On Classification of almost positive posets

Vitaliy Bondarenko
(Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine)
E-mail: vitalij.bond@gmail.com
\section*{Maryna Styopochkina}
(Polissia National University, Zhytomyr, Ukraine)
E-mail: stmar@ukr.net

We identify finite posets with the Hasse diagrams and often use by the default terms for a poset S based on the analogous terms for its quadratic Tits form $q_{S}(z)$ (for example, "positive poset" means that $q_{S}(z)$ is positive). We call a non-positive poset S almost positive if there exists $x \in S$ (called special) such that $S \backslash x$ is positive (all the positive poset are described, by the method of minimax equivalence [1], in [2]). A special case of such posets are P-critical ones when $S \backslash x$ is positive for any $x \in S$ (they are described also in [2]). We have proved the next theorem.
Theorem 1. For a non-negative poset S of order n the following conditions are equivalent:
(1) S is almost positive; (2) the subgroup $\left\{t \in \mathbb{Z}^{n+1} \mid q_{S}(t)=0\right\}$ of \mathbb{Z}^{n+1} is infinite cyclic.

It follows from this theorem that the classification of the serial almost positive non-negative posets (which include all ones of order $n>8$) is given by Theorems $3,4[3]$ and non-serial ones of order $n=6,7,8$ by calculations using a computer program [4]. We study the second case with the help of our method of minimax equivalence. In particular, in the case $n=7$, after elimination of the P-critical posets [2], we have the following classification up to isomorphism and dyality (all posets of each table are minimax equivalent; the symbols \star denote special points).
*

References

[1] V. M. Bondarenko. On (min, max)-equivalence of posets and applications to the Tits forms. Bulletin of Taras Shevchenko Universityof Kyiv (series: Physics \& Mathematics). (1): 24-25, 2005.
[2] V. M. Bondarenko, M. V. Styopochkina. (Min, max)-equivalence of partially ordered sets and the Tits quadratic form. Collection of works of Inst. of Math. NAS Ukraine - Problems of Analysis and Algebra. 2(3):18-58, 2005.
[3] V. M. Bondarenko, M. V. Styopochkina. The classification of serial posets with the non-negative quadratic Tits form being principal. Algebra and Discr. Math. 27(2): 202-211, 2019.
[4] G. Marczak, D. Simson, K. Zajac. Algorithmic computation of principal posets using Maple and Python. Algebra and Discr. Math. 17(1): 33-69, 2014.

