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In this study, a plane curve, which was named as Interception Curve, was discussed. This curve can
be defined in the following way. Suppose one point moves with constant velocity along a straight line,
and another point, at the beginning one unit apart from the line and the first point on this line, moves
with the same constant speed so that it always stays on a line passing through the first point and the
initial position of the second point. This plane curve appears in problems related to the interception
of high-speed targets by beam rider missiles (hence the name Interception Curve) [2, 5]. This curve
was also mentioned in [4, 6, 1]. In [3], at Sect. 1.460 and Sect. 1.507), some methods based on polar
and Cartesian coordinates were proposed to find an explicit representation for this curve.
Problem 1. If two points P (x, y) and Q, initially at O(0, 0) and A(1, 0), respectively, move uniformly
so that Q is on the line x = 1, and P is on the ray OQ then what curve does the point P draw?
Answer. Let us use polar coordinates r = |OP | and ∠AOQ = θ. We obtain ordniary differential
equation

r(θ)2 + (r′(θ))2 =
1

cos4 θ , (1)

with initial condition r(0) = 0. Note that in the cartesian coordinates, (1) can be written as

x2
√
1 + (y′(x))2 = y′x− y, (2)

with initial condition y(0) = 0. By solving this equation, we obtain the parametrization (cf. [3], Sect.
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Using all these, the following results are obtained:
Theorem 2. Suppose that U is the y intercept of the tangent line of the curve (3) at the point P , and
this tangent line intersects the line x = 1 at point and T . Then

(1) x · |UP | = |OU |,
(2) sin∠QPT = x2

|OP | =
x

|OQ| ,
where x is the abscissa of the point P (x, y).
Theorem 3. Consider intersection point M of mid-perpendicular of OP and the line perpendicular
to UT at the point P . Similarly, conside intersection point N of mid-perpendicular of OQ and the
line perpendicular to QT at the point Q. Then the points M and N are equidistant from the point O
i.e. MO=NO.

The following result shows that there is a connection between the interception curve and Gauss’s
constant G defined by the arithmetic–geometric mean.
Theorem 4.

lim
x→1−

|PQ| = 1

4G2
.
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Problem 5. Suppose that two points P and Q, at the beginning at B(0, 0, 1) and A(1, 0, 0), respec-
tively, move uniformly so that Q is on the equator z = 0, x2 + y2 = 1 of sphere x2 + y2 + z2 = 1 with
center O(0, 0, 0), and P is on the meridian through B and Q of the sphere. What curve does the point
P draw?
Answer. We can use spherical coordinates to describe this curve: ∠AOQ = θ and ∠POB = ϕ. Since
ρ = |OP | = 1, for the coordinates of point P (x, y, z), we can write x = cos θ sinϕ, y = sin θ sinϕ, and
z = cosϕ, where we think of ϕ = ϕ(θ) as a function of θ. For this curve we obtain

ϕ = tan−1 sinh θ. (4)
Note that (4), which can also be expressed as sinϕ = tanh θ, is sometimes called Gudermannian
function gd(x). For the curve defined by (4) the following results are obtained.

Theorem 6. limθ→∞ |PQ| = 0.

In the following, we will use notation X̂Y for the spherical distance between points X and Y on a
sphere.Of course, for a unit sphere with center O, X̂Y = ∠XOY .
Theorem 7. If a great circle is tangent to the curve (4) at point P , intersects the equator at point
T , then

(1) P̂ T = π
2 − T̂Q,

(2) T̂Q < P̂T , and limθ→∞ T̂Q = limθ→∞ P̂ T = π
4 .

(3) ∠BPT = π − B̂P .
Theorem 8. If a small spherical circle through point B is tangent to the curve (4) at point P , then
its spherical radius R satisfies tanR = 1

2 sec2 1
2B̂P .

We can prove some of these results also using simpler plane and spherical geometry methods, which
are interesting on their own. It can be shown that the results agree with the angle-preserving property
of Mercator and Stereographic projections. The Mercator and Stereographic projections also reveal
the symmetry of this curve with respect to Spherical and Logarithmic Spirals.
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