj),
MH HAa3WBAEMO y3ara/ibHEHO-PEKYPEHTHOIO, a IPHU E}}j = F'q; - peKypeHTHO-1apaGo IiaHOIO.

VY BHIAJKY, KOJIM B OCHOBHHUX DIBHSAHHIX KBa3i-reoje3mdHoro BimoOpazkenns ;(x) = 0, iforo
Ha3UBAIOTh KAHOHIYHUM.

Orpumana jixiiina ¢dpopMa OCHOBHUX PIBHSHb KAHOHIYHHX KBa3i-T€OJe3WYHHX BimoOparkeHb
PeKypeHTHO-IapaboIidHUX HTPOCTOPIB. 3 1i JOMOMOIOI0 MOBEIEeHI OCHOBHI T€OpPEMH Teopii KaHo-
HIYHUX KBa3i-reoe3nIHuX BiT0OpaKeHb peKypeHTHO-MapadoidHIX IIPOCTOPIB, SIKi JaI0Th 3MOTY
1151 Gy/Ib-SIKOTO TICeB10-piManoBoro npoctopy (Vi,, gij, F") 3 pexypenTtHo-napaboigamoo adbinop-
HOIO CTPYKTYPOIO OJHO3HAYHO BiAIOBICTH HA MATAHHS, JOMYCKAE BiH PO3IJIAIyBaHe BiToOparKeHH
9H Hi.

Jaui pOSFJIHHyTO KAHOHIYHE KBa3i-re0/Ie3uIHe BiJ0OpazkKeH s PeKYpPEeHTHO-NIapaboIivHOTO Mpo-
cropy (Vi gi5, F, ) ma momycumerpuunmii npoctip V,,, otxke Tesop Pimana V,, 3a10B0IbHSAE YMO-

BaM

—h
Rijppm) = 0,
7|” - 3nak koBapianTHOI HOXiAHOT B V).
HoBenena

e

Teopema 1. Arwo pexypermno-napabonivrut npocmip (Vy,, gi;, F, ) donyckae nempusianvhe Ka-
HOHIYHE K6a3l-2€00e3UnHe 61000PANCEHHA HA NOAYCUMEMPUYHUT Vn, MO GUKOHYEMBCA NPUHATM-
Hi 00na 3 Yymos: @; ; = aly; — p;iq; abo Ri I} = = bF}j, npu deaxux ineaianmar a,b.
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I'eomerpia HabaAMKEeHH 1J19 MPOCTOPY adiHHOI 3B’A3HOCTI
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Posruisinemo npoctip adpinuoi 38’s310CTi 03 cKkpyTy A, BijHeceHu 10 J0BIIBHOT cuCTeMH KO-
opaunar {z', x? ... 2"}, 3 06’ekTOM 3B’93HOCTI FZ(%‘), My(x}) — dikcoana TouKa IHOIO TPOCTO-
py. [lo6ynyemo HoBuii npoctip A, Bianecenuii 1o koopmunat {yt, y2, ... y"}, 3i cBoiM 06’€KTOM
3p’a3nocti Il (y), skuil 3a1a€Thesl CIIBBIHOIIEHHSM

~ 1
F?j(y) - _gjgﬁ(ij)l yl’ A€ @-};jl = Rzgl(MO) (1)

SKImo cucremMa KOOpAUHAT Y BHXIZHOMY IpOCTOpPi A, € KaHOHIYHOIO 3 movaTKoM y Touri My,
, , . Th . h . .
TO 00’€KT 3B’A3H0CTI ['}; peanisye HAOIMZKEHHs MEPIIOTo NOpAAKY Jia I BUXITHOrO mpocTopy i
TOMY BiIOGparKae TeOMeTPUYHI BIACTHBOCTI A, 3 jegkuM cryneneMm tounocri |1, 4].
Bupgaiorbes jiesiki BIacTUBOCTI npocTopy A,. 30Kpema, J0BEJIEHO, IO CUCTeMa KOOPIUHAT
{y', 92, ..., 4"} € pimanoBoio 3 moyatkoMm y TouIi M.
Hanmani posrisgmaroTbed aHaaiTH4Hi iH(IHITE3UMAaIbHI PyXd B mpocTopi A,

Y =yt + EMy) ot, ne £"(y)— BekTOp 3Mimenns. (2)
KommonenTn BekTOpa gh(y) MTYKAIOTHCS Y BUTJISI CTETIEHEBUX PSAJTIB.

y) =a" + Zakh =a"+ Zal1l2 LY Y2 .yt e d”, aZlQ_“lk—KOHCTaHTH. (3)

k=1

IIpu poctinzKkeHHI OCHOBHUX DiBHSAHB [2 3]
5 9?2 ch f‘h HE a~a 5 o ch
Ll(y) = s + 5“ 5 ir o — 9 fo (4)
Ay oy’ dy* 0y "oy 0y

y SBHOMY BUIVIZ/II 3HAHUIEHO BEKTOP fh(

):
= 1 kh
st 2k:—l) a1y, ae (5)

k=0

44%myy’ #ﬁZQHW?(p:Z&~) (6)

