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A central notion in pattern recognition is that of the medial axis MX of a closed, nonempty, proper
subset X ⊂ Rn. Namely, MX consists of all those points a ∈ Rn for which there is more than one
closest point (with respect to the Euclidean distance d(a,X)) in X:

MX := {a ∈ Rn | #m(a) > 1} where m(a) := {x ∈ Rn | ||a− x|| = d(a,X)}.
The definition goes back to H. Blum (cf. [3]) who gave it for X = ∂D where D ⊂ Rn is a bounded
domain. Then, knowing the ‘skeleton’MX∩D and d(·, X)|MX

(‘compressed data’) one can reconstruct
the ‘shape’ D.
The medial axis has long been known for being highly unstable (cf. e.g. [4]): the smallest deforma-

tion of X may lead to an important change in MX (think of X as a circle in the plane — MX is its
centre, while the same circle but now with the smallest C∞ protuberance yields a medial axis that is
a segment). However, this point of view has a flaw — it sees the modification as through a blackbox,
there is an initial state and a final one with nothing in between.
Our aim is to provide the right setting for considering the deformation of X which is the (Painlevé)-

Kuratowski convergence of closed sets and to show in this case the inner-semicontinuity of the medial
axis. The most general result we have, and one that turns out ot be optimal already in Rn, can be
stated as follows:
Theorem 1. Let M be a connected complete Riemannian manifold and Π a T1 topological space of
parameters with a distinguished non-isolated point 0 having a countable basis of neighbourhoods. We
write ΩX,p for the set of geodesics of minimal length connecting a point in m(p) with p and γX,p for such
a geodesic originating at p. Assume that X ⊂ Π×M has closed t-sections and we have the Kuratowski
convergence Xt

K−→ X0. Then for M = {(t, x) ∈ Π × M | ∃γXt,p, γ̃Xt,p ∈ ΩXt,p : γXt,p ̸= γ̃Xt,p}, we
have

lim inf
π(M)∋t→0

Mt ⊃ M0

where the lower limit is understood in the Kuratowski sense:
x ∈ lim inf

π(M)∋t→0
Mt ⇔ ∀π(M) \ {0} ∋ tν → t0, ∃Mtν ∋ xν → x.

We will show how this applies in singularity theory in Rn giving a criterion for MX to reach certain
singularities of X when X is definable in some o-minimal structure (e.g. semi-algebraic), cf. [2].
Finally, we will discuss a counterpart of this theorem in the case of conflict sets of finite families of

closed, pairwise disjoint sets, instead of the medial axis, cf. [1]. The conflict set of two sets is their set
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of equidistant points. In case of more than two sets it can be seen as the set of points at which the
distance wavefronts emanating from the sets meet.
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