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The sub-Finslerian geometry means that the metric F is defined only on a given subbundle of the
tangent bundle, called a horizontal bundle. In the paper, a version of the Hopf-Rinow theorem is proved
in the case of sub-Finslerian manifolds, which relates the properties of completeness, geodesically
completeness, and compactness. The sub-Finsler bundle, the exponential map and the Legendre
transformation are deeply involved in this investigation.
We construct a sub-Finsler bundle, which plays a major role in the formalization of the sub-

Hamiltonian in sub-Finsler geometry. Moreover, the sub-Finsler bundle allows an orthonormal frame
for the sub-Finsler structure. We introduce the notion of an exponential map in sub-Finsler geometry.
At the end, our main theorem is stated and proved.
Theorem 1. Let (M,D, F ) be any connected sub-Finsler manifold, where D is bracket generating
distribution. The following conditions are equivalent:

(i) The metric space (M,d) is forward complete.
(ii) The sub-Finsler manifold (M,D, F ) is forward geodesically complete.
(iii) Ω∗

x = D∗
x, additionally, the exponential map is onto if there are no strictly abnormal minimizers.

(iv) Every closed and forward bounded subset of (M,d) is compact.
Furthermore, for any x, y ∈ M there exists a minimizing geodesic γ joining x to y, i.e. the length of
this geodesic is equal to the distance between these points.
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