Thurston Norm and Euler classes of bounded mean curvature foliations on hyperbolic 3-Manifolds

Dmitry V. Bolotov

(B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine) *E-mail:* bolotov@ilt.kharkov.ua

Let M be a closed, oriented 3-manifold, and suppose that M contains no non-separating 2 - spheres or tori. For example, M is a closed oriented hyperbolic 3-Manifold.

The Thurston norm on $H_2(M, \mathbb{Z})$ is defined as follows ([1]):

 $||a||_{Th} = \inf\{\chi_{-}(\Sigma)| \Sigma \text{ is an embedded oriented surface representing } a \in H_2(M, \mathbb{Z})\}, \qquad (1)$

where $\chi_{-}(\Sigma) = max\{-\chi(\Sigma), 0\}$. Recall that $\chi(\Sigma) = 2 - 2g$ denotes the Euler characteristic of a surface Σ of genus g. When Σ is not connected, define $\chi_{-}(\Sigma)$ to be the sum $\chi_{-}(\Sigma_{1}) + \cdots + \chi_{-}(\Sigma_{k})$, where $\Sigma_{i}, i = 1, \ldots, k$ are the connected components of Σ . As Thurston showed, the Thurston norm can be extended in a unique way to the norm in $H_{2}(M, \mathbb{R})$.

The dual Thurston norm can be defined on $H^2(M, \mathbb{R})$ by the formula

$$||\alpha||_{Th}^* = \sup_{\Sigma} \frac{\langle \alpha, [\Sigma] \rangle}{2g(\Sigma) - 2},\tag{2}$$

where $\alpha \in H^2(M, \mathbb{R})$ and the supremum being taken over all connected, oriented surfaces Σ embedded in M whose genus g is at least 2.

Recall that a *taut* foliation is a codimension one foliation of a closed manifold with the property that every leaf meets a transverse circle. Equivalently, by a result of Dennis Sullivan [2], a codimension one foliation is taut if there exists a Riemannian metric that makes each leaf a minimal surface. Thurston proved that the convex hull of the Euler classes of taut foliations on M is the unit ball for the dual Thurston norm. In particular, the Thurston norm $||e(\mathcal{F})||_{Th}^*$ of the Euler class $e(\mathcal{F}) \in H^2(M, \mathbb{R})$ of a taut foliation \mathcal{F} is no more then one.

We represent the following result.

Theorem 1. Let M be a closed oriented hyperbolic 3-Manifold and \mathcal{F} be a two-dimensional transversely oriented foliation \mathcal{F} whose leaves have the modulus of mean curvature bounded above by the fixed positive constant H_0 . Then

- If $H_0 \leq 1$, we have \mathcal{F} is taut and $||e(\mathcal{F})||_{Th}^* = 1$.

- If $H_0 > 1$, we have

$$||e(\mathcal{F})||_{Th}^* \le 2\pi \frac{1600H_0^2 Vol(M)^2}{C_0^3 inj(M)} + \frac{300Vol(M)}{inj(M)} + 1,$$

where $C_0 = 2\min\{inj(M), (\operatorname{coth})^{-1}(H_0)\}$, Vol(M) is the volume of M and inj(M) is the injectivity radius of M.

References

- W.P. Thurston, A norm for the homology of 3-manifolds. Memoirs of the American Mathematical Society, 59 (339): 99 -130, 1986.
- [2] D. Sullivan, A homological characterization of foliations consisting of minimal surfaces, Comm. Math. Helv., 54: 218-223, 1979.