From minimality to maximality via metric reflection

Viktoriia Bilet

(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine)
E-mail: viktoriiabilet@gmail.com
Oleksiy Dovgoshey
(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine; Department of Mathematics and Statistics, University of Turku, Finland)

E-mail: oleksiy.dovgoshey@gmail.com
In 1934 Đuro Kurepa [4] introduced the pseudometric spaces which, unlike metric spaces, allow the zero distance between different points.
Definition 1. Let X be a set and let $d: X^{2} \rightarrow \mathbb{R}$ be a non-negative, symmetric function such that $d(x, x)=0$ for every $x \in X$. The function d is a pseudometric on X if it satisfies the triangle inequality.

If d is a pseudometric on X, we say that (X, d) is a pseudometric space.
Definition $2(|3|)$. Let (X, d) and (Y, ρ) be pseudometric spaces. The spaces (X, d) and (Y, ρ) are combinatorially similar if there exist bijections $\Psi: Y \rightarrow X$ and $f: d\left(X^{2}\right) \rightarrow \rho\left(Y^{2}\right)$ such that $\rho(x, y)=f(d(\Psi(x), \Psi(y)))$ for all $x, y \in Y$. In this case, we will say that $\Psi: Y \rightarrow X$ is a combinatorial similarity and that (X, d) and (Y, ρ) are combinatorially similar pseudometric spaces.
Definition 3. Let (X, d) be a pseudometric space. A bijection $f: X \rightarrow X$ is a pseudoidentity if the equality $d(x, f(x))=0$ holds for every $x \in X$.

The groups of all combinatorial self-similarities and all pseudoidentities of a pseudometric space (X, d) will be denoted by $\mathbf{C s}(X, d)$ and $\mathbf{P I}(X, d)$ respectively. Thus, for every pseudometric space (X, d) we have $\mathbf{P I}(X, d) \subseteq \mathbf{C s}(X, d) \subseteq \operatorname{Sym}(X)$, where $\operatorname{Sym}(X)$ is the symmetric group of all permutations of the set X.

For every nonempty pseudometric space (X, d), we define a binary relation $\stackrel{0(d)}{=}$ on X by

$$
(x \stackrel{0(d)}{=} y) \Leftrightarrow(d(x, y)=0), \quad \text { for all } x, y \in X
$$

Proposition 4. Let X be a nonempty set and let $d: X^{2} \rightarrow \mathbb{R}$ be a pseudometric on X. Then $\stackrel{0(d)}{=}$ is an equivalence relation on X and, in addition, the function δ_{d},

$$
\delta_{d}(\alpha, \beta):=d(x, y), \quad x \in \alpha \in X / \stackrel{0(d)}{=}, \quad y \in \beta \in X / /^{0(d)}=
$$

is a correctly defined metric on the quotient set $X / \stackrel{0(d)}{=}$.
In what follows we will say that the metric space $\left(X / \stackrel{0(d)}{=}, \delta_{d}\right)$ is the metric reflection of (X, d).
Let us define a class $\mathcal{I P}$ of pseudometric spaces as follows.
Definition 5. A pseudometric space (X, d) belongs $\mathcal{I P}$ if the equalities

$$
\mathbf{C s}(X, d)=\mathbf{P I}(X, d) \quad \text { and } \quad \mathbf{C s}\left(X / \stackrel{0(d)}{=}, \delta_{d}\right)=\mathbf{S y m}(X / \stackrel{0(d)}{=}) \text { hold. }
$$

Our main goal is to describe the structure of pseudometric spaces belonging to $\mathcal{I P}$. To do this, we introduce into consideration pseudometric generalizations of some well-known classes of metric spaces.

Let (X, d) be a metric space. Recall that the metric d is said to be strongly rigid if, for all x, y, $u, v \in X$, the condition $d(x, y)=d(u, v) \neq 0$ implies $(x=u$ and $y=v)$ or $(x=v$ and $y=u)$. The
discrete metric d on X is defined by $d(x, y)=k$, if $x \neq y$ and $d(x, y)=0$, if $x=y$ for any $x, y \in X$ and arbitrary fixed $k>0$.

Definition 6. Let (X, d) be a pseudometric space. Then d is discrete (strongly rigid) if all metric subspaces of (X, d) are discrete (strongly rigid).
Definition 7. A pseudometric space (X, d) is a pseudorectangle if all three-point metric subspaces of (X, d) are strongly rigid and isometric and, in addition, there is a four-point metric subspace Y of (X, d) such that for every $x \in X$ we can find $y \in Y$ satisfying $d(x, y)=0$.

Let X be a nonempty set and $P=\left\{X_{j}: j \in J\right\}$ be a set of nonempty subsets of X. The set P is a partition of X with the blocks $X_{j}, j \in J$, if $\cup_{j \in J} X_{j}=X$ and $X_{j_{1}} \cap X_{j_{2}}=\varnothing$ for all distinct $j_{1}, j_{2} \in J$.

Now we are ready to characterize the pseudometric spaces satisfying equality

$$
\operatorname{Cs}\left(X / \stackrel{0(d)}{=}, \delta_{d}\right)=\operatorname{Sym}(X / \stackrel{0(d)}{=}) \quad \text { (see [1] for more details). }
$$

The following theorem is, in fact, a pseudometric modification of the main result of [2].
Theorem 8. Let (X, d) be a nonempty pseudometric space. Then the following statements are equivalent:
(i) At least one of the following conditions has been fulfilled:
$\left(i_{1}\right)(X, d)$ is strongly rigid;
(i_{2}) (X, d) is discrete;
(i_{3}) (X, d) is a pseudorectangle.
(ii) The equality

$$
\mathbf{C s}\left(X / \stackrel{0(d)}{=}, \delta_{d}\right)=\operatorname{Sym}(X / \stackrel{0(d)}{=})
$$

holds.
The next theorem can be considered as one of the main results of our work.
Theorem 9. Let (X, d) be a nonempty pseudometric space and let $\left\{X_{j}: j \in J\right\}$ be a partition of X corresponding the equivalence relation $\stackrel{0(d)}{=}$. Then $(X, d) \in \mathcal{I P}$ if and only if

$$
\left|X_{j_{1}}\right| \neq\left|X_{j_{2}}\right|
$$

holds whenever $j_{1}, j_{2} \in J$ are distinct and, in addition, at least one of the following conditions has been fulfilled:
(i) (X, d) is strongly rigid;
(ii) (X, d) is discrete;
(iii) (X, d) is a pseudorectangle.

Funding. Viktoriia Bilet was partially supported by the Grant EFDS-FL2-08 of the found The European Federation of Academies of Sciences and Humanities (ALLEA). Oleksiy Dovgoshey was supported by Finnish Society of Sciences and Letters.

References

[1] V. Bilet, O. Dovgoshey. Pseudometrics and partitions. arXiv:2304.03822, 28 p., 2023.
[2] V. Bilet, O. Dovgoshey. Wnen all permutations are combinatorial similarities. Bull. Korean Math. Soc., 14 p., 2023 (online first article May 16, 2023).
[3] O. Dovgoshey, J. Luukkainen. Combinatorial characterization of pseudometrics. Acta Math. Hungar., 161(1): 257-291, 2020.
[4] Đuro Kurepa. Tableaux ramifiés d'ensemples, espaces pseudodistacies. C. R. Acad. Sci. Paris, 198: 1563-1565, 1934.

