FROM MINIMALITY TO MAXIMALITY VIA METRIC REFLECTION

Viktoriia Bilet

(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine) *E-mail:* viktoriiabilet@gmail.com

Oleksiy Dovgoshey

(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine; Department of Mathematics and Statistics, University of Turku, Finland) *E-mail:* oleksiy.dovgoshey@gmail.com

In 1934 Đuro Kurepa [4] introduced the pseudometric spaces which, unlike metric spaces, allow the zero distance between different points.

Definition 1. Let X be a set and let $d: X^2 \to \mathbb{R}$ be a non-negative, symmetric function such that d(x, x) = 0 for every $x \in X$. The function d is a *pseudometric* on X if it satisfies the triangle inequality.

If d is a pseudometric on X, we say that (X, d) is a pseudometric space.

Definition 2 ([3]). Let (X, d) and (Y, ρ) be pseudometric spaces. The spaces (X, d) and (Y, ρ) are combinatorially similar if there exist bijections $\Psi: Y \to X$ and $f: d(X^2) \to \rho(Y^2)$ such that $\rho(x, y) = f(d(\Psi(x), \Psi(y)))$ for all $x, y \in Y$. In this case, we will say that $\Psi: Y \to X$ is a combinatorial similarity and that (X, d) and (Y, ρ) are combinatorially similar pseudometric spaces.

Definition 3. Let (X, d) be a pseudometric space. A bijection $f : X \to X$ is a *pseudoidentity* if the equality d(x, f(x)) = 0 holds for every $x \in X$.

The groups of all combinatorial self-similarities and all pseudoidentities of a pseudometric space (X, d) will be denoted by $\mathbf{Cs}(X, d)$ and $\mathbf{PI}(X, d)$ respectively. Thus, for every pseudometric space (X, d) we have $\mathbf{PI}(X, d) \subseteq \mathbf{Cs}(X, d) \subseteq \mathbf{Sym}(X)$, where $\mathbf{Sym}(X)$ is the symmetric group of all permutations of the set X.

For every nonempty pseudometric space (X, d), we define a binary relation $\stackrel{0(d)}{=}$ on X by

$$(x \stackrel{0(d)}{=} y) \Leftrightarrow (d(x,y) = 0), \text{ for all } x, y \in X.$$

Proposition 4. Let X be a nonempty set and let $d: X^2 \to \mathbb{R}$ be a pseudometric on X. Then $\stackrel{0(d)}{=}$ is an equivalence relation on X and, in addition, the function δ_d ,

$$\delta_d(\alpha,\beta) := d(x,y), \quad x \in \alpha \in X / \stackrel{0(d)}{=}, \quad y \in \beta \in X / \stackrel{0(d)}{=},$$

is a correctly defined metric on the quotient set $X / \stackrel{0(d)}{=}$.

In what follows we will say that the metric space $(X/\stackrel{0(d)}{=}, \delta_d)$ is the *metric reflection* of (X, d). Let us define a class \mathcal{IP} of pseudometric spaces as follows.

Definition 5. A pseudometric space (X, d) belongs \mathcal{IP} if the equalities

 $\mathbf{Cs}(X,d) = \mathbf{PI}(X,d)$ and $\mathbf{Cs}(X/\stackrel{0(d)}{=}, \delta_d) = \mathbf{Sym}(X/\stackrel{0(d)}{=})$ hold.

Our main goal is to describe the structure of pseudometric spaces belonging to \mathcal{IP} . To do this, we introduce into consideration pseudometric generalizations of some well-known classes of metric spaces.

Let (X, d) be a metric space. Recall that the metric d is said to be strongly rigid if, for all x, y, $u, v \in X$, the condition $d(x, y) = d(u, v) \neq 0$ implies (x = u and y = v) or (x = v and y = u). The

discrete metric d on X is defined by d(x, y) = k, if $x \neq y$ and d(x, y) = 0, if x = y for any $x, y \in X$ and arbitrary fixed k > 0.

Definition 6. Let (X, d) be a pseudometric space. Then d is discrete (strongly rigid) if all metric subspaces of (X, d) are discrete (strongly rigid).

Definition 7. A pseudometric space (X, d) is a *pseudorectangle* if all three-point metric subspaces of (X, d) are strongly rigid and isometric and, in addition, there is a four-point metric subspace Y of (X, d) such that for every $x \in X$ we can find $y \in Y$ satisfying d(x, y) = 0.

Let X be a nonempty set and $P = \{X_j : j \in J\}$ be a set of nonempty subsets of X. The set P is a *partition* of X with the *blocks* X_j , $j \in J$, if $\bigcup_{j \in J} X_j = X$ and $X_{j_1} \cap X_{j_2} = \emptyset$ for all distinct $j_1, j_2 \in J$.

Now we are ready to characterize the pseudometric spaces satisfying equality

 $\mathbf{Cs}(X/\stackrel{0(d)}{=}, \delta_d) = \mathbf{Sym}(X/\stackrel{0(d)}{=})$ (see [1] for more details).

The following theorem is, in fact, a pseudometric modification of the main result of [2].

Theorem 8. Let (X, d) be a nonempty pseudometric space. Then the following statements are equivalent:

- (i) At least one of the following conditions has been fulfilled:
 - (i_1) (X,d) is strongly rigid;
 - (i_2) (X,d) is discrete;
 - (i_3) (X,d) is a pseudorectangle.
- (*ii*) The equality

$$\mathbf{Cs}(X/\stackrel{0(d)}{=},\delta_d) = \mathbf{Sym}(X/\stackrel{0(d)}{=})$$

holds.

The next theorem can be considered as one of the main results of our work.

Theorem 9. Let (X,d) be a nonempty pseudometric space and let $\{X_j : j \in J\}$ be a partition of *X* corresponding the equivalence relation $\stackrel{0(d)}{=}$. Then $(X,d) \in \mathcal{IP}$ if and only if

$$|X_{j_1}| \neq |X_{j_2}|$$

holds whenever $j_1, j_2 \in J$ are distinct and, in addition, at least one of the following conditions has been fulfilled:

- (i) (X, d) is strongly rigid;
- (ii) (X, d) is discrete;
- (iii) (X,d) is a pseudorectangle.

Funding. Viktoriia Bilet was partially supported by the Grant EFDS-FL2-08 of the found The European Federation of Academies of Sciences and Humanities (ALLEA). Oleksiy Dovgoshey was supported by Finnish Society of Sciences and Letters.

References

- [1] V. Bilet, O. Dovgoshey. Pseudometrics and partitions. arXiv:2304.03822, 28 p., 2023.
- [2] V. Bilet, O. Dovgoshey. When all permutations are combinatorial similarities. Bull. Korean Math. Soc., 14 p., 2023 (online first article May 16, 2023).
- [3] O. Dovgoshey, J. Luukkainen. Combinatorial characterization of pseudometrics. Acta Math. Hungar., 161(1): 257–291, 2020.
- [4] Đuro Kurepa. Tableaux ramifiés d'ensemples, espaces pseudodistacies. C. R. Acad. Sci. Paris, 198: 1563–1565, 1934.