JloBeena abcosioTHA Ta PiBHOMIPHA 3012KHICTH MUX Ps/IiB v AesKiil obsracti. BuBdaerbes nuranms
po MOPsAIOK rpynu JIi po3TIsiHyTUX PYXiB.
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Hocmimxkyoun maiizke kouTakTai Maorosuau, K.fuo, C.Xoy i B.Yen [1| giiitmm 10 moHATTS
Keadpucmpyxmypu, CTPYKTYpHUI adinop gKoi 3a10BoabHSE piBHAHHIO ¢F £ ¢ = 0.
. . . )
Mu suuaemo 3F-mianapui Bigobpazkenns |2| ncesio-pivanosux upocropis (Vi gij, F1') i (Va, Gijy F)
3 a(piHOPHOIO CTPYKTYPOIO IIEBHOI'O BHJIY, OCHOBHI PiHSHHS SKHX B 3arajbHiil 3a BiZIoOparKeHHAM
cucremi KoopauHat (') MalTh BULJIST:

T () = () + i) FA ),

ze
o 1 2 1 1 3 2 1 s Sh
h h h h h h h h h il
Fi:(siﬂ Fi:Fi> Fi:Fz‘aFaﬂ Fi:FiaFaﬂ Fi(x):Fi(x)ﬂ
h s h h h
FaFgFéﬁF; +FaF‘ia:O7 giaF‘ja:_gjOtFjiaﬂ Fi,j:F‘i\j:()?
—h . . L . s .
Ffj, I';; - xomnonenTn 06’exTiB 38’'a3nocti V,, i V,, Bignosinuo; ¢;(x) - gedki KOBeKTODH; Ff -

adinop; <,>, < | > - 3naku KoBapianTHOI moXigHOI B V}, i V.
Mu foBen, o 3a TaKuX yMoB Ha adinop mpoctopu V,, i V,, € TOKaIbHO 3BEJCHEMH i MaIOTh
BUTISL, JOOYTKY
Vn = Vm X ‘/nfmy Vn = Vm X anrm
JI0 TOT'O 7K Ha KOMIIOHEHTAX 1b0ro j100yTKy 3F-manapue Bigobpamxenns f : V,, — V,, imaykye F-
nianapue Bigobpaskenus [3] fi : V,, — V,, napaboaiuno kejaeposux npoctopis [3] i F-mianapne
Bifo6pazkeHna fo : Vi p — Vi €JIIITHYHO KeJIepoBHX HPOCTOPIB [3].
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Posrisnaernes cucrema vesinifiHux pisnuneBo-QyHKIIOHAIBHIX PIBHSIHD BULJISIILY
z(qt) = A (t) + f(t,z(t+1)), (1)
Y BUIAJKY, KOJIM BUKOHYIOTHCS HACTYITHI YMOBH:
(1) A - pgiiicna (n X n)-marpuns Burssiny A = diag (A1, A2), ae Ay, Ay - aiiicui (p X p) Ta
(r x r)-marpumi (p+7r=mn),det A #0. f: R x R* - R",
fz@+1) = (L E+1),22(+1), 22" (t+1),22(t+1))), ¢ - nesxa

JliicHa J10aTHA CTaJa.

(2)

IFU(E 72 — (3 3] < L (|30 — 3 + |22 — 7)),
‘fz( j' )_fQ(t,iJ,fQ)’ SZZ(‘i'l—(f'l‘—f—‘;E?—_ffZD’
zie b, Iy - meaxi nomarwi crani, mo sanexars sin l(h =l (1), lo =12 (1)}l = 0,1, — 0 mpn [ — 0).

Toni cucrema piBHsiHD (1) 3amuImerbest y BT

{ ol (qt) = Ml (0) + f1 (82! (E+1) Nk @)
22 (qt) = No2® () + f2 (¢, 2 (4 1), 1
A€ I‘ - (xb . xp) $2 - (‘Terl? . :L'p+7") f - (f17 .. 7fp)7 f2 - (fPJrla "'aprrr) .

