HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY

Layth M. Alabdulsada
(Dep. of Math., College of Science, University of Al-Qadisiyah, Al-Qadisiyah, 58001, Iraq)
E-mail: layth.muhsin@qu.edu.iq

Laszlo Kozma
(Inst. of Math., University of Debrecen, H-4002 Debrecen, P.O. Box 400, Hungary)
E-mail: kozma@unideb.hu

The sub-Finslerian geometry means that the metric F is defined only on a given subbundle of the tangent bundle, called a horizontal bundle. In the paper, a version of the Hopf-Rinow theorem is proved in the case of sub-Finslerian manifolds, which relates the properties of completeness, geodesically completeness, and compactness. The sub-Finsler bundle, the exponential map and the Legendre transformation are deeply involved in this investigation.

We construct a sub-Finsler bundle, which plays a major role in the formalization of the sub-Hamiltonian in sub-Finsler geometry. Moreover, the sub-Finsler bundle allows an orthonormal frame for the sub-Finsler structure. We introduce the notion of an exponential map in sub-Finsler geometry. At the end, our main theorem is stated and proved.

Theorem 1. Let (M, \mathcal{D}, F) be any connected sub-Finsler manifold, where \mathcal{D} is bracket generating distribution. The following conditions are equivalent:

(i) The metric space (M, d) is forward complete.

(ii) The sub-Finsler manifold (M, \mathcal{D}, F) is forward geodesically complete.

(iii) $\Omega^*_x = \mathcal{D}^*_x$, additionally, the exponential map is onto if there are no strictly abnormal minimizers.

(iv) Every closed and forward bounded subset of (M, d) is compact.

Furthermore, for any $x, y \in M$ there exists a minimizing geodesic γ joining x to y, i.e. the length of this geodesic is equal to the distance between these points.

REFERENCES

