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The equivalence between uniform asymptotic stability and exponential stability for generalized
homogeneous non-autonomous differential equations

x′ = f(t, x) (1)
is established. This results we prove in the framework of general non-autonomous (cocycle) dynamical
systems.
Let R := (−∞,+∞) and C(R× Rn,Rn) be the space of all continuous functions f : R× Rn → Rn

equipped with the compact-open topology. Denote by (C(R×Rn,Rn),R, σ) the shift dynamical system
on C(R× Rn,Rn), i.e., σ(τ, f) := f τ and f τ (t, x) := f(t+ τ, x) for any t, τ ∈ R and x ∈ Rn.
Along with equation (1) we consider its H-class [4, 2, 6, 10], i.e., the family of equations

v′ = g(t, v), (2)

where g ∈ H(f) := {f τ | τ ∈ R}, f τ (t, u) = f(t+τ, u) for any (t, u) ∈ R×Rn and by bar we denote the
closure in C(R×Rn,Rn). We will suppose also that the function f is regular [9, ChIV], i.e., for every
equation (2) the conditions of existence, uniqueness and extendability on R+ are fulfilled. Denote by
φ(t, v, g) the solution of equation (2), passing through the point v ∈ Rn at the initial moment t = 0.
Let Rn with euclidian norm |x| :=

√
x21 + . . .+ x2n. Denote by

|x|r,p :=
(
Σn
i=1|xi|

p
ri

) 1
p , (3)

where r := (r1, . . . , rn), ri > 0 for any i = 1, . . . , n and p ≥ 1. Denote by ρ(x) := |x|r,p and
Λr
ε := diag(εri)ni=1.
Definition 1. A function f ∈ C(R× Rn,Rn) is said to be:

(1) r-homogeneous (r ∈ (0,+∞)n) of degree m ∈ R [7, 11] if f(t,Λr
εx) = εmΛr

εf(t, x) for any ε > 0
and (t, x) ∈ R× Rn;

(2) Lagrange stable [4] if the set H(f) is compact in C(R× Rn,Rn).
Remark 2. If the function f ∈ C(R × Rn,Rn) is r homogeneous of degree m ≥ 0, then f(t, 0) = 0
for any t ∈ R.
Definition 3. The trivial solution of equation (1) is said to be:

(1) uniformly stable, if for all positive number ε there exists a number δ = δ(ε) (δ ∈ (0, ε)) such
that |x| < δ implies |φ(t, x, f τ )| < ε for all t, τ ∈ R+;

(2) attracting (respectively, uniformly attracting), if there exists a positive number a
lim

t→+∞
|φ(t, x, f τ )| = 0

for all (respectively, uniformly with respect to) |x| ≤ a and τ ∈ R+;
(3) asymptotically stable (respectively, uniformly asymptotically stable, if it is uniformly stable and

attracting (respectively, uniformly attracting).
Remark 4. 1. Note that from the results given in the works [1],[9] it follows the equivalence of
standard definition of uniform stability (respectively, global uniform asymptotically stability) and of
the one given above for the equation (1) with regular right hand side.
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2. From the results of G. Sell [9] it follows that for the differential equations (1) with the regular
and Lagrange stable right hand site f the following statements are equivalent:

(1) the trivial solution of equation (1) is uniformly asymptotically stable;
(2) the trivial motion of the cocycle ⟨Rn, φ, (H(f),R, σ)⟩ generated by (1) [4, Ch.I] is uniformly

asymptotically stable.
Theorem 5. Assume that the function f is r homogeneous of degree zero and Lagrange stable.
Then the following statements are equivalent:
(1) the trivial solution of equation (1) is uniformly asymptotically stable;
(2) the trivial solution of equation (1) is globally uniformly asymptotically stable;
(3) there exit positive numbers N and ν such that

ρ(φ(t, u, g)) ≤ N e−νtρ(u) (4)
for any u ∈ Rn, g ∈ H(f) and t ≥ 0, where ρ(u) = |u|r,p.

Remark 6. 1. If the function f is τ -periodic, then the equivalence of the conditions (ii) and (iii) was
established in the work [8].
2. If the function f is homogeneous of degree zero (in the classical sense, i.e., f(t, εx) = εf(t, x)

for any ε > 0 and (t, x) ∈ R × Rn), then the equivalence of the uniform asymptotically stability and
exponential stability was established in the work [5, Ch.I] (for finite-dimensional case) and in the work
[3] (for infinite-dimensional case).
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