(2)

Borman @emrenxko, [09.05.2022 15:04] Bukonasmmu B B3a€MHO-OJHO3HAYHY 3aMiHy 3MIHHIX

r1(t) =y (1) + 31 (),
Ty (1) = y2 (1) + 2 (1),

e v (t) = (1 (t),72 (t)) - HemepepBHUIT 0OMezKeHHIA PO3B’sI30K CHCTEMH (2), OTPHMAEMO CHCTEMY
PiBHSIHB

R S A 5
v (qt) = Aoy® () + F2 (gt (t+ 1), 92 (t+ 1))

Bekrop-dynknii F* (¢, y',y?), F? (t,y', y?) 3agoBosnbusiors ymosi 2. 1 F'! (¢,0,0) = 0, F? (¢,0,0) =
0. Insg cucremu (3) J10BejieHa HACTYIIHA TEOPEMA.
Teopema. Hexali suxonyromovca ymosu 1-2 4 ymosu:
30<N<l<N,i=12,...p,j=p+12,..0,0<p<n,qg>1,
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4.9:max{lzlj\*7/\flfl} <1, del >N >max{\,i=1,....p}, 1 <A, <min{\,i=p+1,...,n}.

Todi cucmema pienans (3) mae cim’to nenepepenuz obmescenur nput > T > 0 (T - deara do-
CMammvo eeauka dodaMmHa CMana) po3e’a3kie y 6uzaidi padie

y'(t) = Zyi(tLyQ(t) = ny(t),

ae yi(t), y2(t), i = 0,1, ... - deaxi nenepepeni obmesceni npu t > T > 0 eexmop-Pynruyii.
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Mu Busuaemo F-mnanapmi Bigo6pakens (1ceBjio-)piMaHOBHX IPOCTOPIB 3 adiHOPHOW CTPY-
KTypoto nesroro tuiy ([2]).

B pimanosomy mnpoctopi (V;,, gi;) adinop F]h BU3HAYAE CUMILIEKTUUHY cTPYKTYpy([3]), sKimo
none tensopa Tty (0,2)  Fij = F'ga; 33710B0bHSAE yMOBaM:

Fijr+ Firi + Frij =0, Fj;+F; =0, Fj=F;gai, |E)'| # 0,
e 3HAK KOBapiaHTHOI MOXiZHOI B mpocTOpi S),.

Mp1 06upaeMo CTPYKTY Py OLIBII 3araabHOTO TUIY, BIAMOB/ISIOYNACH Bi/l BAMOI'M HEBHPOKIEHOCT1
adinopa. Bygemo nasusatu ii matiorce cumnaexmushoro, a (ICeBI0-)pIMAHOBHIT TIPOCTIP 3 TAKOIO
CTPYKTYPOIO - Mafiotce CUMNAEKMUSHUM.

Jani vm mocaimxyemo F-mianapi BigoOpaskeHHS TIceBIO-piManoBuX mpoctopis V, i V, B
upumnyienni, uro adinop F BusHauae Maiixe cumiuiektnany crpykrypy ma Vj, i V. Ix ocnosni
PIBHSIHHS MAIOTh BULJISIT

Th h h h
Fij<x) = Fij(x) + ¢(i(x)5j)(x) + ‘P(i(x)Fj)(m)>
—h . L .
ae 'y F?j - KoMImoHeHTHn 00’eKTiB 3B’a3nocti V', i V), 15, ; - meaki koBekTopu. [loBenena
Teopema 1. Matisice cumnaexmuunuti npocmip (Vi gi:) donyckae nempusiaavne F-naarapre
ny Yig
sidobpastcenta modi © minbku modi, KOAU 68 HbOMY ICHYE HE0COOAUBUT CUMEMPUNHUT MEHZ0D G;j

muny (0,2), axuil 3ado6orvhse dupepenyiasvnum PieHAHHAM

1 1 1 1
A5k = _gpa-Fiagjk - (pa}?ﬁgik - QOzF‘jk - @]Eka

¢ _ a
E Qqj = —FJ (0773

npu deaxomy eexmopi P1; # 0.

Jani 3a g10mOMOroI0 a;; MH OTPHMYEMO ineapianmme nepemeopenna(|4]) , ke mapy maiizke
CUMILIEKTHYIHUX IIPOCTOPIB, IO 3HAXOAITHCSI B HETPUBIaJbHOMY F-ITaHApHOMY BiZoOpazKeHHi,
[EPETBOPIOE B HOBY Mapy Maif?ke CUMILIEKTHIHHUX IIPOCTOPIB, IO TAKOK 3HAXOISITHCA B HETPUBH-
arpbHOMY F-mmaHapHoOMY BimoOpazKeHHI, aje BiAmoBimgadoMy iHIoMy adiHopy:

F— 1 p1 Fli
F(g,g,gp,F) : (Sn»ibsn) — (Sn%Sn),

3aBIgKH IHOMY 3’ SIBHJIACSA MOKJINBICTH OTPUMAHHS BEJIMKOI KiTbKOCTI HPUK/IAIIB Iap Maiizke

CUMILIEKTHIHUX [IPOCTOPIB, SIKi 3HAXOAATHCA B F-mamapHomy BigoOpazkeHH.
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