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We identify finite posets with the Hasse diagrams and often use by the default terms for a poset S
based on the analogous terms for its quadratic Tits form qS(z) (for example, “positive poset” means
that qS(z) is positive). We call a non-positive poset S almost positive if there exists x ∈ S (called
special) such that S \ x is positive (all the positive poset are described, by the method of minimax
equivalence [1], in [2]). A special case of such posets are P -critical ones when S \ x is positive for any
x ∈ S (they are described also in [2]). We have proved the next theorem.
Theorem 1. For a non-negative poset S of order n the following conditions are equivalent:

(1) S is almost positive; (2) the subgroup {t ∈ Zn+1 | qS(t) = 0} of Zn+1 is infinite cyclic.
It follows from this theorem that the classification of the serial almost positive non-negative posets

(which include all ones of order n > 8) is given by Theorems 3, 4 [3] and non-serial ones of order
n = 6, 7, 8 by calculations using a computer program [4]. We study the second case with the help of
our method of minimax equivalence. In particular, in the case n = 7, after elimination of the P -critical
posets [2], we have the following classification up to isomorphism and dyality (all posets of each table
are minimax equivalent; the symbols ⋆ denote special points).
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