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This presentation is focused on some results of the long-term research programme Nijenhuis Geom-
etry initiated several years ago in cooperation with Vladimir Matveev and Andrey Konyaev.

A Nijenhuis operator L =
(
Li
j(x)

)
is defined to be a field of endomorphisms on a smooth manifold

M such that its Nijenhuis torsion identically vanishes, i.e.,

NL(ξ, w) = L2[ξ, η] + [Lξ, Lη]− L[Lξ, η]− L[ξ, Lη] = 0, (1)

for arbitrary vector fields ξ, η on M . The pair (M,L) is called a Nijenhuis manifold.
Relation (1) is the simplest differential-geometric condition on a field of endomorphisms, and that

is the reason why Nijenhuis operators appear in many areas of differential geometry and mathematical
physics. In the theory of integrable bi-Hamiltonian systems, they serve as recursion operators and
their role in this area has been well understood for many years due to pioneering works by F.Magri,
Y.Kosmann-Schwarzbach and F.Turiel. A classical fact in complex geometry is that an almost complex
structure is integrable if and only if it is Nijenhuis (Newlander–Nireberg theorem). In the context of
metric projective geometry, Nijenhuis operators played a crucial role in various classification problems
(AB and V.Matveev). They naturally occur in the study of infinite dimensional Poisson brackets of
hydrodynamic type (E. Ferapontov et al). Even in algebra, Nijenhuis operators turns out to be useful
in the theory of integrable systems on Lie algebras and Lie pencils (A. Panasyuk), and also appear as
left symmetric algebras.

Besides various applications, our motivation is as follows. Classical geometries are defined by means
of a tensor of order 2. For Riemannian, sub-Riemannian, symplectic and Poisson structures, this tensor
is a bilinear form (co- or contravariant, symmetric or skew-symmetric). In this list, one type of tensors
is still missing: linear operators. Nijenhuis geometry would be a very natural candidate to fill this
gap.

Thus, Nijenhuis Geometry research programme is aimed at systematic development of the theory
of Nijenhuis manifolds. Our vision and first results are presented in [1–8]. More specifically, our
goal is to re-direct the research agenda in this area from tensor analysis at generic points to studying
singularities and global properties. The ultimate goal of our research programme is to answer three
fundamental questions:

(A) Local description: to what form can one bring a Nijenhuis operator near almost every point
by a local coordinate change?

(B) Singular points: what does it mean for a point to be generic or singular in the context
of Nijenhuis geometry? What singularities are non-degenerate/stable? How do Nijenhuis
operators behave near non-degenerate and stable singular points?

(C) Global properties: what restrictions on a Nijenhuis operator are imposed by the topology
of the underlying manifold? And conversely, what are topological obstructions to a Nijenhuis
manifold carrying a Nijenhuis operator with specific properties?

Below are some of our easy-to-formulate results in the area.
Theorem 1. Let L be a Nijenhuis operator and σ1, . . . , σn be the coefficients of its characteristic
polynomial χ(t) = det(t · Id−L) = tn −

∑n
k=1 σk t

n−k. Then in any local coordinate system x1, . . . , xn
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the following matrix relation hold:

J(x)L(x) = Sχ(x) J(x), where Sχ(x) =


σ1(x) 1
... 0

. . .

σn−1(x)
... . . . 1

σn(x) 0 . . . 0

 (2)

and J(x) is the Jacobi matrix of the collection of functions σ1, . . . , σn w.r.t. the variables x1, . . . , xn.
Theorem 2. Let L be a real-analytic Nijenhuis operator of the form

L(x) = Llin(x) +R(x), where Llin(x) = diag(x1, x2, . . . , xn)
and R(x) denotes a non-linear perturbation (of order ≥ 2). Then L(x) is linearisable, i.e., there exists
a real analytic change of variables x 7→ y such that in the new coordinates L(y) = diag(y1, y2, . . . , yn).
Theorem 3. A Nijenhuis operator on a closed connected manifold cannot have non-constant complex
eigenvalues.
Theorem 4. Consider a real analytic gl-regular Nijenhuis operator L (gl-regularity means that each
eigenvalue of L may have arbitarary multiplicity but only one linearly independent eigenvector). Then
there exist local coordinate systems u = (u1, . . . , un) and v = (v1, . . . , vn) in which L reduces to the
first and second companion forms:

L(u) = Lcomp1 =


σ1 1
... 0

. . .

σn−1
... . . . 1

σn 0 . . . 0

 and L(v) = Lcomp2 =


0 1
... . . . . . .
0 . . . 0 1
σn σn−1 . . . σ1

 ,

where σi are the coefficients of the characteristic polynomial of L in the corresponding coordinate
system.
Theorem 5. Let M2 be either a sphere or a closed Riemann surface of genus ≥ 2. Then M2 cannot
carry any gl-regular Nijenhuis operator L except for L = α Id+βA, where A is a complex structure
on M2 and α, β ∈ R, β 6= 0. A non-orientable closed 2-manifold different from a Klein bottle cannot
carry any gl-regular Nijenhuis operator.
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